Properties

Label 2-720-5.4-c3-0-27
Degree $2$
Conductor $720$
Sign $0.894 + 0.447i$
Analytic cond. $42.4813$
Root an. cond. $6.51777$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (10 + 5i)5-s − 10i·7-s − 46·11-s + 34i·13-s − 66i·17-s + 104·19-s − 164i·23-s + (75 + 100i)25-s + 224·29-s + 72·31-s + (50 − 100i)35-s − 22i·37-s − 194·41-s + 108i·43-s − 480i·47-s + ⋯
L(s)  = 1  + (0.894 + 0.447i)5-s − 0.539i·7-s − 1.26·11-s + 0.725i·13-s − 0.941i·17-s + 1.25·19-s − 1.48i·23-s + (0.599 + 0.800i)25-s + 1.43·29-s + 0.417·31-s + (0.241 − 0.482i)35-s − 0.0977i·37-s − 0.738·41-s + 0.383i·43-s − 1.48i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(42.4813\)
Root analytic conductor: \(6.51777\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{720} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 720,\ (\ :3/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.250303144\)
\(L(\frac12)\) \(\approx\) \(2.250303144\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-10 - 5i)T \)
good7 \( 1 + 10iT - 343T^{2} \)
11 \( 1 + 46T + 1.33e3T^{2} \)
13 \( 1 - 34iT - 2.19e3T^{2} \)
17 \( 1 + 66iT - 4.91e3T^{2} \)
19 \( 1 - 104T + 6.85e3T^{2} \)
23 \( 1 + 164iT - 1.21e4T^{2} \)
29 \( 1 - 224T + 2.43e4T^{2} \)
31 \( 1 - 72T + 2.97e4T^{2} \)
37 \( 1 + 22iT - 5.06e4T^{2} \)
41 \( 1 + 194T + 6.89e4T^{2} \)
43 \( 1 - 108iT - 7.95e4T^{2} \)
47 \( 1 + 480iT - 1.03e5T^{2} \)
53 \( 1 - 286iT - 1.48e5T^{2} \)
59 \( 1 + 426T + 2.05e5T^{2} \)
61 \( 1 - 698T + 2.26e5T^{2} \)
67 \( 1 + 328iT - 3.00e5T^{2} \)
71 \( 1 - 188T + 3.57e5T^{2} \)
73 \( 1 - 740iT - 3.89e5T^{2} \)
79 \( 1 - 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 412iT - 5.71e5T^{2} \)
89 \( 1 - 1.20e3T + 7.04e5T^{2} \)
97 \( 1 + 1.38e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12930837105072293233241310127, −9.235956296684230092153723229840, −8.206118718911414971480291445458, −7.17889690798557632558515041303, −6.55258745525313880550913429581, −5.38480058724174818601200712536, −4.63413451884388654700570703829, −3.10862309709958647275828695519, −2.27672631087238994064973183352, −0.74034477008234779635989878990, 1.03930901429046610224634402154, 2.31918935324228722664457075427, 3.31968886157543283674587149663, 4.98088694925617918347508684248, 5.47479149004425210354064669062, 6.33137173653031992990131719933, 7.67418672802346128282541758178, 8.323587783727886463857750461091, 9.309979766032039751319327730552, 10.06950187319522645788167453240

Graph of the $Z$-function along the critical line