Properties

Label 720.4.f.g.289.2
Level $720$
Weight $4$
Character 720.289
Analytic conductor $42.481$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,4,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.4813752041\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 720.289
Dual form 720.4.f.g.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(10.0000 + 5.00000i) q^{5} -10.0000i q^{7} -46.0000 q^{11} +34.0000i q^{13} -66.0000i q^{17} +104.000 q^{19} -164.000i q^{23} +(75.0000 + 100.000i) q^{25} +224.000 q^{29} +72.0000 q^{31} +(50.0000 - 100.000i) q^{35} -22.0000i q^{37} -194.000 q^{41} +108.000i q^{43} -480.000i q^{47} +243.000 q^{49} +286.000i q^{53} +(-460.000 - 230.000i) q^{55} -426.000 q^{59} +698.000 q^{61} +(-170.000 + 340.000i) q^{65} -328.000i q^{67} +188.000 q^{71} +740.000i q^{73} +460.000i q^{77} +1168.00 q^{79} -412.000i q^{83} +(330.000 - 660.000i) q^{85} +1206.00 q^{89} +340.000 q^{91} +(1040.00 + 520.000i) q^{95} -1384.00i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{5} - 92 q^{11} + 208 q^{19} + 150 q^{25} + 448 q^{29} + 144 q^{31} + 100 q^{35} - 388 q^{41} + 486 q^{49} - 920 q^{55} - 852 q^{59} + 1396 q^{61} - 340 q^{65} + 376 q^{71} + 2336 q^{79} + 660 q^{85}+ \cdots + 2080 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 10.0000 + 5.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) 10.0000i 0.539949i −0.962867 0.269975i \(-0.912985\pi\)
0.962867 0.269975i \(-0.0870153\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −46.0000 −1.26087 −0.630433 0.776244i \(-0.717123\pi\)
−0.630433 + 0.776244i \(0.717123\pi\)
\(12\) 0 0
\(13\) 34.0000i 0.725377i 0.931910 + 0.362689i \(0.118141\pi\)
−0.931910 + 0.362689i \(0.881859\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 66.0000i 0.941609i −0.882238 0.470804i \(-0.843964\pi\)
0.882238 0.470804i \(-0.156036\pi\)
\(18\) 0 0
\(19\) 104.000 1.25575 0.627875 0.778314i \(-0.283925\pi\)
0.627875 + 0.778314i \(0.283925\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 164.000i 1.48680i −0.668848 0.743399i \(-0.733212\pi\)
0.668848 0.743399i \(-0.266788\pi\)
\(24\) 0 0
\(25\) 75.0000 + 100.000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 224.000 1.43434 0.717168 0.696900i \(-0.245438\pi\)
0.717168 + 0.696900i \(0.245438\pi\)
\(30\) 0 0
\(31\) 72.0000 0.417148 0.208574 0.978007i \(-0.433118\pi\)
0.208574 + 0.978007i \(0.433118\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 50.0000 100.000i 0.241473 0.482945i
\(36\) 0 0
\(37\) 22.0000i 0.0977507i −0.998805 0.0488754i \(-0.984436\pi\)
0.998805 0.0488754i \(-0.0155637\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −194.000 −0.738969 −0.369484 0.929237i \(-0.620466\pi\)
−0.369484 + 0.929237i \(0.620466\pi\)
\(42\) 0 0
\(43\) 108.000i 0.383020i 0.981491 + 0.191510i \(0.0613384\pi\)
−0.981491 + 0.191510i \(0.938662\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 480.000i 1.48969i −0.667240 0.744843i \(-0.732525\pi\)
0.667240 0.744843i \(-0.267475\pi\)
\(48\) 0 0
\(49\) 243.000 0.708455
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 286.000i 0.741229i 0.928787 + 0.370614i \(0.120853\pi\)
−0.928787 + 0.370614i \(0.879147\pi\)
\(54\) 0 0
\(55\) −460.000 230.000i −1.12775 0.563876i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −426.000 −0.940008 −0.470004 0.882664i \(-0.655748\pi\)
−0.470004 + 0.882664i \(0.655748\pi\)
\(60\) 0 0
\(61\) 698.000 1.46508 0.732539 0.680725i \(-0.238335\pi\)
0.732539 + 0.680725i \(0.238335\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −170.000 + 340.000i −0.324399 + 0.648797i
\(66\) 0 0
\(67\) 328.000i 0.598083i −0.954240 0.299042i \(-0.903333\pi\)
0.954240 0.299042i \(-0.0966669\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 188.000 0.314246 0.157123 0.987579i \(-0.449778\pi\)
0.157123 + 0.987579i \(0.449778\pi\)
\(72\) 0 0
\(73\) 740.000i 1.18644i 0.805039 + 0.593222i \(0.202144\pi\)
−0.805039 + 0.593222i \(0.797856\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 460.000i 0.680803i
\(78\) 0 0
\(79\) 1168.00 1.66342 0.831711 0.555209i \(-0.187362\pi\)
0.831711 + 0.555209i \(0.187362\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 412.000i 0.544854i −0.962176 0.272427i \(-0.912174\pi\)
0.962176 0.272427i \(-0.0878263\pi\)
\(84\) 0 0
\(85\) 330.000 660.000i 0.421100 0.842201i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1206.00 1.43636 0.718178 0.695859i \(-0.244976\pi\)
0.718178 + 0.695859i \(0.244976\pi\)
\(90\) 0 0
\(91\) 340.000 0.391667
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1040.00 + 520.000i 1.12318 + 0.561588i
\(96\) 0 0
\(97\) 1384.00i 1.44870i −0.689432 0.724350i \(-0.742140\pi\)
0.689432 0.724350i \(-0.257860\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1128.00 1.11129 0.555645 0.831420i \(-0.312472\pi\)
0.555645 + 0.831420i \(0.312472\pi\)
\(102\) 0 0
\(103\) 758.000i 0.725126i −0.931959 0.362563i \(-0.881902\pi\)
0.931959 0.362563i \(-0.118098\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1324.00i 1.19622i 0.801413 + 0.598112i \(0.204082\pi\)
−0.801413 + 0.598112i \(0.795918\pi\)
\(108\) 0 0
\(109\) −1602.00 −1.40774 −0.703871 0.710328i \(-0.748546\pi\)
−0.703871 + 0.710328i \(0.748546\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2074.00i 1.72660i −0.504693 0.863299i \(-0.668394\pi\)
0.504693 0.863299i \(-0.331606\pi\)
\(114\) 0 0
\(115\) 820.000 1640.00i 0.664916 1.32983i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −660.000 −0.508421
\(120\) 0 0
\(121\) 785.000 0.589782
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 250.000 + 1375.00i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 534.000i 0.373109i 0.982445 + 0.186554i \(0.0597321\pi\)
−0.982445 + 0.186554i \(0.940268\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1806.00 1.20451 0.602256 0.798303i \(-0.294269\pi\)
0.602256 + 0.798303i \(0.294269\pi\)
\(132\) 0 0
\(133\) 1040.00i 0.678041i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1822.00i 1.13623i −0.822948 0.568117i \(-0.807672\pi\)
0.822948 0.568117i \(-0.192328\pi\)
\(138\) 0 0
\(139\) 532.000 0.324631 0.162315 0.986739i \(-0.448104\pi\)
0.162315 + 0.986739i \(0.448104\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1564.00i 0.914603i
\(144\) 0 0
\(145\) 2240.00 + 1120.00i 1.28291 + 0.641455i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1284.00 −0.705969 −0.352984 0.935629i \(-0.614833\pi\)
−0.352984 + 0.935629i \(0.614833\pi\)
\(150\) 0 0
\(151\) −184.000 −0.0991636 −0.0495818 0.998770i \(-0.515789\pi\)
−0.0495818 + 0.998770i \(0.515789\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 720.000 + 360.000i 0.373108 + 0.186554i
\(156\) 0 0
\(157\) 3746.00i 1.90423i −0.305748 0.952113i \(-0.598906\pi\)
0.305748 0.952113i \(-0.401094\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1640.00 −0.802796
\(162\) 0 0
\(163\) 1504.00i 0.722714i 0.932428 + 0.361357i \(0.117686\pi\)
−0.932428 + 0.361357i \(0.882314\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3012.00i 1.39566i 0.716262 + 0.697831i \(0.245851\pi\)
−0.716262 + 0.697831i \(0.754149\pi\)
\(168\) 0 0
\(169\) 1041.00 0.473828
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 438.000i 0.192489i −0.995358 0.0962443i \(-0.969317\pi\)
0.995358 0.0962443i \(-0.0306830\pi\)
\(174\) 0 0
\(175\) 1000.00 750.000i 0.431959 0.323970i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1462.00 0.610475 0.305237 0.952276i \(-0.401264\pi\)
0.305237 + 0.952276i \(0.401264\pi\)
\(180\) 0 0
\(181\) 586.000 0.240647 0.120323 0.992735i \(-0.461607\pi\)
0.120323 + 0.992735i \(0.461607\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 110.000 220.000i 0.0437155 0.0874309i
\(186\) 0 0
\(187\) 3036.00i 1.18724i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 60.0000 0.0227301 0.0113650 0.999935i \(-0.496382\pi\)
0.0113650 + 0.999935i \(0.496382\pi\)
\(192\) 0 0
\(193\) 4676.00i 1.74397i 0.489534 + 0.871984i \(0.337167\pi\)
−0.489534 + 0.871984i \(0.662833\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2286.00i 0.826755i −0.910560 0.413378i \(-0.864349\pi\)
0.910560 0.413378i \(-0.135651\pi\)
\(198\) 0 0
\(199\) −3536.00 −1.25960 −0.629800 0.776757i \(-0.716863\pi\)
−0.629800 + 0.776757i \(0.716863\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2240.00i 0.774469i
\(204\) 0 0
\(205\) −1940.00 970.000i −0.660954 0.330477i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4784.00 −1.58333
\(210\) 0 0
\(211\) 3500.00 1.14194 0.570971 0.820970i \(-0.306567\pi\)
0.570971 + 0.820970i \(0.306567\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −540.000 + 1080.00i −0.171292 + 0.342583i
\(216\) 0 0
\(217\) 720.000i 0.225239i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2244.00 0.683022
\(222\) 0 0
\(223\) 5874.00i 1.76391i 0.471333 + 0.881955i \(0.343773\pi\)
−0.471333 + 0.881955i \(0.656227\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 124.000i 0.0362563i −0.999836 0.0181281i \(-0.994229\pi\)
0.999836 0.0181281i \(-0.00577068\pi\)
\(228\) 0 0
\(229\) 1362.00 0.393028 0.196514 0.980501i \(-0.437038\pi\)
0.196514 + 0.980501i \(0.437038\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3870.00i 1.08812i −0.839046 0.544060i \(-0.816886\pi\)
0.839046 0.544060i \(-0.183114\pi\)
\(234\) 0 0
\(235\) 2400.00 4800.00i 0.666207 1.33241i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6116.00 −1.65528 −0.827638 0.561262i \(-0.810316\pi\)
−0.827638 + 0.561262i \(0.810316\pi\)
\(240\) 0 0
\(241\) −5962.00 −1.59355 −0.796776 0.604274i \(-0.793463\pi\)
−0.796776 + 0.604274i \(0.793463\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2430.00 + 1215.00i 0.633661 + 0.316831i
\(246\) 0 0
\(247\) 3536.00i 0.910892i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1490.00 −0.374693 −0.187347 0.982294i \(-0.559989\pi\)
−0.187347 + 0.982294i \(0.559989\pi\)
\(252\) 0 0
\(253\) 7544.00i 1.87465i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5394.00i 1.30922i 0.755969 + 0.654608i \(0.227166\pi\)
−0.755969 + 0.654608i \(0.772834\pi\)
\(258\) 0 0
\(259\) −220.000 −0.0527804
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 636.000i 0.149116i 0.997217 + 0.0745579i \(0.0237546\pi\)
−0.997217 + 0.0745579i \(0.976245\pi\)
\(264\) 0 0
\(265\) −1430.00 + 2860.00i −0.331488 + 0.662975i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3360.00 −0.761572 −0.380786 0.924663i \(-0.624347\pi\)
−0.380786 + 0.924663i \(0.624347\pi\)
\(270\) 0 0
\(271\) −5768.00 −1.29292 −0.646459 0.762948i \(-0.723751\pi\)
−0.646459 + 0.762948i \(0.723751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3450.00 4600.00i −0.756519 1.00869i
\(276\) 0 0
\(277\) 1398.00i 0.303241i −0.988439 0.151620i \(-0.951551\pi\)
0.988439 0.151620i \(-0.0484491\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4194.00 0.890367 0.445183 0.895439i \(-0.353138\pi\)
0.445183 + 0.895439i \(0.353138\pi\)
\(282\) 0 0
\(283\) 8256.00i 1.73416i −0.498166 0.867082i \(-0.665993\pi\)
0.498166 0.867082i \(-0.334007\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1940.00i 0.399006i
\(288\) 0 0
\(289\) 557.000 0.113373
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5534.00i 1.10341i 0.834039 + 0.551706i \(0.186023\pi\)
−0.834039 + 0.551706i \(0.813977\pi\)
\(294\) 0 0
\(295\) −4260.00 2130.00i −0.840769 0.420384i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5576.00 1.07849
\(300\) 0 0
\(301\) 1080.00 0.206811
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6980.00 + 3490.00i 1.31041 + 0.655203i
\(306\) 0 0
\(307\) 484.000i 0.0899783i 0.998987 + 0.0449892i \(0.0143253\pi\)
−0.998987 + 0.0449892i \(0.985675\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2724.00 −0.496668 −0.248334 0.968674i \(-0.579883\pi\)
−0.248334 + 0.968674i \(0.579883\pi\)
\(312\) 0 0
\(313\) 5308.00i 0.958549i −0.877665 0.479275i \(-0.840900\pi\)
0.877665 0.479275i \(-0.159100\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4218.00i 0.747339i −0.927562 0.373670i \(-0.878099\pi\)
0.927562 0.373670i \(-0.121901\pi\)
\(318\) 0 0
\(319\) −10304.0 −1.80851
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6864.00i 1.18242i
\(324\) 0 0
\(325\) −3400.00 + 2550.00i −0.580302 + 0.435226i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4800.00 −0.804354
\(330\) 0 0
\(331\) 4640.00 0.770506 0.385253 0.922811i \(-0.374114\pi\)
0.385253 + 0.922811i \(0.374114\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1640.00 3280.00i 0.267471 0.534942i
\(336\) 0 0
\(337\) 8156.00i 1.31835i −0.751987 0.659177i \(-0.770905\pi\)
0.751987 0.659177i \(-0.229095\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3312.00 −0.525967
\(342\) 0 0
\(343\) 5860.00i 0.922479i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4124.00i 0.638006i 0.947754 + 0.319003i \(0.103348\pi\)
−0.947754 + 0.319003i \(0.896652\pi\)
\(348\) 0 0
\(349\) −3650.00 −0.559828 −0.279914 0.960025i \(-0.590306\pi\)
−0.279914 + 0.960025i \(0.590306\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6834.00i 1.03042i 0.857065 + 0.515208i \(0.172285\pi\)
−0.857065 + 0.515208i \(0.827715\pi\)
\(354\) 0 0
\(355\) 1880.00 + 940.000i 0.281071 + 0.140535i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3904.00 −0.573942 −0.286971 0.957939i \(-0.592648\pi\)
−0.286971 + 0.957939i \(0.592648\pi\)
\(360\) 0 0
\(361\) 3957.00 0.576906
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3700.00 + 7400.00i −0.530594 + 1.06119i
\(366\) 0 0
\(367\) 13174.0i 1.87378i 0.349624 + 0.936890i \(0.386309\pi\)
−0.349624 + 0.936890i \(0.613691\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2860.00 0.400226
\(372\) 0 0
\(373\) 1090.00i 0.151308i 0.997134 + 0.0756542i \(0.0241045\pi\)
−0.997134 + 0.0756542i \(0.975895\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7616.00i 1.04043i
\(378\) 0 0
\(379\) −9220.00 −1.24960 −0.624802 0.780784i \(-0.714820\pi\)
−0.624802 + 0.780784i \(0.714820\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3960.00i 0.528320i 0.964479 + 0.264160i \(0.0850947\pi\)
−0.964479 + 0.264160i \(0.914905\pi\)
\(384\) 0 0
\(385\) −2300.00 + 4600.00i −0.304465 + 0.608929i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1788.00 −0.233047 −0.116523 0.993188i \(-0.537175\pi\)
−0.116523 + 0.993188i \(0.537175\pi\)
\(390\) 0 0
\(391\) −10824.0 −1.39998
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11680.0 + 5840.00i 1.48781 + 0.743905i
\(396\) 0 0
\(397\) 9642.00i 1.21894i 0.792810 + 0.609469i \(0.208617\pi\)
−0.792810 + 0.609469i \(0.791383\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 410.000 0.0510584 0.0255292 0.999674i \(-0.491873\pi\)
0.0255292 + 0.999674i \(0.491873\pi\)
\(402\) 0 0
\(403\) 2448.00i 0.302589i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1012.00i 0.123251i
\(408\) 0 0
\(409\) −13766.0 −1.66427 −0.832133 0.554576i \(-0.812880\pi\)
−0.832133 + 0.554576i \(0.812880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4260.00i 0.507557i
\(414\) 0 0
\(415\) 2060.00 4120.00i 0.243666 0.487332i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16998.0 −1.98188 −0.990939 0.134315i \(-0.957117\pi\)
−0.990939 + 0.134315i \(0.957117\pi\)
\(420\) 0 0
\(421\) −2450.00 −0.283624 −0.141812 0.989894i \(-0.545293\pi\)
−0.141812 + 0.989894i \(0.545293\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6600.00 4950.00i 0.753287 0.564965i
\(426\) 0 0
\(427\) 6980.00i 0.791068i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9248.00 −1.03355 −0.516776 0.856121i \(-0.672868\pi\)
−0.516776 + 0.856121i \(0.672868\pi\)
\(432\) 0 0
\(433\) 5028.00i 0.558038i 0.960286 + 0.279019i \(0.0900092\pi\)
−0.960286 + 0.279019i \(0.909991\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17056.0i 1.86705i
\(438\) 0 0
\(439\) 3120.00 0.339202 0.169601 0.985513i \(-0.445752\pi\)
0.169601 + 0.985513i \(0.445752\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8220.00i 0.881589i 0.897608 + 0.440795i \(0.145303\pi\)
−0.897608 + 0.440795i \(0.854697\pi\)
\(444\) 0 0
\(445\) 12060.0 + 6030.00i 1.28472 + 0.642358i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5826.00 −0.612352 −0.306176 0.951975i \(-0.599050\pi\)
−0.306176 + 0.951975i \(0.599050\pi\)
\(450\) 0 0
\(451\) 8924.00 0.931740
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3400.00 + 1700.00i 0.350317 + 0.175159i
\(456\) 0 0
\(457\) 16896.0i 1.72946i −0.502240 0.864728i \(-0.667491\pi\)
0.502240 0.864728i \(-0.332509\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 996.000 0.100625 0.0503127 0.998734i \(-0.483978\pi\)
0.0503127 + 0.998734i \(0.483978\pi\)
\(462\) 0 0
\(463\) 10046.0i 1.00837i 0.863594 + 0.504187i \(0.168208\pi\)
−0.863594 + 0.504187i \(0.831792\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8388.00i 0.831157i −0.909557 0.415579i \(-0.863579\pi\)
0.909557 0.415579i \(-0.136421\pi\)
\(468\) 0 0
\(469\) −3280.00 −0.322935
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4968.00i 0.482936i
\(474\) 0 0
\(475\) 7800.00 + 10400.0i 0.753450 + 1.00460i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11396.0 −1.08705 −0.543525 0.839393i \(-0.682911\pi\)
−0.543525 + 0.839393i \(0.682911\pi\)
\(480\) 0 0
\(481\) 748.000 0.0709062
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6920.00 13840.0i 0.647878 1.29576i
\(486\) 0 0
\(487\) 6454.00i 0.600531i −0.953856 0.300266i \(-0.902925\pi\)
0.953856 0.300266i \(-0.0970753\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18638.0 1.71308 0.856539 0.516083i \(-0.172610\pi\)
0.856539 + 0.516083i \(0.172610\pi\)
\(492\) 0 0
\(493\) 14784.0i 1.35058i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1880.00i 0.169677i
\(498\) 0 0
\(499\) 17768.0 1.59400 0.796999 0.603981i \(-0.206420\pi\)
0.796999 + 0.603981i \(0.206420\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7952.00i 0.704895i 0.935832 + 0.352447i \(0.114650\pi\)
−0.935832 + 0.352447i \(0.885350\pi\)
\(504\) 0 0
\(505\) 11280.0 + 5640.00i 0.993967 + 0.496984i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12896.0 −1.12300 −0.561498 0.827478i \(-0.689775\pi\)
−0.561498 + 0.827478i \(0.689775\pi\)
\(510\) 0 0
\(511\) 7400.00 0.640620
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3790.00 7580.00i 0.324286 0.648572i
\(516\) 0 0
\(517\) 22080.0i 1.87829i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2714.00 0.228220 0.114110 0.993468i \(-0.463598\pi\)
0.114110 + 0.993468i \(0.463598\pi\)
\(522\) 0 0
\(523\) 13792.0i 1.15312i −0.817055 0.576560i \(-0.804395\pi\)
0.817055 0.576560i \(-0.195605\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4752.00i 0.392790i
\(528\) 0 0
\(529\) −14729.0 −1.21057
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6596.00i 0.536031i
\(534\) 0 0
\(535\) −6620.00 + 13240.0i −0.534967 + 1.06993i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11178.0 −0.893266
\(540\) 0 0
\(541\) 6802.00 0.540556 0.270278 0.962782i \(-0.412884\pi\)
0.270278 + 0.962782i \(0.412884\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16020.0 8010.00i −1.25912 0.629561i
\(546\) 0 0
\(547\) 18188.0i 1.42169i 0.703350 + 0.710843i \(0.251687\pi\)
−0.703350 + 0.710843i \(0.748313\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 23296.0 1.80117
\(552\) 0 0
\(553\) 11680.0i 0.898163i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21462.0i 1.63263i −0.577608 0.816314i \(-0.696014\pi\)
0.577608 0.816314i \(-0.303986\pi\)
\(558\) 0 0
\(559\) −3672.00 −0.277834
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17244.0i 1.29085i 0.763824 + 0.645424i \(0.223319\pi\)
−0.763824 + 0.645424i \(0.776681\pi\)
\(564\) 0 0
\(565\) 10370.0 20740.0i 0.772158 1.54432i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8790.00 0.647620 0.323810 0.946122i \(-0.395036\pi\)
0.323810 + 0.946122i \(0.395036\pi\)
\(570\) 0 0
\(571\) 5984.00 0.438568 0.219284 0.975661i \(-0.429628\pi\)
0.219284 + 0.975661i \(0.429628\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 16400.0 12300.0i 1.18944 0.892079i
\(576\) 0 0
\(577\) 9344.00i 0.674170i −0.941474 0.337085i \(-0.890559\pi\)
0.941474 0.337085i \(-0.109441\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4120.00 −0.294193
\(582\) 0 0
\(583\) 13156.0i 0.934590i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6932.00i 0.487418i −0.969848 0.243709i \(-0.921636\pi\)
0.969848 0.243709i \(-0.0783642\pi\)
\(588\) 0 0
\(589\) 7488.00 0.523833
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 9382.00i 0.649701i 0.945765 + 0.324850i \(0.105314\pi\)
−0.945765 + 0.324850i \(0.894686\pi\)
\(594\) 0 0
\(595\) −6600.00 3300.00i −0.454746 0.227373i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4096.00 −0.279396 −0.139698 0.990194i \(-0.544613\pi\)
−0.139698 + 0.990194i \(0.544613\pi\)
\(600\) 0 0
\(601\) 22962.0 1.55847 0.779234 0.626733i \(-0.215608\pi\)
0.779234 + 0.626733i \(0.215608\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7850.00 + 3925.00i 0.527517 + 0.263759i
\(606\) 0 0
\(607\) 3490.00i 0.233369i 0.993169 + 0.116684i \(0.0372266\pi\)
−0.993169 + 0.116684i \(0.962773\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16320.0 1.08058
\(612\) 0 0
\(613\) 6386.00i 0.420764i −0.977619 0.210382i \(-0.932529\pi\)
0.977619 0.210382i \(-0.0674707\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19534.0i 1.27457i 0.770629 + 0.637285i \(0.219942\pi\)
−0.770629 + 0.637285i \(0.780058\pi\)
\(618\) 0 0
\(619\) 8764.00 0.569071 0.284535 0.958666i \(-0.408161\pi\)
0.284535 + 0.958666i \(0.408161\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12060.0i 0.775560i
\(624\) 0 0
\(625\) −4375.00 + 15000.0i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1452.00 −0.0920430
\(630\) 0 0
\(631\) −7856.00 −0.495630 −0.247815 0.968807i \(-0.579712\pi\)
−0.247815 + 0.968807i \(0.579712\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2670.00 + 5340.00i −0.166859 + 0.333719i
\(636\) 0 0
\(637\) 8262.00i 0.513897i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22974.0 1.41563 0.707815 0.706398i \(-0.249681\pi\)
0.707815 + 0.706398i \(0.249681\pi\)
\(642\) 0 0
\(643\) 6216.00i 0.381237i −0.981664 0.190618i \(-0.938951\pi\)
0.981664 0.190618i \(-0.0610493\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13384.0i 0.813260i 0.913593 + 0.406630i \(0.133296\pi\)
−0.913593 + 0.406630i \(0.866704\pi\)
\(648\) 0 0
\(649\) 19596.0 1.18522
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12882.0i 0.771993i 0.922500 + 0.385997i \(0.126142\pi\)
−0.922500 + 0.385997i \(0.873858\pi\)
\(654\) 0 0
\(655\) 18060.0 + 9030.00i 1.07735 + 0.538674i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2082.00 0.123070 0.0615351 0.998105i \(-0.480400\pi\)
0.0615351 + 0.998105i \(0.480400\pi\)
\(660\) 0 0
\(661\) −9430.00 −0.554893 −0.277447 0.960741i \(-0.589488\pi\)
−0.277447 + 0.960741i \(0.589488\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5200.00 10400.0i 0.303229 0.606458i
\(666\) 0 0
\(667\) 36736.0i 2.13257i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −32108.0 −1.84727
\(672\) 0 0
\(673\) 3268.00i 0.187180i −0.995611 0.0935900i \(-0.970166\pi\)
0.995611 0.0935900i \(-0.0298343\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15606.0i 0.885949i 0.896534 + 0.442974i \(0.146077\pi\)
−0.896534 + 0.442974i \(0.853923\pi\)
\(678\) 0 0
\(679\) −13840.0 −0.782225
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 428.000i 0.0239780i −0.999928 0.0119890i \(-0.996184\pi\)
0.999928 0.0119890i \(-0.00381631\pi\)
\(684\) 0 0
\(685\) 9110.00 18220.0i 0.508139 1.01628i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9724.00 −0.537670
\(690\) 0 0
\(691\) 6384.00 0.351460 0.175730 0.984438i \(-0.443771\pi\)
0.175730 + 0.984438i \(0.443771\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5320.00 + 2660.00i 0.290358 + 0.145179i
\(696\) 0 0
\(697\) 12804.0i 0.695819i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12224.0 0.658622 0.329311 0.944221i \(-0.393184\pi\)
0.329311 + 0.944221i \(0.393184\pi\)
\(702\) 0 0
\(703\) 2288.00i 0.122750i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11280.0i 0.600040i
\(708\) 0 0
\(709\) −19510.0 −1.03345 −0.516723 0.856153i \(-0.672848\pi\)
−0.516723 + 0.856153i \(0.672848\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 11808.0i 0.620215i
\(714\) 0 0
\(715\) 7820.00 15640.0i 0.409023 0.818046i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3368.00 0.174694 0.0873472 0.996178i \(-0.472161\pi\)
0.0873472 + 0.996178i \(0.472161\pi\)
\(720\) 0 0
\(721\) −7580.00 −0.391531
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16800.0 + 22400.0i 0.860602 + 1.14747i
\(726\) 0 0
\(727\) 22134.0i 1.12917i −0.825376 0.564584i \(-0.809037\pi\)
0.825376 0.564584i \(-0.190963\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7128.00 0.360655
\(732\) 0 0
\(733\) 32298.0i 1.62750i −0.581219 0.813748i \(-0.697424\pi\)
0.581219 0.813748i \(-0.302576\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15088.0i 0.754103i
\(738\) 0 0
\(739\) 25104.0 1.24962 0.624808 0.780779i \(-0.285177\pi\)
0.624808 + 0.780779i \(0.285177\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27696.0i 1.36752i 0.729707 + 0.683760i \(0.239657\pi\)
−0.729707 + 0.683760i \(0.760343\pi\)
\(744\) 0 0
\(745\) −12840.0 6420.00i −0.631438 0.315719i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13240.0 0.645900
\(750\) 0 0
\(751\) 2176.00 0.105730 0.0528651 0.998602i \(-0.483165\pi\)
0.0528651 + 0.998602i \(0.483165\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1840.00 920.000i −0.0886946 0.0443473i
\(756\) 0 0
\(757\) 25514.0i 1.22500i 0.790472 + 0.612498i \(0.209835\pi\)
−0.790472 + 0.612498i \(0.790165\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18238.0 −0.868761 −0.434380 0.900730i \(-0.643033\pi\)
−0.434380 + 0.900730i \(0.643033\pi\)
\(762\) 0 0
\(763\) 16020.0i 0.760109i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14484.0i 0.681860i
\(768\) 0 0
\(769\) 14462.0 0.678170 0.339085 0.940756i \(-0.389882\pi\)
0.339085 + 0.940756i \(0.389882\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34034.0i 1.58359i 0.610785 + 0.791797i \(0.290854\pi\)
−0.610785 + 0.791797i \(0.709146\pi\)
\(774\) 0 0
\(775\) 5400.00 + 7200.00i 0.250289 + 0.333718i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20176.0 −0.927959
\(780\) 0 0
\(781\) −8648.00 −0.396222
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18730.0 37460.0i 0.851595 1.70319i
\(786\) 0 0
\(787\) 22064.0i 0.999360i −0.866210 0.499680i \(-0.833451\pi\)
0.866210 0.499680i \(-0.166549\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20740.0 −0.932275
\(792\) 0 0
\(793\) 23732.0i 1.06273i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23334.0i 1.03705i 0.855061 + 0.518527i \(0.173520\pi\)
−0.855061 + 0.518527i \(0.826480\pi\)
\(798\) 0 0
\(799\) −31680.0 −1.40270
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 34040.0i 1.49595i
\(804\) 0 0
\(805\) −16400.0 8200.00i −0.718042 0.359021i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7566.00 −0.328809 −0.164404 0.986393i \(-0.552570\pi\)
−0.164404 + 0.986393i \(0.552570\pi\)
\(810\) 0 0
\(811\) −5964.00 −0.258230 −0.129115 0.991630i \(-0.541214\pi\)
−0.129115 + 0.991630i \(0.541214\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −7520.00 + 15040.0i −0.323207 + 0.646415i
\(816\) 0 0
\(817\) 11232.0i 0.480977i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11880.0 0.505012 0.252506 0.967595i \(-0.418745\pi\)
0.252506 + 0.967595i \(0.418745\pi\)
\(822\) 0 0
\(823\) 1762.00i 0.0746287i −0.999304 0.0373144i \(-0.988120\pi\)
0.999304 0.0373144i \(-0.0118803\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14124.0i 0.593881i −0.954896 0.296941i \(-0.904034\pi\)
0.954896 0.296941i \(-0.0959663\pi\)
\(828\) 0 0
\(829\) 21350.0 0.894471 0.447235 0.894416i \(-0.352409\pi\)
0.447235 + 0.894416i \(0.352409\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 16038.0i 0.667087i
\(834\) 0 0
\(835\) −15060.0 + 30120.0i −0.624159 + 1.24832i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 26136.0 1.07546 0.537732 0.843116i \(-0.319281\pi\)
0.537732 + 0.843116i \(0.319281\pi\)
\(840\) 0 0
\(841\) 25787.0 1.05732
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10410.0 + 5205.00i 0.423805 + 0.211902i
\(846\) 0 0
\(847\) 7850.00i 0.318452i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3608.00 −0.145336
\(852\) 0 0
\(853\) 7030.00i 0.282184i 0.989997 + 0.141092i \(0.0450613\pi\)
−0.989997 + 0.141092i \(0.954939\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9574.00i 0.381612i 0.981628 + 0.190806i \(0.0611102\pi\)
−0.981628 + 0.190806i \(0.938890\pi\)
\(858\) 0 0
\(859\) −43748.0 −1.73767 −0.868837 0.495098i \(-0.835132\pi\)
−0.868837 + 0.495098i \(0.835132\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41436.0i 1.63441i −0.576345 0.817206i \(-0.695522\pi\)
0.576345 0.817206i \(-0.304478\pi\)
\(864\) 0 0
\(865\) 2190.00 4380.00i 0.0860835 0.172167i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −53728.0 −2.09735
\(870\) 0 0
\(871\) 11152.0 0.433836
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13750.0 2500.00i 0.531240 0.0965891i
\(876\) 0 0
\(877\) 4606.00i 0.177347i 0.996061 + 0.0886736i \(0.0282628\pi\)
−0.996061 + 0.0886736i \(0.971737\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4610.00 0.176294 0.0881469 0.996107i \(-0.471906\pi\)
0.0881469 + 0.996107i \(0.471906\pi\)
\(882\) 0 0
\(883\) 23512.0i 0.896084i 0.894013 + 0.448042i \(0.147878\pi\)
−0.894013 + 0.448042i \(0.852122\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30396.0i 1.15062i −0.817936 0.575309i \(-0.804882\pi\)
0.817936 0.575309i \(-0.195118\pi\)
\(888\) 0 0
\(889\) 5340.00 0.201460
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 49920.0i 1.87067i
\(894\) 0 0
\(895\) 14620.0 + 7310.00i 0.546025 + 0.273013i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16128.0 0.598330
\(900\) 0 0
\(901\) 18876.0 0.697948
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5860.00 + 2930.00i 0.215241 + 0.107620i
\(906\) 0 0
\(907\) 3452.00i 0.126375i −0.998002 0.0631873i \(-0.979873\pi\)
0.998002 0.0631873i \(-0.0201266\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14256.0 0.518466 0.259233 0.965815i \(-0.416530\pi\)
0.259233 + 0.965815i \(0.416530\pi\)
\(912\) 0 0
\(913\) 18952.0i 0.686988i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18060.0i 0.650375i
\(918\) 0 0
\(919\) 8064.00 0.289452 0.144726 0.989472i \(-0.453770\pi\)
0.144726 + 0.989472i \(0.453770\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6392.00i 0.227947i
\(924\) 0 0
\(925\) 2200.00 1650.00i 0.0782006 0.0586504i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −40930.0 −1.44550 −0.722750 0.691109i \(-0.757122\pi\)
−0.722750 + 0.691109i \(0.757122\pi\)
\(930\) 0 0
\(931\) 25272.0 0.889642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −15180.0 + 30360.0i −0.530951 + 1.06190i
\(936\) 0 0
\(937\) 9016.00i 0.314344i 0.987571 + 0.157172i \(0.0502376\pi\)
−0.987571 + 0.157172i \(0.949762\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10444.0 0.361812 0.180906 0.983500i \(-0.442097\pi\)
0.180906 + 0.983500i \(0.442097\pi\)
\(942\) 0 0
\(943\) 31816.0i 1.09870i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21516.0i 0.738306i 0.929369 + 0.369153i \(0.120352\pi\)
−0.929369 + 0.369153i \(0.879648\pi\)
\(948\) 0 0
\(949\) −25160.0 −0.860620
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 28098.0i 0.955072i −0.878612 0.477536i \(-0.841530\pi\)
0.878612 0.477536i \(-0.158470\pi\)
\(954\) 0 0
\(955\) 600.000 + 300.000i 0.0203304 + 0.0101652i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18220.0 −0.613508
\(960\) 0 0
\(961\) −24607.0 −0.825988
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −23380.0 + 46760.0i −0.779926 + 1.55985i
\(966\) 0 0
\(967\) 14558.0i 0.484130i 0.970260 + 0.242065i \(0.0778247\pi\)
−0.970260 + 0.242065i \(0.922175\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 24846.0 0.821160 0.410580 0.911825i \(-0.365326\pi\)
0.410580 + 0.911825i \(0.365326\pi\)
\(972\) 0 0
\(973\) 5320.00i 0.175284i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12950.0i 0.424061i 0.977263 + 0.212030i \(0.0680076\pi\)
−0.977263 + 0.212030i \(0.931992\pi\)
\(978\) 0 0
\(979\) −55476.0 −1.81105
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 26728.0i 0.867234i 0.901097 + 0.433617i \(0.142763\pi\)
−0.901097 + 0.433617i \(0.857237\pi\)
\(984\) 0 0
\(985\) 11430.0 22860.0i 0.369736 0.739472i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17712.0 0.569473
\(990\) 0 0
\(991\) −3880.00 −0.124372 −0.0621858 0.998065i \(-0.519807\pi\)
−0.0621858 + 0.998065i \(0.519807\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −35360.0 17680.0i −1.12662 0.563310i
\(996\) 0 0
\(997\) 18582.0i 0.590269i 0.955456 + 0.295134i \(0.0953644\pi\)
−0.955456 + 0.295134i \(0.904636\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.4.f.g.289.2 2
3.2 odd 2 240.4.f.b.49.2 2
4.3 odd 2 360.4.f.c.289.2 2
5.4 even 2 inner 720.4.f.g.289.1 2
12.11 even 2 120.4.f.a.49.1 2
15.2 even 4 1200.4.a.bh.1.1 1
15.8 even 4 1200.4.a.f.1.1 1
15.14 odd 2 240.4.f.b.49.1 2
20.3 even 4 1800.4.a.y.1.1 1
20.7 even 4 1800.4.a.j.1.1 1
20.19 odd 2 360.4.f.c.289.1 2
24.5 odd 2 960.4.f.g.769.1 2
24.11 even 2 960.4.f.l.769.2 2
60.23 odd 4 600.4.a.o.1.1 1
60.47 odd 4 600.4.a.b.1.1 1
60.59 even 2 120.4.f.a.49.2 yes 2
120.29 odd 2 960.4.f.g.769.2 2
120.59 even 2 960.4.f.l.769.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.f.a.49.1 2 12.11 even 2
120.4.f.a.49.2 yes 2 60.59 even 2
240.4.f.b.49.1 2 15.14 odd 2
240.4.f.b.49.2 2 3.2 odd 2
360.4.f.c.289.1 2 20.19 odd 2
360.4.f.c.289.2 2 4.3 odd 2
600.4.a.b.1.1 1 60.47 odd 4
600.4.a.o.1.1 1 60.23 odd 4
720.4.f.g.289.1 2 5.4 even 2 inner
720.4.f.g.289.2 2 1.1 even 1 trivial
960.4.f.g.769.1 2 24.5 odd 2
960.4.f.g.769.2 2 120.29 odd 2
960.4.f.l.769.1 2 120.59 even 2
960.4.f.l.769.2 2 24.11 even 2
1200.4.a.f.1.1 1 15.8 even 4
1200.4.a.bh.1.1 1 15.2 even 4
1800.4.a.j.1.1 1 20.7 even 4
1800.4.a.y.1.1 1 20.3 even 4