Properties

Label 7200.2.m.d
Level 72007200
Weight 22
Character orbit 7200.m
Analytic conductor 57.49257.492
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(3599,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.3599");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7200=253252 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7200.m (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 57.492289455357.4922894553
Analytic rank: 00
Dimension: 1212
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x93x8+4x7+8x6+8x512x432x3+64 x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a31]\Z[a_1, \ldots, a_{31}]
Coefficient ring index: 216 2^{16}
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q7+(β11+β2)q11+(β4β1)q13+(β3β1)q17+(β10+3)q19β7q23+(β10β52)q29+(β9+β2)q31++(3β8+β7+β6)q97+O(q100) q - \beta_1 q^{7} + (\beta_{11} + \beta_{2}) q^{11} + (\beta_{4} - \beta_1) q^{13} + ( - \beta_{3} - \beta_1) q^{17} + (\beta_{10} + 3) q^{19} - \beta_{7} q^{23} + (\beta_{10} - \beta_{5} - 2) q^{29} + (\beta_{9} + \beta_{2}) q^{31}+ \cdots + ( - 3 \beta_{8} + \beta_{7} + \beta_{6}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+32q1924q2960q4996q71+24q91+O(q100) 12 q + 32 q^{19} - 24 q^{29} - 60 q^{49} - 96 q^{71} + 24 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x124x93x8+4x7+8x6+8x512x432x3+64 x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 : Copy content Toggle raw display

β1\beta_{1}== (ν114ν10ν92ν8+7ν7+20ν6ν518ν418ν3+16ν2+72ν)/80 ( \nu^{11} - 4\nu^{10} - \nu^{9} - 2\nu^{8} + 7\nu^{7} + 20\nu^{6} - \nu^{5} - 18\nu^{4} - 18\nu^{3} + 16\nu^{2} + 72\nu ) / 80 Copy content Toggle raw display
β2\beta_{2}== (ν10+ν92ν73ν6+5ν5+4ν4+2ν38ν224ν)/16 ( \nu^{10} + \nu^{9} - 2\nu^{7} - 3\nu^{6} + 5\nu^{5} + 4\nu^{4} + 2\nu^{3} - 8\nu^{2} - 24\nu ) / 16 Copy content Toggle raw display
β3\beta_{3}== (3ν11+2ν10+3ν9+6ν8+19ν730ν637ν5++104ν)/80 ( - 3 \nu^{11} + 2 \nu^{10} + 3 \nu^{9} + 6 \nu^{8} + 19 \nu^{7} - 30 \nu^{6} - 37 \nu^{5} + \cdots + 104 \nu ) / 80 Copy content Toggle raw display
β4\beta_{4}== (ν116ν10+16ν9+12ν8+3ν750ν664ν5+48ν4+320)/80 ( - \nu^{11} - 6 \nu^{10} + 16 \nu^{9} + 12 \nu^{8} + 3 \nu^{7} - 50 \nu^{6} - 64 \nu^{5} + 48 \nu^{4} + \cdots - 320 ) / 80 Copy content Toggle raw display
β5\beta_{5}== (ν11+4ν104ν98ν8+3ν7+36ν5+28ν452ν3++120)/40 ( - \nu^{11} + 4 \nu^{10} - 4 \nu^{9} - 8 \nu^{8} + 3 \nu^{7} + 36 \nu^{5} + 28 \nu^{4} - 52 \nu^{3} + \cdots + 120 ) / 40 Copy content Toggle raw display
β6\beta_{6}== (3ν11ν10+4ν8+5ν7ν612ν58ν412ν3+36ν2+16ν+64)/40 ( -3\nu^{11} - \nu^{10} + 4\nu^{8} + 5\nu^{7} - \nu^{6} - 12\nu^{5} - 8\nu^{4} - 12\nu^{3} + 36\nu^{2} + 16\nu + 64 ) / 40 Copy content Toggle raw display
β7\beta_{7}== (3ν11+4ν10+4ν815ν716ν6+8ν5+32ν4+28ν3++64)/40 ( - 3 \nu^{11} + 4 \nu^{10} + 4 \nu^{8} - 15 \nu^{7} - 16 \nu^{6} + 8 \nu^{5} + 32 \nu^{4} + 28 \nu^{3} + \cdots + 64 ) / 40 Copy content Toggle raw display
β8\beta_{8}== (7ν114ν1020ν94ν8+5ν7+16ν6+52ν572ν4++576)/80 ( - 7 \nu^{11} - 4 \nu^{10} - 20 \nu^{9} - 4 \nu^{8} + 5 \nu^{7} + 16 \nu^{6} + 52 \nu^{5} - 72 \nu^{4} + \cdots + 576 ) / 80 Copy content Toggle raw display
β9\beta_{9}== (2ν11+9ν10+25ν916ν840ν751ν6+13ν5+172ν4+416)/80 ( 2 \nu^{11} + 9 \nu^{10} + 25 \nu^{9} - 16 \nu^{8} - 40 \nu^{7} - 51 \nu^{6} + 13 \nu^{5} + 172 \nu^{4} + \cdots - 416 ) / 80 Copy content Toggle raw display
β10\beta_{10}== (9ν114ν10+4ν9+28ν8+27ν740ν636ν5+32ν4+80)/80 ( - 9 \nu^{11} - 4 \nu^{10} + 4 \nu^{9} + 28 \nu^{8} + 27 \nu^{7} - 40 \nu^{6} - 36 \nu^{5} + 32 \nu^{4} + \cdots - 80 ) / 80 Copy content Toggle raw display
β11\beta_{11}== (9ν118ν10+12ν8+35ν728ν656ν564ν4+84ν3++32)/80 ( - 9 \nu^{11} - 8 \nu^{10} + 12 \nu^{8} + 35 \nu^{7} - 28 \nu^{6} - 56 \nu^{5} - 64 \nu^{4} + 84 \nu^{3} + \cdots + 32 ) / 80 Copy content Toggle raw display
ν\nu== (β11+β10+β9+β8β7β5β4+β3β2β1)/8 ( -\beta_{11} + \beta_{10} + \beta_{9} + \beta_{8} - \beta_{7} - \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} - \beta_1 ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (β7β6+β3+3β1)/4 ( \beta_{7} - \beta_{6} + \beta_{3} + 3\beta_1 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (3β11+β10+β9β8+β74β6β53β4++8)/8 ( 3 \beta_{11} + \beta_{10} + \beta_{9} - \beta_{8} + \beta_{7} - 4 \beta_{6} - \beta_{5} - 3 \beta_{4} + \cdots + 8 ) / 8 Copy content Toggle raw display
ν4\nu^{4}== (2β11+2β10+β9+β55β2+5)/4 ( -2\beta_{11} + 2\beta_{10} + \beta_{9} + \beta_{5} - 5\beta_{2} + 5 ) / 4 Copy content Toggle raw display
ν5\nu^{5}== (β11+5β10+β9+5β8β78β6β5β4+12)/8 ( - \beta_{11} + 5 \beta_{10} + \beta_{9} + 5 \beta_{8} - \beta_{7} - 8 \beta_{6} - \beta_{5} - \beta_{4} + \cdots - 12 ) / 8 Copy content Toggle raw display
ν6\nu^{6}== (4β8+3β7+5β64β4β3+13β1)/4 ( -4\beta_{8} + 3\beta_{7} + 5\beta_{6} - 4\beta_{4} - \beta_{3} + 13\beta_1 ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (5β11+7β10β97β89β74β6+9β5++24)/8 ( 5 \beta_{11} + 7 \beta_{10} - \beta_{9} - 7 \beta_{8} - 9 \beta_{7} - 4 \beta_{6} + 9 \beta_{5} + \cdots + 24 ) / 8 Copy content Toggle raw display
ν8\nu^{8}== (10β11+10β105β95β5+9β2+3)/4 ( -10\beta_{11} + 10\beta_{10} - 5\beta_{9} - 5\beta_{5} + 9\beta_{2} + 3 ) / 4 Copy content Toggle raw display
ν9\nu^{9}== (β115β10+7β95β87β7+32β67β5++52)/8 ( \beta_{11} - 5 \beta_{10} + 7 \beta_{9} - 5 \beta_{8} - 7 \beta_{7} + 32 \beta_{6} - 7 \beta_{5} + \cdots + 52 ) / 8 Copy content Toggle raw display
ν10\nu^{10}== (16β8+β7+11β624β4+13β325β1)/4 ( -16\beta_{8} + \beta_{7} + 11\beta_{6} - 24\beta_{4} + 13\beta_{3} - 25\beta_1 ) / 4 Copy content Toggle raw display
ν11\nu^{11}== (21β11+9β1023β99β8+β7100β6β5++208)/8 ( - 21 \beta_{11} + 9 \beta_{10} - 23 \beta_{9} - 9 \beta_{8} + \beta_{7} - 100 \beta_{6} - \beta_{5} + \cdots + 208 ) / 8 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/7200Z)×\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times.

nn 577577 901901 64016401 67516751
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3599.1
−1.35818 0.394157i
1.41127 + 0.0912546i
−0.760198 + 1.19252i
−0.760198 1.19252i
1.41127 0.0912546i
−1.35818 + 0.394157i
−0.394157 + 1.35818i
−0.0912546 + 1.41127i
1.19252 + 0.760198i
1.19252 0.760198i
−0.0912546 1.41127i
−0.394157 1.35818i
0 0 0 0 0 −1.41421 0 0 0
3599.2 0 0 0 0 0 −1.41421 0 0 0
3599.3 0 0 0 0 0 −1.41421 0 0 0
3599.4 0 0 0 0 0 −1.41421 0 0 0
3599.5 0 0 0 0 0 −1.41421 0 0 0
3599.6 0 0 0 0 0 −1.41421 0 0 0
3599.7 0 0 0 0 0 1.41421 0 0 0
3599.8 0 0 0 0 0 1.41421 0 0 0
3599.9 0 0 0 0 0 1.41421 0 0 0
3599.10 0 0 0 0 0 1.41421 0 0 0
3599.11 0 0 0 0 0 1.41421 0 0 0
3599.12 0 0 0 0 0 1.41421 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3599.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
24.f even 2 1 inner
120.m even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7200.2.m.d 12
3.b odd 2 1 7200.2.m.e 12
4.b odd 2 1 1800.2.m.d 12
5.b even 2 1 inner 7200.2.m.d 12
5.c odd 4 1 1440.2.b.c 6
5.c odd 4 1 7200.2.b.d 6
8.b even 2 1 1800.2.m.e 12
8.d odd 2 1 7200.2.m.e 12
12.b even 2 1 1800.2.m.e 12
15.d odd 2 1 7200.2.m.e 12
15.e even 4 1 1440.2.b.d 6
15.e even 4 1 7200.2.b.e 6
20.d odd 2 1 1800.2.m.d 12
20.e even 4 1 360.2.b.c 6
20.e even 4 1 1800.2.b.e 6
24.f even 2 1 inner 7200.2.m.d 12
24.h odd 2 1 1800.2.m.d 12
40.e odd 2 1 7200.2.m.e 12
40.f even 2 1 1800.2.m.e 12
40.i odd 4 1 360.2.b.d yes 6
40.i odd 4 1 1800.2.b.d 6
40.k even 4 1 1440.2.b.d 6
40.k even 4 1 7200.2.b.e 6
60.h even 2 1 1800.2.m.e 12
60.l odd 4 1 360.2.b.d yes 6
60.l odd 4 1 1800.2.b.d 6
120.i odd 2 1 1800.2.m.d 12
120.m even 2 1 inner 7200.2.m.d 12
120.q odd 4 1 1440.2.b.c 6
120.q odd 4 1 7200.2.b.d 6
120.w even 4 1 360.2.b.c 6
120.w even 4 1 1800.2.b.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.2.b.c 6 20.e even 4 1
360.2.b.c 6 120.w even 4 1
360.2.b.d yes 6 40.i odd 4 1
360.2.b.d yes 6 60.l odd 4 1
1440.2.b.c 6 5.c odd 4 1
1440.2.b.c 6 120.q odd 4 1
1440.2.b.d 6 15.e even 4 1
1440.2.b.d 6 40.k even 4 1
1800.2.b.d 6 40.i odd 4 1
1800.2.b.d 6 60.l odd 4 1
1800.2.b.e 6 20.e even 4 1
1800.2.b.e 6 120.w even 4 1
1800.2.m.d 12 4.b odd 2 1
1800.2.m.d 12 20.d odd 2 1
1800.2.m.d 12 24.h odd 2 1
1800.2.m.d 12 120.i odd 2 1
1800.2.m.e 12 8.b even 2 1
1800.2.m.e 12 12.b even 2 1
1800.2.m.e 12 40.f even 2 1
1800.2.m.e 12 60.h even 2 1
7200.2.b.d 6 5.c odd 4 1
7200.2.b.d 6 120.q odd 4 1
7200.2.b.e 6 15.e even 4 1
7200.2.b.e 6 40.k even 4 1
7200.2.m.d 12 1.a even 1 1 trivial
7200.2.m.d 12 5.b even 2 1 inner
7200.2.m.d 12 24.f even 2 1 inner
7200.2.m.d 12 120.m even 2 1 inner
7200.2.m.e 12 3.b odd 2 1
7200.2.m.e 12 8.d odd 2 1
7200.2.m.e 12 15.d odd 2 1
7200.2.m.e 12 40.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(7200,[χ])S_{2}^{\mathrm{new}}(7200, [\chi]):

T722 T_{7}^{2} - 2 Copy content Toggle raw display
T293+6T29228T298 T_{29}^{3} + 6T_{29}^{2} - 28T_{29} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 (T22)6 (T^{2} - 2)^{6} Copy content Toggle raw display
1111 (T6+46T4+220T2+8)2 (T^{6} + 46 T^{4} + 220 T^{2} + 8)^{2} Copy content Toggle raw display
1313 (T646T4+2312)2 (T^{6} - 46 T^{4} + \cdots - 2312)^{2} Copy content Toggle raw display
1717 (T680T4+15488)2 (T^{6} - 80 T^{4} + \cdots - 15488)^{2} Copy content Toggle raw display
1919 (T38T24T+16)4 (T^{3} - 8 T^{2} - 4 T + 16)^{4} Copy content Toggle raw display
2323 (T6+68T4++1024)2 (T^{6} + 68 T^{4} + \cdots + 1024)^{2} Copy content Toggle raw display
2929 (T3+6T228T8)4 (T^{3} + 6 T^{2} - 28 T - 8)^{4} Copy content Toggle raw display
3131 (T6+80T4++15488)2 (T^{6} + 80 T^{4} + \cdots + 15488)^{2} Copy content Toggle raw display
3737 (T678T4+5000)2 (T^{6} - 78 T^{4} + \cdots - 5000)^{2} Copy content Toggle raw display
4141 (T6+134T4++49928)2 (T^{6} + 134 T^{4} + \cdots + 49928)^{2} Copy content Toggle raw display
4343 (T6+176T4++4096)2 (T^{6} + 176 T^{4} + \cdots + 4096)^{2} Copy content Toggle raw display
4747 (T6+200T4++123904)2 (T^{6} + 200 T^{4} + \cdots + 123904)^{2} Copy content Toggle raw display
5353 (T6+160T4++123904)2 (T^{6} + 160 T^{4} + \cdots + 123904)^{2} Copy content Toggle raw display
5959 (T6+110T4++8)2 (T^{6} + 110 T^{4} + \cdots + 8)^{2} Copy content Toggle raw display
6161 (T6+184T4++512)2 (T^{6} + 184 T^{4} + \cdots + 512)^{2} Copy content Toggle raw display
6767 (T6+80T4++4096)2 (T^{6} + 80 T^{4} + \cdots + 4096)^{2} Copy content Toggle raw display
7171 (T3+24T2++128)4 (T^{3} + 24 T^{2} + \cdots + 128)^{4} Copy content Toggle raw display
7373 (T6+332T4++678976)2 (T^{6} + 332 T^{4} + \cdots + 678976)^{2} Copy content Toggle raw display
7979 (T6+336T4++881792)2 (T^{6} + 336 T^{4} + \cdots + 881792)^{2} Copy content Toggle raw display
8383 (T6312T4+320000)2 (T^{6} - 312 T^{4} + \cdots - 320000)^{2} Copy content Toggle raw display
8989 (T6+118T4++200)2 (T^{6} + 118 T^{4} + \cdots + 200)^{2} Copy content Toggle raw display
9797 (T6+412T4++1459264)2 (T^{6} + 412 T^{4} + \cdots + 1459264)^{2} Copy content Toggle raw display
show more
show less