Properties

Label 728.1.di.a.555.1
Level $728$
Weight $1$
Character 728.555
Analytic conductor $0.363$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(555,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 2, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.555");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 728.di (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.363319329197\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.529984.4

Embedding invariants

Embedding label 555.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 728.555
Dual form 728.1.di.a.627.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +1.00000 q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(0.500000 + 0.866025i) q^{6} +(0.866025 + 0.500000i) q^{7} -1.00000 q^{8} -1.00000i q^{10} +1.00000 q^{11} +(-0.500000 + 0.866025i) q^{12} +1.00000i q^{13} +1.00000i q^{14} +(-0.866025 - 0.500000i) q^{15} +(-0.500000 - 0.866025i) q^{16} -1.00000 q^{19} +(0.866025 - 0.500000i) q^{20} +(0.866025 + 0.500000i) q^{21} +(0.500000 + 0.866025i) q^{22} +(1.73205 - 1.00000i) q^{23} -1.00000 q^{24} +(-0.866025 + 0.500000i) q^{26} -1.00000 q^{27} +(-0.866025 + 0.500000i) q^{28} +(-0.866025 - 0.500000i) q^{29} -1.00000i q^{30} +(-0.866025 + 0.500000i) q^{31} +(0.500000 - 0.866025i) q^{32} +1.00000 q^{33} +(-0.500000 - 0.866025i) q^{35} +(-0.500000 - 0.866025i) q^{38} +1.00000i q^{39} +(0.866025 + 0.500000i) q^{40} +(0.500000 - 0.866025i) q^{41} +1.00000i q^{42} +(-0.500000 - 0.866025i) q^{43} +(-0.500000 + 0.866025i) q^{44} +(1.73205 + 1.00000i) q^{46} +(-0.866025 - 0.500000i) q^{47} +(-0.500000 - 0.866025i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-0.866025 - 0.500000i) q^{52} +(0.866025 - 0.500000i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(-0.866025 - 0.500000i) q^{55} +(-0.866025 - 0.500000i) q^{56} -1.00000 q^{57} -1.00000i q^{58} +(0.866025 - 0.500000i) q^{60} -1.00000i q^{61} +(-0.866025 - 0.500000i) q^{62} +1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(0.500000 + 0.866025i) q^{66} -1.00000 q^{67} +(1.73205 - 1.00000i) q^{69} +(0.500000 - 0.866025i) q^{70} +(-0.866025 + 0.500000i) q^{71} +(0.500000 + 0.866025i) q^{73} +(0.500000 - 0.866025i) q^{76} +(0.866025 + 0.500000i) q^{77} +(-0.866025 + 0.500000i) q^{78} +(0.866025 + 0.500000i) q^{79} +1.00000i q^{80} -1.00000 q^{81} +1.00000 q^{82} +(-0.866025 + 0.500000i) q^{84} +(0.500000 - 0.866025i) q^{86} +(-0.866025 - 0.500000i) q^{87} -1.00000 q^{88} +(-0.500000 + 0.866025i) q^{91} +2.00000i q^{92} +(-0.866025 + 0.500000i) q^{93} -1.00000i q^{94} +(0.866025 + 0.500000i) q^{95} +(0.500000 - 0.866025i) q^{96} +(0.500000 + 0.866025i) q^{97} +(-0.500000 + 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{3} - 2 q^{4} + 2 q^{6} - 4 q^{8} + 4 q^{11} - 2 q^{12} - 2 q^{16} - 4 q^{19} + 2 q^{22} - 4 q^{24} - 4 q^{27} + 2 q^{32} + 4 q^{33} - 2 q^{35} - 2 q^{38} + 2 q^{41} - 2 q^{43} - 2 q^{44}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(3\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(4\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(5\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(7\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(8\) −1.00000 −1.00000
\(9\) 0 0
\(10\) 1.00000i 1.00000i
\(11\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(13\) 1.00000i 1.00000i
\(14\) 1.00000i 1.00000i
\(15\) −0.866025 0.500000i −0.866025 0.500000i
\(16\) −0.500000 0.866025i −0.500000 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0.866025 0.500000i 0.866025 0.500000i
\(21\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(22\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(23\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(24\) −1.00000 −1.00000
\(25\) 0 0
\(26\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(27\) −1.00000 −1.00000
\(28\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(29\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 1.00000i 1.00000i
\(31\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(32\) 0.500000 0.866025i 0.500000 0.866025i
\(33\) 1.00000 1.00000
\(34\) 0 0
\(35\) −0.500000 0.866025i −0.500000 0.866025i
\(36\) 0 0
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −0.500000 0.866025i −0.500000 0.866025i
\(39\) 1.00000i 1.00000i
\(40\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(41\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(42\) 1.00000i 1.00000i
\(43\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(44\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(45\) 0 0
\(46\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(47\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) −0.500000 0.866025i −0.500000 0.866025i
\(49\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) −0.866025 0.500000i −0.866025 0.500000i
\(53\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) −0.866025 0.500000i −0.866025 0.500000i
\(56\) −0.866025 0.500000i −0.866025 0.500000i
\(57\) −1.00000 −1.00000
\(58\) 1.00000i 1.00000i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0.866025 0.500000i 0.866025 0.500000i
\(61\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(62\) −0.866025 0.500000i −0.866025 0.500000i
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0.500000 0.866025i 0.500000 0.866025i
\(66\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(67\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) 1.73205 1.00000i 1.73205 1.00000i
\(70\) 0.500000 0.866025i 0.500000 0.866025i
\(71\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.500000 0.866025i 0.500000 0.866025i
\(77\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(78\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(79\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000i 1.00000i
\(81\) −1.00000 −1.00000
\(82\) 1.00000 1.00000
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(85\) 0 0
\(86\) 0.500000 0.866025i 0.500000 0.866025i
\(87\) −0.866025 0.500000i −0.866025 0.500000i
\(88\) −1.00000 −1.00000
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(92\) 2.00000i 2.00000i
\(93\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(94\) 1.00000i 1.00000i
\(95\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(96\) 0.500000 0.866025i 0.500000 0.866025i
\(97\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 1.00000i 1.00000i
\(105\) −0.500000 0.866025i −0.500000 0.866025i
\(106\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0.500000 0.866025i 0.500000 0.866025i
\(109\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(110\) 1.00000i 1.00000i
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) −0.500000 0.866025i −0.500000 0.866025i
\(115\) −2.00000 −2.00000
\(116\) 0.866025 0.500000i 0.866025 0.500000i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(121\) 0 0
\(122\) 0.866025 0.500000i 0.866025 0.500000i
\(123\) 0.500000 0.866025i 0.500000 0.866025i
\(124\) 1.00000i 1.00000i
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(128\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(129\) −0.500000 0.866025i −0.500000 0.866025i
\(130\) 1.00000 1.00000
\(131\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(132\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(133\) −0.866025 0.500000i −0.866025 0.500000i
\(134\) −0.500000 0.866025i −0.500000 0.866025i
\(135\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(139\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 1.00000 1.00000
\(141\) −0.866025 0.500000i −0.866025 0.500000i
\(142\) −0.866025 0.500000i −0.866025 0.500000i
\(143\) 1.00000i 1.00000i
\(144\) 0 0
\(145\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(146\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(147\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(148\) 0 0
\(149\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 1.00000 1.00000
\(153\) 0 0
\(154\) 1.00000i 1.00000i
\(155\) 1.00000 1.00000
\(156\) −0.866025 0.500000i −0.866025 0.500000i
\(157\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(158\) 1.00000i 1.00000i
\(159\) 0.866025 0.500000i 0.866025 0.500000i
\(160\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(161\) 2.00000 2.00000
\(162\) −0.500000 0.866025i −0.500000 0.866025i
\(163\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(164\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(165\) −0.866025 0.500000i −0.866025 0.500000i
\(166\) 0 0
\(167\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) −0.866025 0.500000i −0.866025 0.500000i
\(169\) −1.00000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00000 1.00000
\(173\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(174\) 1.00000i 1.00000i
\(175\) 0 0
\(176\) −0.500000 0.866025i −0.500000 0.866025i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −1.00000 −1.00000
\(183\) 1.00000i 1.00000i
\(184\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(185\) 0 0
\(186\) −0.866025 0.500000i −0.866025 0.500000i
\(187\) 0 0
\(188\) 0.866025 0.500000i 0.866025 0.500000i
\(189\) −0.866025 0.500000i −0.866025 0.500000i
\(190\) 1.00000i 1.00000i
\(191\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(192\) 1.00000 1.00000
\(193\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(195\) 0.500000 0.866025i 0.500000 0.866025i
\(196\) −1.00000 −1.00000
\(197\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) −1.00000 −1.00000
\(202\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(203\) −0.500000 0.866025i −0.500000 0.866025i
\(204\) 0 0
\(205\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(206\) 1.00000i 1.00000i
\(207\) 0 0
\(208\) 0.866025 0.500000i 0.866025 0.500000i
\(209\) −1.00000 −1.00000
\(210\) 0.500000 0.866025i 0.500000 0.866025i
\(211\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(212\) 1.00000i 1.00000i
\(213\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(214\) 0 0
\(215\) 1.00000i 1.00000i
\(216\) 1.00000 1.00000
\(217\) −1.00000 −1.00000
\(218\) −0.866025 0.500000i −0.866025 0.500000i
\(219\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(220\) 0.866025 0.500000i 0.866025 0.500000i
\(221\) 0 0
\(222\) 0 0
\(223\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0.866025 0.500000i 0.866025 0.500000i
\(225\) 0 0
\(226\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(227\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(228\) 0.500000 0.866025i 0.500000 0.866025i
\(229\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(230\) −1.00000 1.73205i −1.00000 1.73205i
\(231\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(232\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(233\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(236\) 0 0
\(237\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 1.00000i 1.00000i
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(245\) 1.00000i 1.00000i
\(246\) 1.00000 1.00000
\(247\) 1.00000i 1.00000i
\(248\) 0.866025 0.500000i 0.866025 0.500000i
\(249\) 0 0
\(250\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(251\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0 0
\(253\) 1.73205 1.00000i 1.73205 1.00000i
\(254\) 1.00000i 1.00000i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(257\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(258\) 0.500000 0.866025i 0.500000 0.866025i
\(259\) 0 0
\(260\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(261\) 0 0
\(262\) 1.00000 1.00000
\(263\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) −1.00000 −1.00000
\(265\) −1.00000 −1.00000
\(266\) 1.00000i 1.00000i
\(267\) 0 0
\(268\) 0.500000 0.866025i 0.500000 0.866025i
\(269\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 1.00000i 1.00000i
\(271\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(272\) 0 0
\(273\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(274\) 0 0
\(275\) 0 0
\(276\) 2.00000i 2.00000i
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(279\) 0 0
\(280\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 1.00000i 1.00000i
\(283\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 1.00000i 1.00000i
\(285\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(286\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(287\) 0.866025 0.500000i 0.866025 0.500000i
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(290\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(291\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(292\) −1.00000 −1.00000
\(293\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(294\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 −1.00000
\(298\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(299\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(300\) 0 0
\(301\) 1.00000i 1.00000i
\(302\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(303\) 1.00000i 1.00000i
\(304\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(305\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(309\) −0.866025 0.500000i −0.866025 0.500000i
\(310\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(311\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(312\) 1.00000i 1.00000i
\(313\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(314\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(315\) 0 0
\(316\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(317\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(319\) −0.866025 0.500000i −0.866025 0.500000i
\(320\) −0.866025 0.500000i −0.866025 0.500000i
\(321\) 0 0
\(322\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(323\) 0 0
\(324\) 0.500000 0.866025i 0.500000 0.866025i
\(325\) 0 0
\(326\) −0.500000 0.866025i −0.500000 0.866025i
\(327\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(328\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(329\) −0.500000 0.866025i −0.500000 0.866025i
\(330\) 1.00000i 1.00000i
\(331\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 1.00000i 1.00000i
\(335\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(336\) 1.00000i 1.00000i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) −0.500000 0.866025i −0.500000 0.866025i
\(339\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(340\) 0 0
\(341\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(345\) −2.00000 −2.00000
\(346\) 0.866025 0.500000i 0.866025 0.500000i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0.866025 0.500000i 0.866025 0.500000i
\(349\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 1.00000i 1.00000i
\(352\) 0.500000 0.866025i 0.500000 0.866025i
\(353\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 1.00000 1.00000
\(356\) 0 0
\(357\) 0 0
\(358\) −0.500000 0.866025i −0.500000 0.866025i
\(359\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) −0.500000 0.866025i −0.500000 0.866025i
\(365\) 1.00000i 1.00000i
\(366\) 0.866025 0.500000i 0.866025 0.500000i
\(367\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(368\) −1.73205 1.00000i −1.73205 1.00000i
\(369\) 0 0
\(370\) 0 0
\(371\) 1.00000 1.00000
\(372\) 1.00000i 1.00000i
\(373\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(374\) 0 0
\(375\) 1.00000i 1.00000i
\(376\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(377\) 0.500000 0.866025i 0.500000 0.866025i
\(378\) 1.00000i 1.00000i
\(379\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(380\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(381\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(382\) 0.866025 0.500000i 0.866025 0.500000i
\(383\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(385\) −0.500000 0.866025i −0.500000 0.866025i
\(386\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(387\) 0 0
\(388\) −1.00000 −1.00000
\(389\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) 1.00000 1.00000
\(391\) 0 0
\(392\) −0.500000 0.866025i −0.500000 0.866025i
\(393\) 0.500000 0.866025i 0.500000 0.866025i
\(394\) 1.00000i 1.00000i
\(395\) −0.500000 0.866025i −0.500000 0.866025i
\(396\) 0 0
\(397\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) −0.866025 0.500000i −0.866025 0.500000i
\(400\) 0 0
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) −0.500000 0.866025i −0.500000 0.866025i
\(403\) −0.500000 0.866025i −0.500000 0.866025i
\(404\) −0.866025 0.500000i −0.866025 0.500000i
\(405\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(406\) 0.500000 0.866025i 0.500000 0.866025i
\(407\) 0 0
\(408\) 0 0
\(409\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(410\) −0.866025 0.500000i −0.866025 0.500000i
\(411\) 0 0
\(412\) 0.866025 0.500000i 0.866025 0.500000i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(417\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(418\) −0.500000 0.866025i −0.500000 0.866025i
\(419\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(420\) 1.00000 1.00000
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) −1.00000 −1.00000
\(423\) 0 0
\(424\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(425\) 0 0
\(426\) −0.866025 0.500000i −0.866025 0.500000i
\(427\) 0.500000 0.866025i 0.500000 0.866025i
\(428\) 0 0
\(429\) 1.00000i 1.00000i
\(430\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(431\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(432\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(433\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(434\) −0.500000 0.866025i −0.500000 0.866025i
\(435\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(436\) 1.00000i 1.00000i
\(437\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(438\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(441\) 0 0
\(442\) 0 0
\(443\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.00000i 1.00000i
\(447\) 1.00000i 1.00000i
\(448\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(449\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0.500000 0.866025i 0.500000 0.866025i
\(452\) −1.00000 −1.00000
\(453\) 0.866025 0.500000i 0.866025 0.500000i
\(454\) 0 0
\(455\) 0.866025 0.500000i 0.866025 0.500000i
\(456\) 1.00000 1.00000
\(457\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(458\) 1.00000i 1.00000i
\(459\) 0 0
\(460\) 1.00000 1.73205i 1.00000 1.73205i
\(461\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 1.00000i 1.00000i
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 1.00000i 1.00000i
\(465\) 1.00000 1.00000
\(466\) −1.00000 −1.00000
\(467\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −0.866025 0.500000i −0.866025 0.500000i
\(470\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(471\) 0.866025 0.500000i 0.866025 0.500000i
\(472\) 0 0
\(473\) −0.500000 0.866025i −0.500000 0.866025i
\(474\) 1.00000i 1.00000i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(480\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(481\) 0 0
\(482\) 0 0
\(483\) 2.00000 2.00000
\(484\) 0 0
\(485\) 1.00000i 1.00000i
\(486\) 0 0
\(487\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 1.00000i 1.00000i
\(489\) −1.00000 −1.00000
\(490\) 0.866025 0.500000i 0.866025 0.500000i
\(491\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(492\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(493\) 0 0
\(494\) 0.866025 0.500000i 0.866025 0.500000i
\(495\) 0 0
\(496\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(497\) −1.00000 −1.00000
\(498\) 0 0
\(499\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(500\) −0.866025 0.500000i −0.866025 0.500000i
\(501\) −0.866025 0.500000i −0.866025 0.500000i
\(502\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(503\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0.500000 0.866025i 0.500000 0.866025i
\(506\) 1.73205 + 1.00000i 1.73205 + 1.00000i
\(507\) −1.00000 −1.00000
\(508\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 1.00000i 1.00000i
\(512\) −1.00000 −1.00000
\(513\) 1.00000 1.00000
\(514\) 1.00000 1.73205i 1.00000 1.73205i
\(515\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(516\) 1.00000 1.00000
\(517\) −0.866025 0.500000i −0.866025 0.500000i
\(518\) 0 0
\(519\) 1.00000i 1.00000i
\(520\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(521\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(524\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(525\) 0 0
\(526\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(527\) 0 0
\(528\) −0.500000 0.866025i −0.500000 0.866025i
\(529\) 1.50000 2.59808i 1.50000 2.59808i
\(530\) −0.500000 0.866025i −0.500000 0.866025i
\(531\) 0 0
\(532\) 0.866025 0.500000i 0.866025 0.500000i
\(533\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(534\) 0 0
\(535\) 0 0
\(536\) 1.00000 1.00000
\(537\) −1.00000 −1.00000
\(538\) 0 0
\(539\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(540\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(541\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.00000 1.00000
\(546\) −1.00000 −1.00000
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(552\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(553\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(554\) 0 0
\(555\) 0 0
\(556\) −1.00000 −1.00000
\(557\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(558\) 0 0
\(559\) 0.866025 0.500000i 0.866025 0.500000i
\(560\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0.866025 0.500000i 0.866025 0.500000i
\(565\) 1.00000i 1.00000i
\(566\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(567\) −0.866025 0.500000i −0.866025 0.500000i
\(568\) 0.866025 0.500000i 0.866025 0.500000i
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 1.00000i 1.00000i
\(571\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(572\) −0.866025 0.500000i −0.866025 0.500000i
\(573\) 1.00000i 1.00000i
\(574\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(575\) 0 0
\(576\) 0 0
\(577\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(579\) 1.00000 1.00000
\(580\) −1.00000 −1.00000
\(581\) 0 0
\(582\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(583\) 0.866025 0.500000i 0.866025 0.500000i
\(584\) −0.500000 0.866025i −0.500000 0.866025i
\(585\) 0 0
\(586\) −0.866025 0.500000i −0.866025 0.500000i
\(587\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(588\) −1.00000 −1.00000
\(589\) 0.866025 0.500000i 0.866025 0.500000i
\(590\) 0 0
\(591\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(592\) 0 0
\(593\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(594\) −0.500000 0.866025i −0.500000 0.866025i
\(595\) 0 0
\(596\) −0.866025 0.500000i −0.866025 0.500000i
\(597\) 0 0
\(598\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(599\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(602\) 0.866025 0.500000i 0.866025 0.500000i
\(603\) 0 0
\(604\) 1.00000i 1.00000i
\(605\) 0 0
\(606\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(607\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(609\) −0.500000 0.866025i −0.500000 0.866025i
\(610\) −1.00000 −1.00000
\(611\) 0.500000 0.866025i 0.500000 0.866025i
\(612\) 0 0
\(613\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(614\) 0 0
\(615\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(616\) −0.866025 0.500000i −0.866025 0.500000i
\(617\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(618\) 1.00000i 1.00000i
\(619\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(621\) −1.73205 + 1.00000i −1.73205 + 1.00000i
\(622\) −0.866025 0.500000i −0.866025 0.500000i
\(623\) 0 0
\(624\) 0.866025 0.500000i 0.866025 0.500000i
\(625\) 0.500000 0.866025i 0.500000 0.866025i
\(626\) −1.00000 −1.00000
\(627\) −1.00000 −1.00000
\(628\) 1.00000i 1.00000i
\(629\) 0 0
\(630\) 0 0
\(631\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(632\) −0.866025 0.500000i −0.866025 0.500000i
\(633\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(634\) 1.00000i 1.00000i
\(635\) −0.500000 0.866025i −0.500000 0.866025i
\(636\) 1.00000i 1.00000i
\(637\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(638\) 1.00000i 1.00000i
\(639\) 0 0
\(640\) 1.00000i 1.00000i
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) 0 0
\(643\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(644\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(645\) 1.00000i 1.00000i
\(646\) 0 0
\(647\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(648\) 1.00000 1.00000
\(649\) 0 0
\(650\) 0 0
\(651\) −1.00000 −1.00000
\(652\) 0.500000 0.866025i 0.500000 0.866025i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) −0.866025 0.500000i −0.866025 0.500000i
\(655\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(656\) −1.00000 −1.00000
\(657\) 0 0
\(658\) 0.500000 0.866025i 0.500000 0.866025i
\(659\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0.866025 0.500000i 0.866025 0.500000i
\(661\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(663\) 0 0
\(664\) 0 0
\(665\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(666\) 0 0
\(667\) −2.00000 −2.00000
\(668\) 0.866025 0.500000i 0.866025 0.500000i
\(669\) −0.866025 0.500000i −0.866025 0.500000i
\(670\) 1.00000i 1.00000i
\(671\) 1.00000i 1.00000i
\(672\) 0.866025 0.500000i 0.866025 0.500000i
\(673\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.500000 0.866025i 0.500000 0.866025i
\(677\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(678\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(679\) 1.00000i 1.00000i
\(680\) 0 0
\(681\) 0 0
\(682\) −0.866025 0.500000i −0.866025 0.500000i
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(687\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(688\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(689\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(690\) −1.00000 1.73205i −1.00000 1.73205i
\(691\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(693\) 0 0
\(694\) 0 0
\(695\) 1.00000i 1.00000i
\(696\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(697\) 0 0
\(698\) 1.00000i 1.00000i
\(699\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(700\) 0 0
\(701\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0.866025 0.500000i 0.866025 0.500000i
\(703\) 0 0
\(704\) 1.00000 1.00000
\(705\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(706\) −0.500000 0.866025i −0.500000 0.866025i
\(707\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(708\) 0 0
\(709\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(710\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(711\) 0 0
\(712\) 0 0
\(713\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(714\) 0 0
\(715\) 0.500000 0.866025i 0.500000 0.866025i
\(716\) 0.500000 0.866025i 0.500000 0.866025i
\(717\) 0 0
\(718\) 1.00000i 1.00000i
\(719\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −0.500000 0.866025i −0.500000 0.866025i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0.500000 0.866025i 0.500000 0.866025i
\(729\) 1.00000 1.00000
\(730\) 0.866025 0.500000i 0.866025 0.500000i
\(731\) 0 0
\(732\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(733\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(734\) 0.866025 0.500000i 0.866025 0.500000i
\(735\) 1.00000i 1.00000i
\(736\) 2.00000i 2.00000i
\(737\) −1.00000 −1.00000
\(738\) 0 0
\(739\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 1.00000i 1.00000i
\(742\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(743\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(744\) 0.866025 0.500000i 0.866025 0.500000i
\(745\) 0.500000 0.866025i 0.500000 0.866025i
\(746\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(751\) −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i \(0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(752\) 1.00000i 1.00000i
\(753\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(754\) 1.00000 1.00000
\(755\) −1.00000 −1.00000
\(756\) 0.866025 0.500000i 0.866025 0.500000i
\(757\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(758\) −1.00000 −1.00000
\(759\) 1.73205 1.00000i 1.73205 1.00000i
\(760\) −0.866025 0.500000i −0.866025 0.500000i
\(761\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(762\) 1.00000i 1.00000i
\(763\) −1.00000 −1.00000
\(764\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(765\) 0 0
\(766\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(767\) 0 0
\(768\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(769\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(770\) 0.500000 0.866025i 0.500000 0.866025i
\(771\) −1.00000 1.73205i −1.00000 1.73205i
\(772\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(773\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.500000 0.866025i −0.500000 0.866025i
\(777\) 0 0
\(778\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(779\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(780\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(781\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(782\) 0 0
\(783\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(784\) 0.500000 0.866025i 0.500000 0.866025i
\(785\) −1.00000 −1.00000
\(786\) 1.00000 1.00000
\(787\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(788\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(789\) 1.00000i 1.00000i
\(790\) 0.500000 0.866025i 0.500000 0.866025i
\(791\) 1.00000i 1.00000i
\(792\) 0 0
\(793\) 1.00000 1.00000
\(794\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(795\) −1.00000 −1.00000
\(796\) 0 0
\(797\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(798\) 1.00000i 1.00000i
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(804\) 0.500000 0.866025i 0.500000 0.866025i
\(805\) −1.73205 1.00000i −1.73205 1.00000i
\(806\) 0.500000 0.866025i 0.500000 0.866025i
\(807\) 0 0
\(808\) 1.00000i 1.00000i
\(809\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 1.00000i 1.00000i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 1.00000 1.00000
\(813\) 0 0
\(814\) 0 0
\(815\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(816\) 0 0
\(817\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(818\) 2.00000 2.00000
\(819\) 0 0
\(820\) 1.00000i 1.00000i
\(821\) 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i \(-0.166667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000i 1.00000i
\(833\) 0 0
\(834\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(835\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(836\) 0.500000 0.866025i 0.500000 0.866025i
\(837\) 0.866025 0.500000i 0.866025 0.500000i
\(838\) 1.00000 1.00000
\(839\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(840\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) −0.500000 0.866025i −0.500000 0.866025i
\(845\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(846\) 0 0
\(847\) 0 0
\(848\) −0.866025 0.500000i −0.866025 0.500000i
\(849\) 1.00000 1.00000
\(850\) 0 0
\(851\) 0 0
\(852\) 1.00000i 1.00000i
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 1.00000 1.00000
\(855\) 0 0
\(856\) 0 0
\(857\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(858\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(859\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(860\) −0.866025 0.500000i −0.866025 0.500000i
\(861\) 0.866025 0.500000i 0.866025 0.500000i
\(862\) 0.866025 0.500000i 0.866025 0.500000i
\(863\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(865\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(866\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(867\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(868\) 0.500000 0.866025i 0.500000 0.866025i
\(869\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(870\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(871\) 1.00000i 1.00000i
\(872\) 0.866025 0.500000i 0.866025 0.500000i
\(873\) 0 0
\(874\) −1.73205 1.00000i −1.73205 1.00000i
\(875\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(876\) −1.00000 −1.00000
\(877\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(878\) 0 0
\(879\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(880\) 1.00000i 1.00000i
\(881\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.00000 1.00000
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(890\) 0 0
\(891\) −1.00000 −1.00000
\(892\) 0.866025 0.500000i 0.866025 0.500000i
\(893\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(894\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(895\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(896\) 1.00000i 1.00000i
\(897\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(898\) 0.500000 0.866025i 0.500000 0.866025i
\(899\) 1.00000 1.00000
\(900\) 0 0
\(901\) 0 0
\(902\) 1.00000 1.00000
\(903\) 1.00000i 1.00000i
\(904\) −0.500000 0.866025i −0.500000 0.866025i
\(905\) 0 0
\(906\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(907\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(913\) 0 0
\(914\) 0 0
\(915\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(916\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(917\) 0.866025 0.500000i 0.866025 0.500000i
\(918\) 0 0
\(919\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(920\) 2.00000 2.00000
\(921\) 0 0
\(922\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(923\) −0.500000 0.866025i −0.500000 0.866025i
\(924\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(929\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(930\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(931\) −0.500000 0.866025i −0.500000 0.866025i
\(932\) −0.500000 0.866025i −0.500000 0.866025i
\(933\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(934\) −1.00000 −1.00000
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(938\) 1.00000i 1.00000i
\(939\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(940\) −1.00000 −1.00000
\(941\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(943\) 2.00000i 2.00000i
\(944\) 0 0
\(945\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(946\) 0.500000 0.866025i 0.500000 0.866025i
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(949\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(950\) 0 0
\(951\) −0.866025 0.500000i −0.866025 0.500000i
\(952\) 0 0
\(953\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(954\) 0 0
\(955\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(956\) 0 0
\(957\) −0.866025 0.500000i −0.866025 0.500000i
\(958\) 0.866025 0.500000i 0.866025 0.500000i
\(959\) 0 0
\(960\) −0.866025 0.500000i −0.866025 0.500000i
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.866025 0.500000i −0.866025 0.500000i
\(966\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(967\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0.866025 0.500000i 0.866025 0.500000i
\(971\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0 0
\(973\) 1.00000i 1.00000i
\(974\) 0 0
\(975\) 0 0
\(976\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(977\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) −0.500000 0.866025i −0.500000 0.866025i
\(979\) 0 0
\(980\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(981\) 0 0
\(982\) 1.00000 1.00000
\(983\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(985\) −0.500000 0.866025i −0.500000 0.866025i
\(986\) 0 0
\(987\) −0.500000 0.866025i −0.500000 0.866025i
\(988\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(989\) −1.73205 1.00000i −1.73205 1.00000i
\(990\) 0 0
\(991\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(992\) 1.00000i 1.00000i
\(993\) 1.00000 1.00000
\(994\) −0.500000 0.866025i −0.500000 0.866025i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 1.00000 1.00000
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.di.a.555.1 yes 4
4.3 odd 2 2912.1.dy.a.1647.1 4
7.4 even 3 728.1.bx.a.347.2 yes 4
8.3 odd 2 inner 728.1.di.a.555.2 yes 4
8.5 even 2 2912.1.dy.a.1647.2 4
13.3 even 3 728.1.bx.a.107.1 4
28.11 odd 6 2912.1.cn.a.2895.2 4
52.3 odd 6 2912.1.cn.a.1199.1 4
56.11 odd 6 728.1.bx.a.347.1 yes 4
56.53 even 6 2912.1.cn.a.2895.1 4
91.81 even 3 inner 728.1.di.a.627.2 yes 4
104.3 odd 6 728.1.bx.a.107.2 yes 4
104.29 even 6 2912.1.cn.a.1199.2 4
364.263 odd 6 2912.1.dy.a.2447.2 4
728.445 even 6 2912.1.dy.a.2447.1 4
728.627 odd 6 inner 728.1.di.a.627.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.bx.a.107.1 4 13.3 even 3
728.1.bx.a.107.2 yes 4 104.3 odd 6
728.1.bx.a.347.1 yes 4 56.11 odd 6
728.1.bx.a.347.2 yes 4 7.4 even 3
728.1.di.a.555.1 yes 4 1.1 even 1 trivial
728.1.di.a.555.2 yes 4 8.3 odd 2 inner
728.1.di.a.627.1 yes 4 728.627 odd 6 inner
728.1.di.a.627.2 yes 4 91.81 even 3 inner
2912.1.cn.a.1199.1 4 52.3 odd 6
2912.1.cn.a.1199.2 4 104.29 even 6
2912.1.cn.a.2895.1 4 56.53 even 6
2912.1.cn.a.2895.2 4 28.11 odd 6
2912.1.dy.a.1647.1 4 4.3 odd 2
2912.1.dy.a.1647.2 4 8.5 even 2
2912.1.dy.a.2447.1 4 728.445 even 6
2912.1.dy.a.2447.2 4 364.263 odd 6