L(s) = 1 | + (−55 + 10i)5-s − 158i·7-s − 148·11-s − 684i·13-s − 2.04e3i·17-s + 2.22e3·19-s + 1.24e3i·23-s + (2.92e3 − 1.10e3i)25-s − 270·29-s + 2.04e3·31-s + (1.58e3 + 8.69e3i)35-s − 4.37e3i·37-s + 2.39e3·41-s + 2.29e3i·43-s − 1.06e4i·47-s + ⋯ |
L(s) = 1 | + (−0.983 + 0.178i)5-s − 1.21i·7-s − 0.368·11-s − 1.12i·13-s − 1.71i·17-s + 1.41·19-s + 0.491i·23-s + (0.936 − 0.352i)25-s − 0.0596·29-s + 0.382·31-s + (0.218 + 1.19i)35-s − 0.525i·37-s + 0.222·41-s + 0.189i·43-s − 0.705i·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.983+0.178i)Λ(6−s)
Λ(s)=(=(720s/2ΓC(s+5/2)L(s)(−0.983+0.178i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.983+0.178i
|
Analytic conductor: |
115.476 |
Root analytic conductor: |
10.7459 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :5/2), −0.983+0.178i)
|
Particular Values
L(3) |
≈ |
1.123461028 |
L(21) |
≈ |
1.123461028 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(55−10i)T |
good | 7 | 1+158iT−1.68e4T2 |
| 11 | 1+148T+1.61e5T2 |
| 13 | 1+684iT−3.71e5T2 |
| 17 | 1+2.04e3iT−1.41e6T2 |
| 19 | 1−2.22e3T+2.47e6T2 |
| 23 | 1−1.24e3iT−6.43e6T2 |
| 29 | 1+270T+2.05e7T2 |
| 31 | 1−2.04e3T+2.86e7T2 |
| 37 | 1+4.37e3iT−6.93e7T2 |
| 41 | 1−2.39e3T+1.15e8T2 |
| 43 | 1−2.29e3iT−1.47e8T2 |
| 47 | 1+1.06e4iT−2.29e8T2 |
| 53 | 1−2.96e3iT−4.18e8T2 |
| 59 | 1−3.97e4T+7.14e8T2 |
| 61 | 1+4.22e4T+8.44e8T2 |
| 67 | 1+3.20e4iT−1.35e9T2 |
| 71 | 1+4.24e3T+1.80e9T2 |
| 73 | 1+3.01e4iT−2.07e9T2 |
| 79 | 1−3.52e4T+3.07e9T2 |
| 83 | 1−2.78e4iT−3.93e9T2 |
| 89 | 1+8.52e4T+5.58e9T2 |
| 97 | 1+9.72e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.355668036513258762201909828199, −8.077400479934443942902778531018, −7.47366335870589045784942961799, −7.00001335816922293298812854567, −5.48695229653567532681706656070, −4.65162063057916416811697579632, −3.55316429666574274638435600366, −2.86044218469418759283312630677, −0.940046955472601381627138948055, −0.30352029737504893863687685317,
1.28083330032161261943830772669, 2.50743321589217937955076141410, 3.62508818867320182130947131949, 4.59151064934415568329109083736, 5.58798640295237629456379136168, 6.52255924616614531058194645684, 7.58788739672034986071780418237, 8.423186770586250797940167920172, 8.985464609204727567999621514017, 9.997237747398641560083973834876