L(s) = 1 | + (0.229 − 4.99i)5-s − 8.73i·7-s − 10.4i·11-s + 5.38i·13-s + 26.2·17-s + 2.70·19-s − 33.2·23-s + (−24.8 − 2.28i)25-s − 17.4i·29-s − 48.3·31-s + (−43.6 − 2.00i)35-s + 66.2i·37-s − 14.7i·41-s − 28.4i·43-s + 35.9·47-s + ⋯ |
L(s) = 1 | + (0.0458 − 0.998i)5-s − 1.24i·7-s − 0.953i·11-s + 0.414i·13-s + 1.54·17-s + 0.142·19-s − 1.44·23-s + (−0.995 − 0.0915i)25-s − 0.602i·29-s − 1.56·31-s + (−1.24 − 0.0572i)35-s + 1.79i·37-s − 0.359i·41-s − 0.661i·43-s + 0.764·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.842+0.539i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(−0.842+0.539i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.842+0.539i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), −0.842+0.539i)
|
Particular Values
L(23) |
≈ |
1.349139855 |
L(21) |
≈ |
1.349139855 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.229+4.99i)T |
good | 7 | 1+8.73iT−49T2 |
| 11 | 1+10.4iT−121T2 |
| 13 | 1−5.38iT−169T2 |
| 17 | 1−26.2T+289T2 |
| 19 | 1−2.70T+361T2 |
| 23 | 1+33.2T+529T2 |
| 29 | 1+17.4iT−841T2 |
| 31 | 1+48.3T+961T2 |
| 37 | 1−66.2iT−1.36e3T2 |
| 41 | 1+14.7iT−1.68e3T2 |
| 43 | 1+28.4iT−1.84e3T2 |
| 47 | 1−35.9T+2.20e3T2 |
| 53 | 1−42.2T+2.80e3T2 |
| 59 | 1+55.9iT−3.48e3T2 |
| 61 | 1+96.1T+3.72e3T2 |
| 67 | 1+15.4iT−4.48e3T2 |
| 71 | 1+13.5iT−5.04e3T2 |
| 73 | 1+63.7iT−5.32e3T2 |
| 79 | 1+94.5T+6.24e3T2 |
| 83 | 1−19.4T+6.88e3T2 |
| 89 | 1+118.iT−7.92e3T2 |
| 97 | 1−100.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.918831248200409166756845426911, −9.000807142049985870522989895856, −8.042488365131365908359540233303, −7.47121094034183205293075019506, −6.17529501451856531313937925755, −5.35107025224837554037339712840, −4.21026928095079221022445614426, −3.45900661445928541514594057888, −1.57997579684810745318675853365, −0.47344445501328804642609137115,
1.89208143120996826081844911597, 2.86381937397530079513659924042, 3.94755686852305707710969228853, 5.49926100248261742318899445620, 5.90849085905738720967197077539, 7.22712795755972166732466208401, 7.77394220690894412262773216118, 8.956219903761548108715251149511, 9.793385423675127051846125627866, 10.43597445369790580321917725552