L(s) = 1 | + (0.229 − 4.99i)5-s − 8.73i·7-s − 10.4i·11-s + 5.38i·13-s + 26.2·17-s + 2.70·19-s − 33.2·23-s + (−24.8 − 2.28i)25-s − 17.4i·29-s − 48.3·31-s + (−43.6 − 2.00i)35-s + 66.2i·37-s − 14.7i·41-s − 28.4i·43-s + 35.9·47-s + ⋯ |
L(s) = 1 | + (0.0458 − 0.998i)5-s − 1.24i·7-s − 0.953i·11-s + 0.414i·13-s + 1.54·17-s + 0.142·19-s − 1.44·23-s + (−0.995 − 0.0915i)25-s − 0.602i·29-s − 1.56·31-s + (−1.24 − 0.0572i)35-s + 1.79i·37-s − 0.359i·41-s − 0.661i·43-s + 0.764·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.842 + 0.539i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.842 + 0.539i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.349139855\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.349139855\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.229 + 4.99i)T \) |
good | 7 | \( 1 + 8.73iT - 49T^{2} \) |
| 11 | \( 1 + 10.4iT - 121T^{2} \) |
| 13 | \( 1 - 5.38iT - 169T^{2} \) |
| 17 | \( 1 - 26.2T + 289T^{2} \) |
| 19 | \( 1 - 2.70T + 361T^{2} \) |
| 23 | \( 1 + 33.2T + 529T^{2} \) |
| 29 | \( 1 + 17.4iT - 841T^{2} \) |
| 31 | \( 1 + 48.3T + 961T^{2} \) |
| 37 | \( 1 - 66.2iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 14.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 28.4iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 35.9T + 2.20e3T^{2} \) |
| 53 | \( 1 - 42.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + 55.9iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 96.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 15.4iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 13.5iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 63.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 94.5T + 6.24e3T^{2} \) |
| 83 | \( 1 - 19.4T + 6.88e3T^{2} \) |
| 89 | \( 1 + 118. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 100. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.918831248200409166756845426911, −9.000807142049985870522989895856, −8.042488365131365908359540233303, −7.47121094034183205293075019506, −6.17529501451856531313937925755, −5.35107025224837554037339712840, −4.21026928095079221022445614426, −3.45900661445928541514594057888, −1.57997579684810745318675853365, −0.47344445501328804642609137115,
1.89208143120996826081844911597, 2.86381937397530079513659924042, 3.94755686852305707710969228853, 5.49926100248261742318899445620, 5.90849085905738720967197077539, 7.22712795755972166732466208401, 7.77394220690894412262773216118, 8.956219903761548108715251149511, 9.793385423675127051846125627866, 10.43597445369790580321917725552