L(s) = 1 | + (0.5 + 0.866i)2-s + 3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s + (0.866 + 0.5i)7-s − 0.999·8-s − 0.999i·10-s + 11-s + (−0.499 + 0.866i)12-s + i·13-s + 0.999i·14-s + (−0.866 − 0.5i)15-s + (−0.5 − 0.866i)16-s − 19-s + (0.866 − 0.499i)20-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + 3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s + (0.866 + 0.5i)7-s − 0.999·8-s − 0.999i·10-s + 11-s + (−0.499 + 0.866i)12-s + i·13-s + 0.999i·14-s + (−0.866 − 0.5i)15-s + (−0.5 − 0.866i)16-s − 19-s + (0.866 − 0.499i)20-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(0.203−0.979i)Λ(1−s)
Λ(s)=(=(728s/2ΓC(s)L(s)(0.203−0.979i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
0.203−0.979i
|
Analytic conductor: |
0.363319 |
Root analytic conductor: |
0.602759 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(555,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :0), 0.203−0.979i)
|
Particular Values
L(21) |
≈ |
1.435217657 |
L(21) |
≈ |
1.435217657 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1−iT |
good | 3 | 1−T+T2 |
| 5 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 11 | 1−T+T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 19 | 1+T+T2 |
| 23 | 1+(−1.73+i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 31 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 53 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+iT−T2 |
| 67 | 1+T+T2 |
| 71 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.08830000986947996829912201174, −9.246718335252239253062508643782, −8.770804179891043210404216125220, −8.368409693163070938685903664242, −7.39227713002733764076852229311, −6.55890819916875520630182972208, −5.26421446667596882623117464879, −4.31870346478650307923802958900, −3.66067459010521202077898548339, −2.20973621825204242855015424542,
1.56906326891980353279485018926, 3.01903489226972674555976396679, 3.63515027289522843831417384640, 4.54839496207433494790579845691, 5.74726058659740618990277102128, 7.14145515157524413221037468650, 7.924592507317041667693927539328, 8.830446296496800449208902868975, 9.516041875471359850239043153152, 10.80903322683203537553849327876