Properties

Label 2-7200-120.59-c1-0-69
Degree $2$
Conductor $7200$
Sign $-0.838 + 0.544i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·7-s − 6.37i·11-s − 3.54·13-s + 3.92·17-s + 1.27·19-s + 6.28i·23-s − 9.00·29-s − 3.92i·31-s + 2.51·37-s − 5.27i·41-s − 1.55i·43-s − 9.73i·47-s − 5·49-s − 5.55i·53-s + 0.313i·59-s + ⋯
L(s)  = 1  + 0.534·7-s − 1.92i·11-s − 0.982·13-s + 0.952·17-s + 0.292·19-s + 1.31i·23-s − 1.67·29-s − 0.705i·31-s + 0.413·37-s − 0.823i·41-s − 0.237i·43-s − 1.42i·47-s − 0.714·49-s − 0.763i·53-s + 0.0408i·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.838 + 0.544i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.838 + 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.838 + 0.544i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (3599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ -0.838 + 0.544i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.012474996\)
\(L(\frac12)\) \(\approx\) \(1.012474996\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 1.41T + 7T^{2} \)
11 \( 1 + 6.37iT - 11T^{2} \)
13 \( 1 + 3.54T + 13T^{2} \)
17 \( 1 - 3.92T + 17T^{2} \)
19 \( 1 - 1.27T + 19T^{2} \)
23 \( 1 - 6.28iT - 23T^{2} \)
29 \( 1 + 9.00T + 29T^{2} \)
31 \( 1 + 3.92iT - 31T^{2} \)
37 \( 1 - 2.51T + 37T^{2} \)
41 \( 1 + 5.27iT - 41T^{2} \)
43 \( 1 + 1.55iT - 43T^{2} \)
47 \( 1 + 9.73iT - 47T^{2} \)
53 \( 1 + 5.55iT - 53T^{2} \)
59 \( 1 - 0.313iT - 59T^{2} \)
61 \( 1 - 12.7iT - 61T^{2} \)
67 \( 1 + 7.00iT - 67T^{2} \)
71 \( 1 + 0.990T + 71T^{2} \)
73 \( 1 - 12.0iT - 73T^{2} \)
79 \( 1 + 8.18iT - 79T^{2} \)
83 \( 1 + 5.02T + 83T^{2} \)
89 \( 1 + 0.386iT - 89T^{2} \)
97 \( 1 + 10.4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.59976917008668856728024355176, −7.18646486890477842516667880505, −5.96801134965998878044767882472, −5.59612893625230404154037352485, −5.00186604125565790859909658345, −3.79060508815061752600663673080, −3.38231145964530390355014428722, −2.35974601817374221999171781179, −1.33046794068446672422995208282, −0.24169496041735158196782081601, 1.34410274441665682760457962129, 2.13679070038538337547645172183, 2.93911781290695069822126790080, 4.05820395799073134890072573119, 4.78590309444782465126389518645, 5.12262719877715450656029326381, 6.17593399073173064947368204412, 6.94168031148142188020376805656, 7.67889241067010748494950964028, 7.83948804100899595177777869835

Graph of the $Z$-function along the critical line