Properties

Label 728.2.ds.b
Level 728728
Weight 22
Character orbit 728.ds
Analytic conductor 5.8135.813
Analytic rank 00
Dimension 1616
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(293,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 728=23713 728 = 2^{3} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 728.ds (of order 1212, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.813109267155.81310926715
Analytic rank: 00
Dimension: 1616
Relative dimension: 44 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x164x14+8x12+40x10161x8+360x6+648x42916x2+6561 x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 13 13
Twist minimal: yes
Sato-Tate group: U(1)[D12]\mathrm{U}(1)[D_{12}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β9β8)q2β12q3+(2β9+2β3)q4+(β12+β7+β4)q5+(β12β7β6)q6+(β2β1)q7++(7β9+7β8+7β3+7)q98+O(q100) q + (\beta_{9} - \beta_{8}) q^{2} - \beta_{12} q^{3} + (2 \beta_{9} + 2 \beta_{3}) q^{4} + ( - \beta_{12} + \beta_{7} + \cdots - \beta_{4}) q^{5} + ( - \beta_{12} - \beta_{7} - \beta_{6}) q^{6} + ( - \beta_{2} - \beta_1) q^{7}+ \cdots + (7 \beta_{9} + 7 \beta_{8} + 7 \beta_{3} + 7) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q2+32q816q956q15+32q1632q1896q3032q32+48q36+72q3924q46+56q50+88q5732q60112q63+16q6516q71++56q98+O(q100) 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x164x14+8x12+40x10161x8+360x6+648x42916x2+6561 x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 : Copy content Toggle raw display

β1\beta_{1}== (56ν14+13823ν127ν101988ν8+520738ν62268ν4++9893259)/521235 ( - 56 \nu^{14} + 13823 \nu^{12} - 7 \nu^{10} - 1988 \nu^{8} + 520738 \nu^{6} - 2268 \nu^{4} + \cdots + 9893259 ) / 521235 Copy content Toggle raw display
β2\beta_{2}== (2ν1463ν1236ν1071ν82556ν681ν4+2621ν252488)/6435 ( -2\nu^{14} - 63\nu^{12} - 36\nu^{10} - 71\nu^{8} - 2556\nu^{6} - 81\nu^{4} + 2621\nu^{2} - 52488 ) / 6435 Copy content Toggle raw display
β3\beta_{3}== (304ν14+577ν1238ν1010792ν82698ν612312ν4+55404)/521235 ( - 304 \nu^{14} + 577 \nu^{12} - 38 \nu^{10} - 10792 \nu^{8} - 2698 \nu^{6} - 12312 \nu^{4} + \cdots - 55404 ) / 521235 Copy content Toggle raw display
β4\beta_{4}== (ν15+4ν138ν1140ν9+161ν7360ν5648ν3+729ν)/2187 ( -\nu^{15} + 4\nu^{13} - 8\nu^{11} - 40\nu^{9} + 161\nu^{7} - 360\nu^{5} - 648\nu^{3} + 729\nu ) / 2187 Copy content Toggle raw display
β5\beta_{5}== (71ν15266ν13152ν11+473ν910792ν7342ν5+46737ν379461ν)/142155 ( 71\nu^{15} - 266\nu^{13} - 152\nu^{11} + 473\nu^{9} - 10792\nu^{7} - 342\nu^{5} + 46737\nu^{3} - 79461\nu ) / 142155 Copy content Toggle raw display
β6\beta_{6}== (76ν15367ν13+455ν11+2698ν97790ν7+3078ν5+138510ν)/120285 ( 76 \nu^{15} - 367 \nu^{13} + 455 \nu^{11} + 2698 \nu^{9} - 7790 \nu^{7} + 3078 \nu^{5} + \cdots - 138510 \nu ) / 120285 Copy content Toggle raw display
β7\beta_{7}== (17ν15+112ν13+64ν11+257ν9+4544ν7+144ν5+9396ν3+69255ν)/24057 ( 17\nu^{15} + 112\nu^{13} + 64\nu^{11} + 257\nu^{9} + 4544\nu^{7} + 144\nu^{5} + 9396\nu^{3} + 69255\nu ) / 24057 Copy content Toggle raw display
β8\beta_{8}== (284ν141064ν12608ν10+11369ν843168ν61368ν4+886464)/104247 ( 284 \nu^{14} - 1064 \nu^{12} - 608 \nu^{10} + 11369 \nu^{8} - 43168 \nu^{6} - 1368 \nu^{4} + \cdots - 886464 ) / 104247 Copy content Toggle raw display
β9\beta_{9}== (1582ν14217ν12124ν10+62596ν88804ν6279ν4+180792)/521235 ( 1582 \nu^{14} - 217 \nu^{12} - 124 \nu^{10} + 62596 \nu^{8} - 8804 \nu^{6} - 279 \nu^{4} + \cdots - 180792 ) / 521235 Copy content Toggle raw display
β10\beta_{10}== (2363ν143143ν121796ν10+67799ν8127516ν64041ν4+2618568)/521235 ( 2363 \nu^{14} - 3143 \nu^{12} - 1796 \nu^{10} + 67799 \nu^{8} - 127516 \nu^{6} - 4041 \nu^{4} + \cdots - 2618568 ) / 521235 Copy content Toggle raw display
β11\beta_{11}== (3413ν14+7820ν122518ν10137249ν8+342457ν6237969ν4++6232221)/521235 ( - 3413 \nu^{14} + 7820 \nu^{12} - 2518 \nu^{10} - 137249 \nu^{8} + 342457 \nu^{6} - 237969 \nu^{4} + \cdots + 6232221 ) / 521235 Copy content Toggle raw display
β12\beta_{12}== (346ν15+1069ν13+31ν1113768ν9+42296ν7+837ν5++847098ν)/120285 ( - 346 \nu^{15} + 1069 \nu^{13} + 31 \nu^{11} - 13768 \nu^{9} + 42296 \nu^{7} + 837 \nu^{5} + \cdots + 847098 \nu ) / 120285 Copy content Toggle raw display
β13\beta_{13}== (4879ν15+23989ν13+13708ν11169987ν9+973268ν7++18422559ν)/1563705 ( - 4879 \nu^{15} + 23989 \nu^{13} + 13708 \nu^{11} - 169987 \nu^{9} + 973268 \nu^{7} + \cdots + 18422559 \nu ) / 1563705 Copy content Toggle raw display
β14\beta_{14}== (454ν151145ν13+31ν1117872ν945184ν7837ν5+760347ν)/142155 ( - 454 \nu^{15} - 1145 \nu^{13} + 31 \nu^{11} - 17872 \nu^{9} - 45184 \nu^{7} - 837 \nu^{5} + \cdots - 760347 \nu ) / 142155 Copy content Toggle raw display
β15\beta_{15}== (2806ν15+1558ν13+1258ν11112483ν9+89318ν7++1834164ν)/521235 ( - 2806 \nu^{15} + 1558 \nu^{13} + 1258 \nu^{11} - 112483 \nu^{9} + 89318 \nu^{7} + \cdots + 1834164 \nu ) / 521235 Copy content Toggle raw display
ν\nu== (4β15+β14+2β13+5β126β7+4β6+8β5)/13 ( -4\beta_{15} + \beta_{14} + 2\beta_{13} + 5\beta_{12} - 6\beta_{7} + 4\beta_{6} + 8\beta_{5} ) / 13 Copy content Toggle raw display
ν2\nu^{2}== β9β8+β2 \beta_{9} - \beta_{8} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== (14β1510β14+6β1324β125β714β6+11β5)/13 ( 14\beta_{15} - 10\beta_{14} + 6\beta_{13} - 24\beta_{12} - 5\beta_{7} - 14\beta_{6} + 11\beta_{5} ) / 13 Copy content Toggle raw display
ν4\nu^{4}== 2β115β95β3+2β2+2β1 -2\beta_{11} - 5\beta_{9} - 5\beta_{3} + 2\beta_{2} + 2\beta_1 Copy content Toggle raw display
ν5\nu^{5}== (68β1556β1434β1333β12+11β755β6+78β4)/13 ( 68 \beta_{15} - 56 \beta_{14} - 34 \beta_{13} - 33 \beta_{12} + 11 \beta_{7} - 55 \beta_{6} + \cdots - 78 \beta_{4} ) / 13 Copy content Toggle raw display
ν6\nu^{6}== β11β1019β319 \beta_{11} - \beta_{10} - 19\beta_{3} - 19 Copy content Toggle raw display
ν7\nu^{7}== (191β15168β1476β1399β12+7β7+69β6++39β4)/13 ( 191 \beta_{15} - 168 \beta_{14} - 76 \beta_{13} - 99 \beta_{12} + 7 \beta_{7} + 69 \beta_{6} + \cdots + 39 \beta_{4} ) / 13 Copy content Toggle raw display
ν8\nu^{8}== 20β10+31β820β2 -20\beta_{10} + 31\beta_{8} - 20\beta_{2} Copy content Toggle raw display
ν9\nu^{9}== (207β15+16β14+32β13+223β12382β7+207β6366β5)/13 ( -207\beta_{15} + 16\beta_{14} + 32\beta_{13} + 223\beta_{12} - 382\beta_{7} + 207\beta_{6} - 366\beta_{5} ) / 13 Copy content Toggle raw display
ν10\nu^{10}== 109β9109β8+109β371β271β1109 109\beta_{9} - 109\beta_{8} + 109\beta_{3} - 71\beta_{2} - 71\beta _1 - 109 Copy content Toggle raw display
ν11\nu^{11}== (1544β15+1894β14+1019β13+175β12+1194β7+175β5)/13 ( - 1544 \beta_{15} + 1894 \beta_{14} + 1019 \beta_{13} + 175 \beta_{12} + 1194 \beta_{7} + \cdots - 175 \beta_{5} ) / 13 Copy content Toggle raw display
ν12\nu^{12}== 38β11+38β10+715β3+38β1 -38\beta_{11} + 38\beta_{10} + 715\beta_{3} + 38\beta_1 Copy content Toggle raw display
ν13\nu^{13}== (4632β15+5188β14+1575β13+1019β12+4076β7+1482β4)/13 ( - 4632 \beta_{15} + 5188 \beta_{14} + 1575 \beta_{13} + 1019 \beta_{12} + 4076 \beta_{7} + \cdots - 1482 \beta_{4} ) / 13 Copy content Toggle raw display
ν14\nu^{14}== 791β10449β9449β8 791\beta_{10} - 449\beta_{9} - 449\beta_{8} Copy content Toggle raw display
ν15\nu^{15}== (3613β15+5281β145558β13+8894β12+18065β7++7226β5)/13 ( - 3613 \beta_{15} + 5281 \beta_{14} - 5558 \beta_{13} + 8894 \beta_{12} + 18065 \beta_{7} + \cdots + 7226 \beta_{5} ) / 13 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/728Z)×\left(\mathbb{Z}/728\mathbb{Z}\right)^\times.

nn 183183 365365 521521 561561
χ(n)\chi(n) 11 1-1 1-1 β3+β9\beta_{3} + \beta_{9}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
293.1
−1.35670 + 1.07674i
1.58915 + 0.688914i
−1.58915 0.688914i
1.35670 1.07674i
0.197958 + 1.72070i
1.61083 + 0.636563i
−1.61083 0.636563i
−0.197958 1.72070i
−1.35670 1.07674i
1.58915 0.688914i
−1.58915 + 0.688914i
1.35670 + 1.07674i
0.197958 1.72070i
1.61083 0.636563i
−1.61083 + 0.636563i
−0.197958 + 1.72070i
1.36603 0.366025i −1.07674 + 1.86497i 1.73205 1.00000i 2.94171 + 2.94171i −0.788230 + 2.94171i 2.55560 + 0.684771i 2.00000 2.00000i −0.818745 1.41811i 5.09520 + 2.94171i
293.2 1.36603 0.366025i −0.688914 + 1.19323i 1.73205 1.00000i 1.88215 + 1.88215i −0.504320 + 1.88215i −2.55560 0.684771i 2.00000 2.00000i 0.550796 + 0.954007i 3.25997 + 1.88215i
293.3 1.36603 0.366025i 0.688914 1.19323i 1.73205 1.00000i −1.88215 1.88215i 0.504320 1.88215i −2.55560 0.684771i 2.00000 2.00000i 0.550796 + 0.954007i −3.25997 1.88215i
293.4 1.36603 0.366025i 1.07674 1.86497i 1.73205 1.00000i −2.94171 2.94171i 0.788230 2.94171i 2.55560 + 0.684771i 2.00000 2.00000i −0.818745 1.41811i −5.09520 2.94171i
349.1 −0.366025 + 1.36603i −1.72070 2.98034i −1.73205 1.00000i −1.25964 1.25964i 4.70104 1.25964i 0.684771 + 2.55560i 2.00000 2.00000i −4.42162 + 7.65848i 2.18176 1.25964i
349.2 −0.366025 + 1.36603i −0.636563 1.10256i −1.73205 1.00000i −0.465997 0.465997i 1.73912 0.465997i −0.684771 2.55560i 2.00000 2.00000i 0.689574 1.19438i 0.807130 0.465997i
349.3 −0.366025 + 1.36603i 0.636563 + 1.10256i −1.73205 1.00000i 0.465997 + 0.465997i −1.73912 + 0.465997i −0.684771 2.55560i 2.00000 2.00000i 0.689574 1.19438i −0.807130 + 0.465997i
349.4 −0.366025 + 1.36603i 1.72070 + 2.98034i −1.73205 1.00000i 1.25964 + 1.25964i −4.70104 + 1.25964i 0.684771 + 2.55560i 2.00000 2.00000i −4.42162 + 7.65848i −2.18176 + 1.25964i
405.1 1.36603 + 0.366025i −1.07674 1.86497i 1.73205 + 1.00000i 2.94171 2.94171i −0.788230 2.94171i 2.55560 0.684771i 2.00000 + 2.00000i −0.818745 + 1.41811i 5.09520 2.94171i
405.2 1.36603 + 0.366025i −0.688914 1.19323i 1.73205 + 1.00000i 1.88215 1.88215i −0.504320 1.88215i −2.55560 + 0.684771i 2.00000 + 2.00000i 0.550796 0.954007i 3.25997 1.88215i
405.3 1.36603 + 0.366025i 0.688914 + 1.19323i 1.73205 + 1.00000i −1.88215 + 1.88215i 0.504320 + 1.88215i −2.55560 + 0.684771i 2.00000 + 2.00000i 0.550796 0.954007i −3.25997 + 1.88215i
405.4 1.36603 + 0.366025i 1.07674 + 1.86497i 1.73205 + 1.00000i −2.94171 + 2.94171i 0.788230 + 2.94171i 2.55560 0.684771i 2.00000 + 2.00000i −0.818745 + 1.41811i −5.09520 + 2.94171i
461.1 −0.366025 1.36603i −1.72070 + 2.98034i −1.73205 + 1.00000i −1.25964 + 1.25964i 4.70104 + 1.25964i 0.684771 2.55560i 2.00000 + 2.00000i −4.42162 7.65848i 2.18176 + 1.25964i
461.2 −0.366025 1.36603i −0.636563 + 1.10256i −1.73205 + 1.00000i −0.465997 + 0.465997i 1.73912 + 0.465997i −0.684771 + 2.55560i 2.00000 + 2.00000i 0.689574 + 1.19438i 0.807130 + 0.465997i
461.3 −0.366025 1.36603i 0.636563 1.10256i −1.73205 + 1.00000i 0.465997 0.465997i −1.73912 0.465997i −0.684771 + 2.55560i 2.00000 + 2.00000i 0.689574 + 1.19438i −0.807130 0.465997i
461.4 −0.366025 1.36603i 1.72070 2.98034i −1.73205 + 1.00000i 1.25964 1.25964i −4.70104 1.25964i 0.684771 2.55560i 2.00000 + 2.00000i −4.42162 7.65848i −2.18176 1.25964i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 293.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.h odd 2 1 CM by Q(14)\Q(\sqrt{-14})
7.b odd 2 1 inner
8.b even 2 1 inner
13.f odd 12 1 inner
91.bc even 12 1 inner
104.x odd 12 1 inner
728.ds even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.2.ds.b 16
7.b odd 2 1 inner 728.2.ds.b 16
8.b even 2 1 inner 728.2.ds.b 16
13.f odd 12 1 inner 728.2.ds.b 16
56.h odd 2 1 CM 728.2.ds.b 16
91.bc even 12 1 inner 728.2.ds.b 16
104.x odd 12 1 inner 728.2.ds.b 16
728.ds even 12 1 inner 728.2.ds.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.ds.b 16 1.a even 1 1 trivial
728.2.ds.b 16 7.b odd 2 1 inner
728.2.ds.b 16 8.b even 2 1 inner
728.2.ds.b 16 13.f odd 12 1 inner
728.2.ds.b 16 56.h odd 2 1 CM
728.2.ds.b 16 91.bc even 12 1 inner
728.2.ds.b 16 104.x odd 12 1 inner
728.2.ds.b 16 728.ds even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T316+20T314+284T312+1832T310+8407T38+21544T36+39932T34+41236T32+28561 T_{3}^{16} + 20T_{3}^{14} + 284T_{3}^{12} + 1832T_{3}^{10} + 8407T_{3}^{8} + 21544T_{3}^{6} + 39932T_{3}^{4} + 41236T_{3}^{2} + 28561 acting on S2new(728,[χ])S_{2}^{\mathrm{new}}(728, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T42T3+2T2++4)4 (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{4} Copy content Toggle raw display
33 T16+20T14++28561 T^{16} + 20 T^{14} + \cdots + 28561 Copy content Toggle raw display
55 T16+360T12++28561 T^{16} + 360 T^{12} + \cdots + 28561 Copy content Toggle raw display
77 (T849T4+2401)2 (T^{8} - 49 T^{4} + 2401)^{2} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16++815730721 T^{16} + \cdots + 815730721 Copy content Toggle raw display
1717 T16 T^{16} Copy content Toggle raw display
1919 T16++13051691536 T^{16} + \cdots + 13051691536 Copy content Toggle raw display
2323 (T8102T6++1185921)2 (T^{8} - 102 T^{6} + \cdots + 1185921)^{2} Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 T16 T^{16} Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T16 T^{16} Copy content Toggle raw display
5959 T16++57 ⁣ ⁣41 T^{16} + \cdots + 57\!\cdots\!41 Copy content Toggle raw display
6161 T16++368377429171921 T^{16} + \cdots + 368377429171921 Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 (T8+8T7++1073283121)2 (T^{8} + 8 T^{7} + \cdots + 1073283121)^{2} Copy content Toggle raw display
7373 T16 T^{16} Copy content Toggle raw display
7979 (T224T+130)8 (T^{2} - 24 T + 130)^{8} Copy content Toggle raw display
8383 (T8+70716T4+71402500)2 (T^{8} + 70716 T^{4} + 71402500)^{2} Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 T16 T^{16} Copy content Toggle raw display
show more
show less