Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [728,2,Mod(293,728)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(728, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("728.293");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 728.ds (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
293.1 |
|
1.36603 | − | 0.366025i | −1.07674 | + | 1.86497i | 1.73205 | − | 1.00000i | 2.94171 | + | 2.94171i | −0.788230 | + | 2.94171i | 2.55560 | + | 0.684771i | 2.00000 | − | 2.00000i | −0.818745 | − | 1.41811i | 5.09520 | + | 2.94171i | ||||||||||||||||||||||||||||||||||||||||||||||||
293.2 | 1.36603 | − | 0.366025i | −0.688914 | + | 1.19323i | 1.73205 | − | 1.00000i | 1.88215 | + | 1.88215i | −0.504320 | + | 1.88215i | −2.55560 | − | 0.684771i | 2.00000 | − | 2.00000i | 0.550796 | + | 0.954007i | 3.25997 | + | 1.88215i | |||||||||||||||||||||||||||||||||||||||||||||||||
293.3 | 1.36603 | − | 0.366025i | 0.688914 | − | 1.19323i | 1.73205 | − | 1.00000i | −1.88215 | − | 1.88215i | 0.504320 | − | 1.88215i | −2.55560 | − | 0.684771i | 2.00000 | − | 2.00000i | 0.550796 | + | 0.954007i | −3.25997 | − | 1.88215i | |||||||||||||||||||||||||||||||||||||||||||||||||
293.4 | 1.36603 | − | 0.366025i | 1.07674 | − | 1.86497i | 1.73205 | − | 1.00000i | −2.94171 | − | 2.94171i | 0.788230 | − | 2.94171i | 2.55560 | + | 0.684771i | 2.00000 | − | 2.00000i | −0.818745 | − | 1.41811i | −5.09520 | − | 2.94171i | |||||||||||||||||||||||||||||||||||||||||||||||||
349.1 | −0.366025 | + | 1.36603i | −1.72070 | − | 2.98034i | −1.73205 | − | 1.00000i | −1.25964 | − | 1.25964i | 4.70104 | − | 1.25964i | 0.684771 | + | 2.55560i | 2.00000 | − | 2.00000i | −4.42162 | + | 7.65848i | 2.18176 | − | 1.25964i | |||||||||||||||||||||||||||||||||||||||||||||||||
349.2 | −0.366025 | + | 1.36603i | −0.636563 | − | 1.10256i | −1.73205 | − | 1.00000i | −0.465997 | − | 0.465997i | 1.73912 | − | 0.465997i | −0.684771 | − | 2.55560i | 2.00000 | − | 2.00000i | 0.689574 | − | 1.19438i | 0.807130 | − | 0.465997i | |||||||||||||||||||||||||||||||||||||||||||||||||
349.3 | −0.366025 | + | 1.36603i | 0.636563 | + | 1.10256i | −1.73205 | − | 1.00000i | 0.465997 | + | 0.465997i | −1.73912 | + | 0.465997i | −0.684771 | − | 2.55560i | 2.00000 | − | 2.00000i | 0.689574 | − | 1.19438i | −0.807130 | + | 0.465997i | |||||||||||||||||||||||||||||||||||||||||||||||||
349.4 | −0.366025 | + | 1.36603i | 1.72070 | + | 2.98034i | −1.73205 | − | 1.00000i | 1.25964 | + | 1.25964i | −4.70104 | + | 1.25964i | 0.684771 | + | 2.55560i | 2.00000 | − | 2.00000i | −4.42162 | + | 7.65848i | −2.18176 | + | 1.25964i | |||||||||||||||||||||||||||||||||||||||||||||||||
405.1 | 1.36603 | + | 0.366025i | −1.07674 | − | 1.86497i | 1.73205 | + | 1.00000i | 2.94171 | − | 2.94171i | −0.788230 | − | 2.94171i | 2.55560 | − | 0.684771i | 2.00000 | + | 2.00000i | −0.818745 | + | 1.41811i | 5.09520 | − | 2.94171i | |||||||||||||||||||||||||||||||||||||||||||||||||
405.2 | 1.36603 | + | 0.366025i | −0.688914 | − | 1.19323i | 1.73205 | + | 1.00000i | 1.88215 | − | 1.88215i | −0.504320 | − | 1.88215i | −2.55560 | + | 0.684771i | 2.00000 | + | 2.00000i | 0.550796 | − | 0.954007i | 3.25997 | − | 1.88215i | |||||||||||||||||||||||||||||||||||||||||||||||||
405.3 | 1.36603 | + | 0.366025i | 0.688914 | + | 1.19323i | 1.73205 | + | 1.00000i | −1.88215 | + | 1.88215i | 0.504320 | + | 1.88215i | −2.55560 | + | 0.684771i | 2.00000 | + | 2.00000i | 0.550796 | − | 0.954007i | −3.25997 | + | 1.88215i | |||||||||||||||||||||||||||||||||||||||||||||||||
405.4 | 1.36603 | + | 0.366025i | 1.07674 | + | 1.86497i | 1.73205 | + | 1.00000i | −2.94171 | + | 2.94171i | 0.788230 | + | 2.94171i | 2.55560 | − | 0.684771i | 2.00000 | + | 2.00000i | −0.818745 | + | 1.41811i | −5.09520 | + | 2.94171i | |||||||||||||||||||||||||||||||||||||||||||||||||
461.1 | −0.366025 | − | 1.36603i | −1.72070 | + | 2.98034i | −1.73205 | + | 1.00000i | −1.25964 | + | 1.25964i | 4.70104 | + | 1.25964i | 0.684771 | − | 2.55560i | 2.00000 | + | 2.00000i | −4.42162 | − | 7.65848i | 2.18176 | + | 1.25964i | |||||||||||||||||||||||||||||||||||||||||||||||||
461.2 | −0.366025 | − | 1.36603i | −0.636563 | + | 1.10256i | −1.73205 | + | 1.00000i | −0.465997 | + | 0.465997i | 1.73912 | + | 0.465997i | −0.684771 | + | 2.55560i | 2.00000 | + | 2.00000i | 0.689574 | + | 1.19438i | 0.807130 | + | 0.465997i | |||||||||||||||||||||||||||||||||||||||||||||||||
461.3 | −0.366025 | − | 1.36603i | 0.636563 | − | 1.10256i | −1.73205 | + | 1.00000i | 0.465997 | − | 0.465997i | −1.73912 | − | 0.465997i | −0.684771 | + | 2.55560i | 2.00000 | + | 2.00000i | 0.689574 | + | 1.19438i | −0.807130 | − | 0.465997i | |||||||||||||||||||||||||||||||||||||||||||||||||
461.4 | −0.366025 | − | 1.36603i | 1.72070 | − | 2.98034i | −1.73205 | + | 1.00000i | 1.25964 | − | 1.25964i | −4.70104 | − | 1.25964i | 0.684771 | − | 2.55560i | 2.00000 | + | 2.00000i | −4.42162 | − | 7.65848i | −2.18176 | − | 1.25964i | |||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
56.h | odd | 2 | 1 | CM by |
7.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
13.f | odd | 12 | 1 | inner |
91.bc | even | 12 | 1 | inner |
104.x | odd | 12 | 1 | inner |
728.ds | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.ds.b | ✓ | 16 |
7.b | odd | 2 | 1 | inner | 728.2.ds.b | ✓ | 16 |
8.b | even | 2 | 1 | inner | 728.2.ds.b | ✓ | 16 |
13.f | odd | 12 | 1 | inner | 728.2.ds.b | ✓ | 16 |
56.h | odd | 2 | 1 | CM | 728.2.ds.b | ✓ | 16 |
91.bc | even | 12 | 1 | inner | 728.2.ds.b | ✓ | 16 |
104.x | odd | 12 | 1 | inner | 728.2.ds.b | ✓ | 16 |
728.ds | even | 12 | 1 | inner | 728.2.ds.b | ✓ | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.ds.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
728.2.ds.b | ✓ | 16 | 7.b | odd | 2 | 1 | inner |
728.2.ds.b | ✓ | 16 | 8.b | even | 2 | 1 | inner |
728.2.ds.b | ✓ | 16 | 13.f | odd | 12 | 1 | inner |
728.2.ds.b | ✓ | 16 | 56.h | odd | 2 | 1 | CM |
728.2.ds.b | ✓ | 16 | 91.bc | even | 12 | 1 | inner |
728.2.ds.b | ✓ | 16 | 104.x | odd | 12 | 1 | inner |
728.2.ds.b | ✓ | 16 | 728.ds | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .