L(s) = 1 | + 1.41·7-s − 0.191i·11-s + 2.63·13-s − 6.20·17-s − 1.52·19-s − 5.25i·23-s − 0.270·29-s + 6.20i·31-s − 7.61·37-s − 9.22i·41-s + 12.7i·43-s − 3.79i·47-s − 5·49-s + 8.77i·53-s + 10.4i·59-s + ⋯ |
L(s) = 1 | + 0.534·7-s − 0.0577i·11-s + 0.731·13-s − 1.50·17-s − 0.349·19-s − 1.09i·23-s − 0.0502·29-s + 1.11i·31-s − 1.25·37-s − 1.44i·41-s + 1.94i·43-s − 0.553i·47-s − 0.714·49-s + 1.20i·53-s + 1.36i·59-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(−0.758−0.651i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(−0.758−0.651i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
−0.758−0.651i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(3599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), −0.758−0.651i)
|
Particular Values
L(1) |
≈ |
0.6393800527 |
L(21) |
≈ |
0.6393800527 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−1.41T+7T2 |
| 11 | 1+0.191iT−11T2 |
| 13 | 1−2.63T+13T2 |
| 17 | 1+6.20T+17T2 |
| 19 | 1+1.52T+19T2 |
| 23 | 1+5.25iT−23T2 |
| 29 | 1+0.270T+29T2 |
| 31 | 1−6.20iT−31T2 |
| 37 | 1+7.61T+37T2 |
| 41 | 1+9.22iT−41T2 |
| 43 | 1−12.7iT−43T2 |
| 47 | 1+3.79iT−47T2 |
| 53 | 1−8.77iT−53T2 |
| 59 | 1−10.4iT−59T2 |
| 61 | 1−0.382iT−61T2 |
| 67 | 1−1.72iT−67T2 |
| 71 | 1+9.72T+71T2 |
| 73 | 1+5.45iT−73T2 |
| 79 | 1−14.3iT−79T2 |
| 83 | 1−15.2T+83T2 |
| 89 | 1−3.56iT−89T2 |
| 97 | 1+7.31iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.456388660800203935784362277514, −7.45808833845418641454605148333, −6.72999810329530170746961678443, −6.23372480346535932667058116027, −5.32152881778421451122084005357, −4.57914431349983384602058995357, −4.01637102657994166401686197539, −2.99478961467025484170452512681, −2.13247036356692919975088657282, −1.23197346549825087467927314208,
0.14903675268625692823972079921, 1.56099694597211711779059440032, 2.19396004576758360589734021633, 3.34495622810507375512280206711, 4.04981727365287642220594855597, 4.81181148769869084437126324125, 5.50078639935567749618273260770, 6.36352574175949316793197647128, 6.86112888821149682033728095801, 7.76672805793416283711870559700