Properties

Label 720.6.f.a
Level $720$
Weight $6$
Character orbit 720.f
Analytic conductor $115.476$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,6,Mod(289,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.289");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 720.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(115.476350265\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 5 \beta - 55) q^{5} + 79 \beta q^{7} - 148 q^{11} + 342 \beta q^{13} + 1024 \beta q^{17} + 2220 q^{19} - 623 \beta q^{23} + (550 \beta + 2925) q^{25} - 270 q^{29} + 2048 q^{31} + ( - 4345 \beta + 1580) q^{35} + \cdots + 48616 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 110 q^{5} - 296 q^{11} + 4440 q^{19} + 5850 q^{25} - 540 q^{29} + 4096 q^{31} + 3160 q^{35} + 4796 q^{41} - 16314 q^{49} + 16280 q^{55} + 79480 q^{59} - 84596 q^{61} + 13680 q^{65} - 8496 q^{71} + 70560 q^{79}+ \cdots - 244200 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
1.00000i
1.00000i
0 0 0 −55.0000 10.0000i 0 158.000i 0 0 0
289.2 0 0 0 −55.0000 + 10.0000i 0 158.000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.6.f.a 2
3.b odd 2 1 80.6.c.c 2
4.b odd 2 1 90.6.c.a 2
5.b even 2 1 inner 720.6.f.a 2
12.b even 2 1 10.6.b.a 2
15.d odd 2 1 80.6.c.c 2
15.e even 4 1 400.6.a.c 1
15.e even 4 1 400.6.a.k 1
20.d odd 2 1 90.6.c.a 2
20.e even 4 1 450.6.a.c 1
20.e even 4 1 450.6.a.w 1
24.f even 2 1 320.6.c.b 2
24.h odd 2 1 320.6.c.a 2
60.h even 2 1 10.6.b.a 2
60.l odd 4 1 50.6.a.c 1
60.l odd 4 1 50.6.a.e 1
120.i odd 2 1 320.6.c.a 2
120.m even 2 1 320.6.c.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.6.b.a 2 12.b even 2 1
10.6.b.a 2 60.h even 2 1
50.6.a.c 1 60.l odd 4 1
50.6.a.e 1 60.l odd 4 1
80.6.c.c 2 3.b odd 2 1
80.6.c.c 2 15.d odd 2 1
90.6.c.a 2 4.b odd 2 1
90.6.c.a 2 20.d odd 2 1
320.6.c.a 2 24.h odd 2 1
320.6.c.a 2 120.i odd 2 1
320.6.c.b 2 24.f even 2 1
320.6.c.b 2 120.m even 2 1
400.6.a.c 1 15.e even 4 1
400.6.a.k 1 15.e even 4 1
450.6.a.c 1 20.e even 4 1
450.6.a.w 1 20.e even 4 1
720.6.f.a 2 1.a even 1 1 trivial
720.6.f.a 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(720, [\chi])\):

\( T_{7}^{2} + 24964 \) Copy content Toggle raw display
\( T_{11} + 148 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 110T + 3125 \) Copy content Toggle raw display
$7$ \( T^{2} + 24964 \) Copy content Toggle raw display
$11$ \( (T + 148)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 467856 \) Copy content Toggle raw display
$17$ \( T^{2} + 4194304 \) Copy content Toggle raw display
$19$ \( (T - 2220)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1552516 \) Copy content Toggle raw display
$29$ \( (T + 270)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2048)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 19114384 \) Copy content Toggle raw display
$41$ \( (T - 2398)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 5262436 \) Copy content Toggle raw display
$47$ \( T^{2} + 114105124 \) Copy content Toggle raw display
$53$ \( T^{2} + 8785296 \) Copy content Toggle raw display
$59$ \( (T - 39740)^{2} \) Copy content Toggle raw display
$61$ \( (T + 42298)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1030281604 \) Copy content Toggle raw display
$71$ \( (T + 4248)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 906250816 \) Copy content Toggle raw display
$79$ \( (T - 35280)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 774286276 \) Copy content Toggle raw display
$89$ \( (T + 85210)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 9454061824 \) Copy content Toggle raw display
show more
show less