L(s) = 1 | + 1.41·7-s − 6.37i·11-s − 3.54·13-s + 3.92·17-s + 1.27·19-s + 6.28i·23-s − 9.00·29-s − 3.92i·31-s + 2.51·37-s − 5.27i·41-s − 1.55i·43-s − 9.73i·47-s − 5·49-s − 5.55i·53-s + 0.313i·59-s + ⋯ |
L(s) = 1 | + 0.534·7-s − 1.92i·11-s − 0.982·13-s + 0.952·17-s + 0.292·19-s + 1.31i·23-s − 1.67·29-s − 0.705i·31-s + 0.413·37-s − 0.823i·41-s − 0.237i·43-s − 1.42i·47-s − 0.714·49-s − 0.763i·53-s + 0.0408i·59-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(−0.838+0.544i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(−0.838+0.544i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
−0.838+0.544i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(3599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), −0.838+0.544i)
|
Particular Values
L(1) |
≈ |
1.012474996 |
L(21) |
≈ |
1.012474996 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−1.41T+7T2 |
| 11 | 1+6.37iT−11T2 |
| 13 | 1+3.54T+13T2 |
| 17 | 1−3.92T+17T2 |
| 19 | 1−1.27T+19T2 |
| 23 | 1−6.28iT−23T2 |
| 29 | 1+9.00T+29T2 |
| 31 | 1+3.92iT−31T2 |
| 37 | 1−2.51T+37T2 |
| 41 | 1+5.27iT−41T2 |
| 43 | 1+1.55iT−43T2 |
| 47 | 1+9.73iT−47T2 |
| 53 | 1+5.55iT−53T2 |
| 59 | 1−0.313iT−59T2 |
| 61 | 1−12.7iT−61T2 |
| 67 | 1+7.00iT−67T2 |
| 71 | 1+0.990T+71T2 |
| 73 | 1−12.0iT−73T2 |
| 79 | 1+8.18iT−79T2 |
| 83 | 1+5.02T+83T2 |
| 89 | 1+0.386iT−89T2 |
| 97 | 1+10.4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.59976917008668856728024355176, −7.18646486890477842516667880505, −5.96801134965998878044767882472, −5.59612893625230404154037352485, −5.00186604125565790859909658345, −3.79060508815061752600663673080, −3.38231145964530390355014428722, −2.35974601817374221999171781179, −1.33046794068446672422995208282, −0.24169496041735158196782081601,
1.34410274441665682760457962129, 2.13679070038538337547645172183, 2.93911781290695069822126790080, 4.05820395799073134890072573119, 4.78590309444782465126389518645, 5.12262719877715450656029326381, 6.17593399073173064947368204412, 6.94168031148142188020376805656, 7.67889241067010748494950964028, 7.83948804100899595177777869835