L(s) = 1 | + (0.5 + 0.866i)2-s + 3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s + (0.866 + 0.5i)7-s − 0.999·8-s − 0.999i·10-s + 11-s + (−0.499 + 0.866i)12-s + i·13-s + 0.999i·14-s + (−0.866 − 0.5i)15-s + (−0.5 − 0.866i)16-s − 19-s + (0.866 − 0.499i)20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + 3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s + (0.866 + 0.5i)7-s − 0.999·8-s − 0.999i·10-s + 11-s + (−0.499 + 0.866i)12-s + i·13-s + 0.999i·14-s + (−0.866 − 0.5i)15-s + (−0.5 − 0.866i)16-s − 19-s + (0.866 − 0.499i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.203 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.203 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.435217657\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.435217657\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 - T + T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + iT - T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08830000986947996829912201174, −9.246718335252239253062508643782, −8.770804179891043210404216125220, −8.368409693163070938685903664242, −7.39227713002733764076852229311, −6.55890819916875520630182972208, −5.26421446667596882623117464879, −4.31870346478650307923802958900, −3.66067459010521202077898548339, −2.20973621825204242855015424542,
1.56906326891980353279485018926, 3.01903489226972674555976396679, 3.63515027289522843831417384640, 4.54839496207433494790579845691, 5.74726058659740618990277102128, 7.14145515157524413221037468650, 7.924592507317041667693927539328, 8.830446296496800449208902868975, 9.516041875471359850239043153152, 10.80903322683203537553849327876