Properties

Label 720.3.c.d
Level 720720
Weight 33
Character orbit 720.c
Analytic conductor 19.61919.619
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(449,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 720.c (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.618579033919.6185790339
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x11+8x1076x9+33x8112x7+3072x62032x517864x4++810000 x^{12} - 4 x^{11} + 8 x^{10} - 76 x^{9} + 33 x^{8} - 112 x^{7} + 3072 x^{6} - 2032 x^{5} - 17864 x^{4} + \cdots + 810000 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 21634 2^{16}\cdot 3^{4}
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ5q5β9q7β7q11β3q13+(β11+β10+β5)q17β1q19+(β11+2β10++2β5)q23++(3β9+β3+11β2)q97+O(q100) q - \beta_{5} q^{5} - \beta_{9} q^{7} - \beta_{7} q^{11} - \beta_{3} q^{13} + (\beta_{11} + \beta_{10} + \beta_{5}) q^{17} - \beta_1 q^{19} + ( - \beta_{11} + 2 \beta_{10} + \cdots + 2 \beta_{5}) q^{23}+ \cdots + ( - 3 \beta_{9} + \beta_{3} + 11 \beta_{2}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q24q2596q31+156q49144q55120q61+384q79300q85+48q91+O(q100) 12 q - 24 q^{25} - 96 q^{31} + 156 q^{49} - 144 q^{55} - 120 q^{61} + 384 q^{79} - 300 q^{85} + 48 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x124x11+8x1076x9+33x8112x7+3072x62032x517864x4++810000 x^{12} - 4 x^{11} + 8 x^{10} - 76 x^{9} + 33 x^{8} - 112 x^{7} + 3072 x^{6} - 2032 x^{5} - 17864 x^{4} + \cdots + 810000 : Copy content Toggle raw display

β1\beta_{1}== (4604738ν11+42942375ν10+543121266ν95843704058ν8++69968084290488)/3976236626976 ( 4604738 \nu^{11} + 42942375 \nu^{10} + 543121266 \nu^{9} - 5843704058 \nu^{8} + \cdots + 69968084290488 ) / 3976236626976 Copy content Toggle raw display
β2\beta_{2}== (113285587ν11+3069782188ν10+2178876244ν9+42918256132ν8+549698871276000)/41419131531000 ( - 113285587 \nu^{11} + 3069782188 \nu^{10} + 2178876244 \nu^{9} + 42918256132 \nu^{8} + \cdots - 549698871276000 ) / 41419131531000 Copy content Toggle raw display
β3\beta_{3}== (7382523711ν11144520107739ν10+212434458368ν91655196755846ν8++10 ⁣ ⁣00)/19 ⁣ ⁣00 ( 7382523711 \nu^{11} - 144520107739 \nu^{10} + 212434458368 \nu^{9} - 1655196755846 \nu^{8} + \cdots + 10\!\cdots\!00 ) / 19\!\cdots\!00 Copy content Toggle raw display
β4\beta_{4}== (47522ν11+116577ν10517534ν9+1409098ν822164714ν7++12807693000)/6106896000 ( 47522 \nu^{11} + 116577 \nu^{10} - 517534 \nu^{9} + 1409098 \nu^{8} - 22164714 \nu^{7} + \cdots + 12807693000 ) / 6106896000 Copy content Toggle raw display
β5\beta_{5}== (13221193685ν11129727996867ν10+280123571668ν91625987889646ν8++64 ⁣ ⁣00)/11 ⁣ ⁣00 ( 13221193685 \nu^{11} - 129727996867 \nu^{10} + 280123571668 \nu^{9} - 1625987889646 \nu^{8} + \cdots + 64\!\cdots\!00 ) / 11\!\cdots\!00 Copy content Toggle raw display
β6\beta_{6}== (24472339721ν11+191771366979ν10369082790748ν9+11 ⁣ ⁣00)/19 ⁣ ⁣00 ( - 24472339721 \nu^{11} + 191771366979 \nu^{10} - 369082790748 \nu^{9} + \cdots - 11\!\cdots\!00 ) / 19\!\cdots\!00 Copy content Toggle raw display
β7\beta_{7}== (108553180306ν11+763025410179ν106018051805618ν9++10 ⁣ ⁣00)/59 ⁣ ⁣00 ( - 108553180306 \nu^{11} + 763025410179 \nu^{10} - 6018051805618 \nu^{9} + \cdots + 10\!\cdots\!00 ) / 59\!\cdots\!00 Copy content Toggle raw display
β8\beta_{8}== (791793ν11+4298897ν109872944ν9+61102618ν8+166191129000)/35159724000 ( - 791793 \nu^{11} + 4298897 \nu^{10} - 9872944 \nu^{9} + 61102618 \nu^{8} + \cdots - 166191129000 ) / 35159724000 Copy content Toggle raw display
β9\beta_{9}== (9156724511ν1117097991039ν10+92694072368ν9553018767246ν8++866139378003000)/397623662697600 ( 9156724511 \nu^{11} - 17097991039 \nu^{10} + 92694072368 \nu^{9} - 553018767246 \nu^{8} + \cdots + 866139378003000 ) / 397623662697600 Copy content Toggle raw display
β10\beta_{10}== (137819890001ν11555839083319ν10+1935291284268ν9++11 ⁣ ⁣00)/59 ⁣ ⁣00 ( 137819890001 \nu^{11} - 555839083319 \nu^{10} + 1935291284268 \nu^{9} + \cdots + 11\!\cdots\!00 ) / 59\!\cdots\!00 Copy content Toggle raw display
β11\beta_{11}== (98500310901ν11503427082304ν10+1154556251908ν9++17 ⁣ ⁣00)/14 ⁣ ⁣00 ( 98500310901 \nu^{11} - 503427082304 \nu^{10} + 1154556251908 \nu^{9} + \cdots + 17\!\cdots\!00 ) / 14\!\cdots\!00 Copy content Toggle raw display
ν\nu== (4β118β10+10β9+β84β6+16β5+4β4++16)/48 ( - 4 \beta_{11} - 8 \beta_{10} + 10 \beta_{9} + \beta_{8} - 4 \beta_{6} + 16 \beta_{5} + 4 \beta_{4} + \cdots + 16 ) / 48 Copy content Toggle raw display
ν2\nu^{2}== (10β11+4β106β932β8+4β518β33β2)/24 ( -10\beta_{11} + 4\beta_{10} - 6\beta_{9} - 32\beta_{8} + 4\beta_{5} - 18\beta_{3} - 3\beta_{2} ) / 24 Copy content Toggle raw display
ν3\nu^{3}== (32β1170β10146β9211β866β752β6++784)/48 ( - 32 \beta_{11} - 70 \beta_{10} - 146 \beta_{9} - 211 \beta_{8} - 66 \beta_{7} - 52 \beta_{6} + \cdots + 784 ) / 48 Copy content Toggle raw display
ν4\nu^{4}== (39β10158β99β7316β6+39β5+145β4++1912)/24 ( - 39 \beta_{10} - 158 \beta_{9} - 9 \beta_{7} - 316 \beta_{6} + 39 \beta_{5} + 145 \beta_{4} + \cdots + 1912 ) / 24 Copy content Toggle raw display
ν5\nu^{5}== (608β111942β10+1958β93337β8+726β71316β6++10736)/48 ( - 608 \beta_{11} - 1942 \beta_{10} + 1958 \beta_{9} - 3337 \beta_{8} + 726 \beta_{7} - 1316 \beta_{6} + \cdots + 10736 ) / 48 Copy content Toggle raw display
ν6\nu^{6}== (3338β112140β10+618β912304β82140β5++873β2)/24 ( - 3338 \beta_{11} - 2140 \beta_{10} + 618 \beta_{9} - 12304 \beta_{8} - 2140 \beta_{5} + \cdots + 873 \beta_{2} ) / 24 Copy content Toggle raw display
ν7\nu^{7}== (17752β11+46762β1053662β944765β88082β7++186608)/48 ( - 17752 \beta_{11} + 46762 \beta_{10} - 53662 \beta_{9} - 44765 \beta_{8} - 8082 \beta_{7} + \cdots + 186608 ) / 48 Copy content Toggle raw display
ν8\nu^{8}== (24939β1044386β9+1365β788772β624939β5++1064072)/24 ( 24939 \beta_{10} - 44386 \beta_{9} + 1365 \beta_{7} - 88772 \beta_{6} - 24939 \beta_{5} + \cdots + 1064072 ) / 24 Copy content Toggle raw display
ν9\nu^{9}== (275008β11698810β10+740506β9768119β8+148794β7++4994128)/48 ( - 275008 \beta_{11} - 698810 \beta_{10} + 740506 \beta_{9} - 768119 \beta_{8} + 148794 \beta_{7} + \cdots + 4994128 ) / 48 Copy content Toggle raw display
ν10\nu^{10}== (1270918β11242324β10+354054β93785852β8++58167β2)/24 ( - 1270918 \beta_{11} - 242324 \beta_{10} + 354054 \beta_{9} - 3785852 \beta_{8} + \cdots + 58167 \beta_{2} ) / 24 Copy content Toggle raw display
ν11\nu^{11}== (5774648β11+10774478β1017917922β919598515β84108038β7++75801808)/48 ( - 5774648 \beta_{11} + 10774478 \beta_{10} - 17917922 \beta_{9} - 19598515 \beta_{8} - 4108038 \beta_{7} + \cdots + 75801808 ) / 48 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/720Z)×\left(\mathbb{Z}/720\mathbb{Z}\right)^\times.

nn 181181 271271 577577 641641
χ(n)\chi(n) 11 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
449.1
−1.92442 0.856820i
−1.92442 + 0.856820i
2.52283 + 2.11143i
2.52283 2.11143i
4.32874 0.0410965i
4.32874 + 0.0410965i
0.0410965 + 4.32874i
0.0410965 4.32874i
−2.11143 + 2.52283i
−2.11143 2.52283i
−0.856820 + 1.92442i
−0.856820 1.92442i
0 0 0 −4.98699 0.360490i 0 5.56248i 0 0 0
449.2 0 0 0 −4.98699 + 0.360490i 0 5.56248i 0 0 0
449.3 0 0 0 −3.09475 3.92715i 0 0.822805i 0 0 0
449.4 0 0 0 −3.09475 + 3.92715i 0 0.822805i 0 0 0
449.5 0 0 0 −0.229082 4.99475i 0 8.73967i 0 0 0
449.6 0 0 0 −0.229082 + 4.99475i 0 8.73967i 0 0 0
449.7 0 0 0 0.229082 4.99475i 0 8.73967i 0 0 0
449.8 0 0 0 0.229082 + 4.99475i 0 8.73967i 0 0 0
449.9 0 0 0 3.09475 3.92715i 0 0.822805i 0 0 0
449.10 0 0 0 3.09475 + 3.92715i 0 0.822805i 0 0 0
449.11 0 0 0 4.98699 0.360490i 0 5.56248i 0 0 0
449.12 0 0 0 4.98699 + 0.360490i 0 5.56248i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 449.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.3.c.d 12
3.b odd 2 1 inner 720.3.c.d 12
4.b odd 2 1 360.3.c.a 12
5.b even 2 1 inner 720.3.c.d 12
5.c odd 4 1 3600.3.l.w 6
5.c odd 4 1 3600.3.l.x 6
8.b even 2 1 2880.3.c.i 12
8.d odd 2 1 2880.3.c.j 12
12.b even 2 1 360.3.c.a 12
15.d odd 2 1 inner 720.3.c.d 12
15.e even 4 1 3600.3.l.w 6
15.e even 4 1 3600.3.l.x 6
20.d odd 2 1 360.3.c.a 12
20.e even 4 1 1800.3.l.h 6
20.e even 4 1 1800.3.l.i 6
24.f even 2 1 2880.3.c.j 12
24.h odd 2 1 2880.3.c.i 12
40.e odd 2 1 2880.3.c.j 12
40.f even 2 1 2880.3.c.i 12
60.h even 2 1 360.3.c.a 12
60.l odd 4 1 1800.3.l.h 6
60.l odd 4 1 1800.3.l.i 6
120.i odd 2 1 2880.3.c.i 12
120.m even 2 1 2880.3.c.j 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.3.c.a 12 4.b odd 2 1
360.3.c.a 12 12.b even 2 1
360.3.c.a 12 20.d odd 2 1
360.3.c.a 12 60.h even 2 1
720.3.c.d 12 1.a even 1 1 trivial
720.3.c.d 12 3.b odd 2 1 inner
720.3.c.d 12 5.b even 2 1 inner
720.3.c.d 12 15.d odd 2 1 inner
1800.3.l.h 6 20.e even 4 1
1800.3.l.h 6 60.l odd 4 1
1800.3.l.i 6 20.e even 4 1
1800.3.l.i 6 60.l odd 4 1
2880.3.c.i 12 8.b even 2 1
2880.3.c.i 12 24.h odd 2 1
2880.3.c.i 12 40.f even 2 1
2880.3.c.i 12 120.i odd 2 1
2880.3.c.j 12 8.d odd 2 1
2880.3.c.j 12 24.f even 2 1
2880.3.c.j 12 40.e odd 2 1
2880.3.c.j 12 120.m even 2 1
3600.3.l.w 6 5.c odd 4 1
3600.3.l.w 6 15.e even 4 1
3600.3.l.x 6 5.c odd 4 1
3600.3.l.x 6 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T76+108T74+2436T72+1600 T_{7}^{6} + 108T_{7}^{4} + 2436T_{7}^{2} + 1600 acting on S3new(720,[χ])S_{3}^{\mathrm{new}}(720, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12++244140625 T^{12} + \cdots + 244140625 Copy content Toggle raw display
77 (T6+108T4++1600)2 (T^{6} + 108 T^{4} + \cdots + 1600)^{2} Copy content Toggle raw display
1111 (T6+516T4++1438208)2 (T^{6} + 516 T^{4} + \cdots + 1438208)^{2} Copy content Toggle raw display
1313 (T6+192T4++85264)2 (T^{6} + 192 T^{4} + \cdots + 85264)^{2} Copy content Toggle raw display
1717 (T61506T4+83980800)2 (T^{6} - 1506 T^{4} + \cdots - 83980800)^{2} Copy content Toggle raw display
1919 (T3528T+1408)4 (T^{3} - 528 T + 1408)^{4} Copy content Toggle raw display
2323 (T61944T4+90747392)2 (T^{6} - 1944 T^{4} + \cdots - 90747392)^{2} Copy content Toggle raw display
2929 (T6+3042T4++446168192)2 (T^{6} + 3042 T^{4} + \cdots + 446168192)^{2} Copy content Toggle raw display
3131 (T3+24T2+3888)4 (T^{3} + 24 T^{2} + \cdots - 3888)^{4} Copy content Toggle raw display
3737 (T6+6876T4++1233414400)2 (T^{6} + 6876 T^{4} + \cdots + 1233414400)^{2} Copy content Toggle raw display
4141 (T6+3462T4++483605000)2 (T^{6} + 3462 T^{4} + \cdots + 483605000)^{2} Copy content Toggle raw display
4343 (T6+4464T4++967458816)2 (T^{6} + 4464 T^{4} + \cdots + 967458816)^{2} Copy content Toggle raw display
4747 (T610848T4+16564912128)2 (T^{6} - 10848 T^{4} + \cdots - 16564912128)^{2} Copy content Toggle raw display
5353 (T62802T4+327680000)2 (T^{6} - 2802 T^{4} + \cdots - 327680000)^{2} Copy content Toggle raw display
5959 (T6+3396T4++17428608)2 (T^{6} + 3396 T^{4} + \cdots + 17428608)^{2} Copy content Toggle raw display
6161 (T3+30T2++82312)4 (T^{3} + 30 T^{2} + \cdots + 82312)^{4} Copy content Toggle raw display
6767 (T6+19584T4++18828230656)2 (T^{6} + 19584 T^{4} + \cdots + 18828230656)^{2} Copy content Toggle raw display
7171 (T6+7392T4++99123200)2 (T^{6} + 7392 T^{4} + \cdots + 99123200)^{2} Copy content Toggle raw display
7373 (T6+14004T4++93733945600)2 (T^{6} + 14004 T^{4} + \cdots + 93733945600)^{2} Copy content Toggle raw display
7979 (T396T2++858320)4 (T^{3} - 96 T^{2} + \cdots + 858320)^{4} Copy content Toggle raw display
8383 (T69984T4+8506253312)2 (T^{6} - 9984 T^{4} + \cdots - 8506253312)^{2} Copy content Toggle raw display
8989 (T6+25830T4++418887045000)2 (T^{6} + 25830 T^{4} + \cdots + 418887045000)^{2} Copy content Toggle raw display
9797 (T6++4190700294400)2 (T^{6} + \cdots + 4190700294400)^{2} Copy content Toggle raw display
show more
show less