L(s) = 1 | + (−0.366 + 1.36i)2-s + (−0.636 − 1.10i)3-s + (−1.73 − i)4-s + (−0.465 − 0.465i)5-s + (1.73 − 0.465i)6-s + (−0.684 − 2.55i)7-s + (2 − 1.99i)8-s + (0.689 − 1.19i)9-s + (0.807 − 0.465i)10-s + 2.54i·12-s + (−0.102 + 3.60i)13-s + 3.74·14-s + (−0.217 + 0.810i)15-s + (1.99 + 3.46i)16-s + (1.37 + 1.37i)18-s + (−7.36 + 1.97i)19-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.367 − 0.636i)3-s + (−0.866 − 0.5i)4-s + (−0.208 − 0.208i)5-s + (0.709 − 0.190i)6-s + (−0.258 − 0.965i)7-s + (0.707 − 0.707i)8-s + (0.229 − 0.398i)9-s + (0.255 − 0.147i)10-s + 0.735i·12-s + (−0.0284 + 0.999i)13-s + 0.999·14-s + (−0.0560 + 0.209i)15-s + (0.499 + 0.866i)16-s + (0.325 + 0.325i)18-s + (−1.69 + 0.452i)19-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.860+0.508i)Λ(2−s)
Λ(s)=(=(728s/2ΓC(s+1/2)L(s)(−0.860+0.508i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
−0.860+0.508i
|
Analytic conductor: |
5.81310 |
Root analytic conductor: |
2.41103 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(349,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :1/2), −0.860+0.508i)
|
Particular Values
L(1) |
≈ |
0.0652441−0.238624i |
L(21) |
≈ |
0.0652441−0.238624i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366−1.36i)T |
| 7 | 1+(0.684+2.55i)T |
| 13 | 1+(0.102−3.60i)T |
good | 3 | 1+(0.636+1.10i)T+(−1.5+2.59i)T2 |
| 5 | 1+(0.465+0.465i)T+5iT2 |
| 11 | 1+(−9.52−5.5i)T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(7.36−1.97i)T+(16.4−9.5i)T2 |
| 23 | 1+(3.01−1.74i)T+(11.5−19.9i)T2 |
| 29 | 1+(14.5−25.1i)T2 |
| 31 | 1−31iT2 |
| 37 | 1+(−32.0−18.5i)T2 |
| 41 | 1+(35.5+20.5i)T2 |
| 43 | 1+(−21.5−37.2i)T2 |
| 47 | 1+47iT2 |
| 53 | 1−53T2 |
| 59 | 1+(3.35+12.5i)T+(−51.0+29.5i)T2 |
| 61 | 1+(7.77−13.4i)T+(−30.5−52.8i)T2 |
| 67 | 1+(58.0+33.5i)T2 |
| 71 | 1+(16.0−4.29i)T+(61.4−35.5i)T2 |
| 73 | 1+73iT2 |
| 79 | 1−8.25T+79T2 |
| 83 | 1+(4.00+4.00i)T+83iT2 |
| 89 | 1+(−77.0−44.5i)T2 |
| 97 | 1+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.942089036439574040466107846365, −9.032654152181544780501766919342, −8.112224155332837948101903068761, −7.28908716189033445666212025116, −6.55183322714067573959079014489, −6.02616119867159604719137113636, −4.49346936447538378198986905397, −3.93845226643998305230010784173, −1.59435055305456697360215051448, −0.14668513627062788227937934034,
2.05085024351402051369105920173, 3.11311032912301199113347918327, 4.25420568744673253008654157702, 5.12104705048397543861131495207, 6.09063467451888288714503670939, 7.56517274192053396122705369945, 8.446301769361946638590173723833, 9.214931926902479206614245226792, 10.12713933662446218119771251781, 10.70712324460709729705977220793