L(s) = 1 | + 8·2-s + 32·4-s + 96·8-s + 4·9-s + 264·16-s + 32·18-s + 672·32-s + 128·36-s + 1.53e3·64-s − 16·71-s + 384·72-s + 192·79-s + 8·81-s − 80·113-s + 127-s + 3.26e3·128-s + 131-s + 137-s + 139-s − 128·142-s + 1.05e3·144-s + 149-s + 151-s + 157-s + 1.53e3·158-s + 64·162-s + 163-s + ⋯ |
L(s) = 1 | + 5.65·2-s + 16·4-s + 33.9·8-s + 4/3·9-s + 66·16-s + 7.54·18-s + 118.·32-s + 64/3·36-s + 192·64-s − 1.89·71-s + 45.2·72-s + 21.6·79-s + 8/9·81-s − 7.52·113-s + 0.0887·127-s + 288.·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.7·142-s + 88·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 122.·158-s + 5.02·162-s + 0.0783·163-s + ⋯ |
Λ(s)=(=((248⋅716⋅1316)s/2ΓC(s)16L(s)Λ(2−s)
Λ(s)=(=((248⋅716⋅1316)s/2ΓC(s+1/2)16L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
552.9005622 |
L(21) |
≈ |
552.9005622 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−pT+pT2−p2T3+p2T4)4 |
| 7 | (1−p2T4+p4T8)2 |
| 13 | 1+36T2+648T4+11160T6+172319T8+11160p2T10+648p4T12+36p6T14+p8T16 |
good | 3 | (1−4T2+8T4−4p2T6+p4T8)2(1+4T2+8T4−40T6−161T8−40p2T10+8p4T12+4p6T14+p8T16) |
| 5 | (1−12T2+72T4−264T6+959T8−264p2T10+72p4T12−12p6T14+p8T16)(1+12T2+72T4+264T6+959T8+264p2T10+72p4T12+12p6T14+p8T16) |
| 11 | (1−p2T4+p4T8)4 |
| 17 | (1−pT2+p2T4)8 |
| 19 | (1−12T2+72T4+7800T6−177121T8+7800p2T10+72p4T12−12p6T14+p8T16)(1+12T2+72T4−7800T6−177121T8−7800p2T10+72p4T12+12p6T14+p8T16) |
| 23 | (1−10T2+p2T4)4(1+10T2−429T4+10p2T6+p4T8)2 |
| 29 | (1+pT2+p2T4)8 |
| 31 | (1+p2T4)8 |
| 37 | (1−p2T4+p4T8)4 |
| 41 | (1−p2T4+p4T8)4 |
| 43 | (1−pT2+p2T4)8 |
| 47 | (1+p2T4)8 |
| 53 | (1−pT2)16 |
| 59 | (1+108T2+5832T4+108p2T6+p4T8)2(1+108T2+5832T4−122040T6−18707521T8−122040p2T10+5832p4T12+108p6T14+p8T16) |
| 61 | (1−12T2+72T4−12p2T6+p4T8)2(1+12T2+72T4−88440T6−14376481T8−88440p2T10+72p4T12+12p6T14+p8T16) |
| 67 | (1−p2T4+p4T8)4 |
| 71 | (1+8T+32T2+8pT3+p2T4)4(1−8T+32T2+880T3−8561T4+880pT5+32p2T6−8p3T7+p4T8)2 |
| 73 | (1+p2T4)8 |
| 79 | (1−24T+288T2−24pT3+p2T4)8 |
| 83 | (1−36T2+648T4−36p2T6+p4T8)2(1+36T2+648T4+36p2T6+p4T8)2 |
| 89 | (1−p2T4+p4T8)4 |
| 97 | (1−p2T4+p4T8)4 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−2.88056533539562337084728601849, −2.61978261613170898514140458136, −2.56211113361121454795042050129, −2.52866567168379219296217075559, −2.51707975235063092831241712790, −2.46104452567267054667948867935, −2.33933484939565047274110697579, −2.21699020202223391859774242989, −2.10554860057620952021689434805, −2.08255833024506090130748978502, −2.05085024351402051369105920173, −1.94562581726464004814105325326, −1.86922413020738212092636753981, −1.63206469494266028296720689634, −1.59435055305456697360215051448, −1.53851866819779757178067921584, −1.46542677698757557217243930343, −1.24450174246982871107456969768, −1.17733725138867153865003491862, −1.09888698547469099368664323669, −0.865167441555352699809887864993, −0.865069511884623711385372939182, −0.854616048722037483270136764408, −0.60669728597602715207507623405, −0.14668513627062788227937934034,
0.14668513627062788227937934034, 0.60669728597602715207507623405, 0.854616048722037483270136764408, 0.865069511884623711385372939182, 0.865167441555352699809887864993, 1.09888698547469099368664323669, 1.17733725138867153865003491862, 1.24450174246982871107456969768, 1.46542677698757557217243930343, 1.53851866819779757178067921584, 1.59435055305456697360215051448, 1.63206469494266028296720689634, 1.86922413020738212092636753981, 1.94562581726464004814105325326, 2.05085024351402051369105920173, 2.08255833024506090130748978502, 2.10554860057620952021689434805, 2.21699020202223391859774242989, 2.33933484939565047274110697579, 2.46104452567267054667948867935, 2.51707975235063092831241712790, 2.52866567168379219296217075559, 2.56211113361121454795042050129, 2.61978261613170898514140458136, 2.88056533539562337084728601849
Plot not available for L-functions of degree greater than 10.