L(s) = 1 | + (−0.366 + 1.36i)2-s + (−0.636 − 1.10i)3-s + (−1.73 − i)4-s + (−0.465 − 0.465i)5-s + (1.73 − 0.465i)6-s + (−0.684 − 2.55i)7-s + (2 − 1.99i)8-s + (0.689 − 1.19i)9-s + (0.807 − 0.465i)10-s + 2.54i·12-s + (−0.102 + 3.60i)13-s + 3.74·14-s + (−0.217 + 0.810i)15-s + (1.99 + 3.46i)16-s + (1.37 + 1.37i)18-s + (−7.36 + 1.97i)19-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)2-s + (−0.367 − 0.636i)3-s + (−0.866 − 0.5i)4-s + (−0.208 − 0.208i)5-s + (0.709 − 0.190i)6-s + (−0.258 − 0.965i)7-s + (0.707 − 0.707i)8-s + (0.229 − 0.398i)9-s + (0.255 − 0.147i)10-s + 0.735i·12-s + (−0.0284 + 0.999i)13-s + 0.999·14-s + (−0.0560 + 0.209i)15-s + (0.499 + 0.866i)16-s + (0.325 + 0.325i)18-s + (−1.69 + 0.452i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.860 + 0.508i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.860 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0652441 - 0.238624i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0652441 - 0.238624i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.366 - 1.36i)T \) |
| 7 | \( 1 + (0.684 + 2.55i)T \) |
| 13 | \( 1 + (0.102 - 3.60i)T \) |
good | 3 | \( 1 + (0.636 + 1.10i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.465 + 0.465i)T + 5iT^{2} \) |
| 11 | \( 1 + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (7.36 - 1.97i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (3.01 - 1.74i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 31iT^{2} \) |
| 37 | \( 1 + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (3.35 + 12.5i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (7.77 - 13.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (16.0 - 4.29i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 - 8.25T + 79T^{2} \) |
| 83 | \( 1 + (4.00 + 4.00i)T + 83iT^{2} \) |
| 89 | \( 1 + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.942089036439574040466107846365, −9.032654152181544780501766919342, −8.112224155332837948101903068761, −7.28908716189033445666212025116, −6.55183322714067573959079014489, −6.02616119867159604719137113636, −4.49346936447538378198986905397, −3.93845226643998305230010784173, −1.59435055305456697360215051448, −0.14668513627062788227937934034,
2.05085024351402051369105920173, 3.11311032912301199113347918327, 4.25420568744673253008654157702, 5.12104705048397543861131495207, 6.09063467451888288714503670939, 7.56517274192053396122705369945, 8.446301769361946638590173723833, 9.214931926902479206614245226792, 10.12713933662446218119771251781, 10.70712324460709729705977220793