Properties

Label 728.2.ds.b.293.2
Level $728$
Weight $2$
Character 728.293
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(293,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 293.2
Root \(1.58915 + 0.688914i\) of defining polynomial
Character \(\chi\) \(=\) 728.293
Dual form 728.2.ds.b.405.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-0.688914 + 1.19323i) q^{3} +(1.73205 - 1.00000i) q^{4} +(1.88215 + 1.88215i) q^{5} +(-0.504320 + 1.88215i) q^{6} +(-2.55560 - 0.684771i) q^{7} +(2.00000 - 2.00000i) q^{8} +(0.550796 + 0.954007i) q^{9} +(3.25997 + 1.88215i) q^{10} +2.75565i q^{12} +(2.62094 + 2.47602i) q^{13} -3.74166 q^{14} +(-3.54248 + 0.949204i) q^{15} +(2.00000 - 3.46410i) q^{16} +(1.10159 + 1.10159i) q^{18} +(-0.623770 + 2.32794i) q^{19} +(5.14212 + 1.37783i) q^{20} +(2.57768 - 2.57768i) q^{21} +(3.01441 + 1.74037i) q^{23} +(1.00864 + 3.76429i) q^{24} +2.08495i q^{25} +(4.48655 + 2.42298i) q^{26} -5.65129 q^{27} +(-5.11120 + 1.36954i) q^{28} +(-4.49168 + 2.59327i) q^{30} +(1.46410 - 5.46410i) q^{32} +(-3.52117 - 6.09885i) q^{35} +(1.90801 + 1.10159i) q^{36} +3.40834i q^{38} +(-4.76007 + 1.42162i) q^{39} +7.52859 q^{40} +(2.57768 - 4.46467i) q^{42} +(-0.758902 + 2.83226i) q^{45} +(4.75478 + 1.27404i) q^{46} +(2.75565 + 4.77293i) q^{48} +(6.06218 + 3.50000i) q^{49} +(0.763146 + 2.84810i) q^{50} +(7.01562 + 1.66766i) q^{52} +(-7.71980 + 2.06851i) q^{54} +(-6.48074 + 3.74166i) q^{56} +(-2.34805 - 2.34805i) q^{57} +(-3.25336 - 0.871734i) q^{59} +(-5.18655 + 5.18655i) q^{60} +(-6.02709 - 10.4392i) q^{61} +(-0.754338 - 2.81523i) q^{63} -8.00000i q^{64} +(0.272752 + 9.59323i) q^{65} +(-4.15334 + 2.39793i) q^{69} +(-7.04235 - 7.04235i) q^{70} +(4.29022 - 16.0113i) q^{71} +(3.00961 + 0.806422i) q^{72} +(-2.48784 - 1.43635i) q^{75} +(1.24754 + 4.65588i) q^{76} +(-5.98203 + 3.68428i) q^{78} +15.7417 q^{79} +(10.2842 - 2.75565i) q^{80} +(2.24086 - 3.88128i) q^{81} +(-11.4889 - 11.4889i) q^{83} +(1.88699 - 7.04235i) q^{84} +4.14672i q^{90} +(-5.00256 - 8.12246i) q^{91} +6.96148 q^{92} +(-5.55555 + 3.20750i) q^{95} +(5.51131 + 5.51131i) q^{96} +(9.56218 + 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.965926 0.258819i
\(3\) −0.688914 + 1.19323i −0.397744 + 0.688914i −0.993447 0.114291i \(-0.963540\pi\)
0.595703 + 0.803205i \(0.296874\pi\)
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 1.88215 + 1.88215i 0.841722 + 0.841722i 0.989083 0.147361i \(-0.0470779\pi\)
−0.147361 + 0.989083i \(0.547078\pi\)
\(6\) −0.504320 + 1.88215i −0.205888 + 0.768383i
\(7\) −2.55560 0.684771i −0.965926 0.258819i
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 0.550796 + 0.954007i 0.183599 + 0.318002i
\(10\) 3.25997 + 1.88215i 1.03089 + 0.595187i
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 2.75565i 0.795489i
\(13\) 2.62094 + 2.47602i 0.726917 + 0.686725i
\(14\) −3.74166 −1.00000
\(15\) −3.54248 + 0.949204i −0.914664 + 0.245083i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 1.10159 + 1.10159i 0.259648 + 0.259648i
\(19\) −0.623770 + 2.32794i −0.143103 + 0.534066i 0.856730 + 0.515765i \(0.172492\pi\)
−0.999833 + 0.0183009i \(0.994174\pi\)
\(20\) 5.14212 + 1.37783i 1.14981 + 0.308092i
\(21\) 2.57768 2.57768i 0.562496 0.562496i
\(22\) 0 0
\(23\) 3.01441 + 1.74037i 0.628548 + 0.362892i 0.780189 0.625543i \(-0.215123\pi\)
−0.151642 + 0.988436i \(0.548456\pi\)
\(24\) 1.00864 + 3.76429i 0.205888 + 0.768383i
\(25\) 2.08495i 0.416991i
\(26\) 4.48655 + 2.42298i 0.879886 + 0.475185i
\(27\) −5.65129 −1.08759
\(28\) −5.11120 + 1.36954i −0.965926 + 0.258819i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −4.49168 + 2.59327i −0.820065 + 0.473465i
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 1.46410 5.46410i 0.258819 0.965926i
\(33\) 0 0
\(34\) 0 0
\(35\) −3.52117 6.09885i −0.595187 1.03089i
\(36\) 1.90801 + 1.10159i 0.318002 + 0.183599i
\(37\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(38\) 3.40834i 0.552906i
\(39\) −4.76007 + 1.42162i −0.762221 + 0.227642i
\(40\) 7.52859 1.19037
\(41\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(42\) 2.57768 4.46467i 0.397744 0.688914i
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) −0.758902 + 2.83226i −0.113130 + 0.422209i
\(46\) 4.75478 + 1.27404i 0.701054 + 0.187847i
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 2.75565 + 4.77293i 0.397744 + 0.688914i
\(49\) 6.06218 + 3.50000i 0.866025 + 0.500000i
\(50\) 0.763146 + 2.84810i 0.107925 + 0.402782i
\(51\) 0 0
\(52\) 7.01562 + 1.66766i 0.972891 + 0.231263i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −7.71980 + 2.06851i −1.05053 + 0.281489i
\(55\) 0 0
\(56\) −6.48074 + 3.74166i −0.866025 + 0.500000i
\(57\) −2.34805 2.34805i −0.311007 0.311007i
\(58\) 0 0
\(59\) −3.25336 0.871734i −0.423551 0.113490i 0.0407464 0.999170i \(-0.487026\pi\)
−0.464297 + 0.885679i \(0.653693\pi\)
\(60\) −5.18655 + 5.18655i −0.669580 + 0.669580i
\(61\) −6.02709 10.4392i −0.771690 1.33661i −0.936636 0.350304i \(-0.886078\pi\)
0.164946 0.986303i \(-0.447255\pi\)
\(62\) 0 0
\(63\) −0.754338 2.81523i −0.0950377 0.354686i
\(64\) 8.00000i 1.00000i
\(65\) 0.272752 + 9.59323i 0.0338308 + 1.18989i
\(66\) 0 0
\(67\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(68\) 0 0
\(69\) −4.15334 + 2.39793i −0.500003 + 0.288677i
\(70\) −7.04235 7.04235i −0.841722 0.841722i
\(71\) 4.29022 16.0113i 0.509156 1.90020i 0.0804327 0.996760i \(-0.474370\pi\)
0.428723 0.903436i \(-0.358964\pi\)
\(72\) 3.00961 + 0.806422i 0.354686 + 0.0950377i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) −2.48784 1.43635i −0.287271 0.165856i
\(76\) 1.24754 + 4.65588i 0.143103 + 0.534066i
\(77\) 0 0
\(78\) −5.98203 + 3.68428i −0.677331 + 0.417163i
\(79\) 15.7417 1.77107 0.885537 0.464568i \(-0.153790\pi\)
0.885537 + 0.464568i \(0.153790\pi\)
\(80\) 10.2842 2.75565i 1.14981 0.308092i
\(81\) 2.24086 3.88128i 0.248984 0.431253i
\(82\) 0 0
\(83\) −11.4889 11.4889i −1.26107 1.26107i −0.950573 0.310502i \(-0.899503\pi\)
−0.310502 0.950573i \(-0.600497\pi\)
\(84\) 1.88699 7.04235i 0.205888 0.768383i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(90\) 4.14672i 0.437102i
\(91\) −5.00256 8.12246i −0.524411 0.851465i
\(92\) 6.96148 0.725785
\(93\) 0 0
\(94\) 0 0
\(95\) −5.55555 + 3.20750i −0.569988 + 0.329083i
\(96\) 5.51131 + 5.51131i 0.562496 + 0.562496i
\(97\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(98\) 9.56218 + 2.56218i 0.965926 + 0.258819i
\(99\) 0 0
\(100\) 2.08495 + 3.61125i 0.208495 + 0.361125i
\(101\) 11.4256 + 6.59655i 1.13689 + 0.656382i 0.945658 0.325164i \(-0.105419\pi\)
0.191229 + 0.981546i \(0.438753\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 10.1939 0.289831i 0.999596 0.0284203i
\(105\) 9.70314 0.946929
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −9.78831 + 5.65129i −0.941881 + 0.543795i
\(109\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.48331 + 7.48331i −0.707107 + 0.707107i
\(113\) −10.6125 18.3814i −0.998339 1.72917i −0.549068 0.835778i \(-0.685017\pi\)
−0.449271 0.893396i \(-0.648316\pi\)
\(114\) −4.06695 2.34805i −0.380905 0.219915i
\(115\) 2.39793 + 8.94919i 0.223608 + 0.834517i
\(116\) 0 0
\(117\) −0.918540 + 3.86418i −0.0849190 + 0.357243i
\(118\) −4.76324 −0.438492
\(119\) 0 0
\(120\) −5.18655 + 8.98336i −0.473465 + 0.820065i
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) −12.0542 12.0542i −1.09133 1.09133i
\(123\) 0 0
\(124\) 0 0
\(125\) 5.48655 5.48655i 0.490732 0.490732i
\(126\) −2.06089 3.56957i −0.183599 0.318002i
\(127\) 8.22111 + 4.74646i 0.729506 + 0.421180i 0.818241 0.574875i \(-0.194949\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) −2.92820 10.9282i −0.258819 0.965926i
\(129\) 0 0
\(130\) 3.88395 + 13.0048i 0.340645 + 1.14059i
\(131\) −6.89883 −0.602753 −0.301377 0.953505i \(-0.597446\pi\)
−0.301377 + 0.953505i \(0.597446\pi\)
\(132\) 0 0
\(133\) 3.18821 5.52215i 0.276453 0.478831i
\(134\) 0 0
\(135\) −10.6365 10.6365i −0.915448 0.915448i
\(136\) 0 0
\(137\) −13.0526 3.49743i −1.11516 0.298805i −0.346235 0.938148i \(-0.612540\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −4.79586 + 4.79586i −0.408251 + 0.408251i
\(139\) −10.0049 17.3290i −0.848604 1.46983i −0.882454 0.470399i \(-0.844110\pi\)
0.0338497 0.999427i \(-0.489223\pi\)
\(140\) −12.1977 7.04235i −1.03089 0.595187i
\(141\) 0 0
\(142\) 23.4422i 1.96723i
\(143\) 0 0
\(144\) 4.40637 0.367197
\(145\) 0 0
\(146\) 0 0
\(147\) −8.35263 + 4.82239i −0.688914 + 0.397744i
\(148\) 0 0
\(149\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(150\) −3.92419 1.05148i −0.320409 0.0858532i
\(151\) −13.5035 + 13.5035i −1.09890 + 1.09890i −0.104357 + 0.994540i \(0.533278\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) 3.40834 + 5.90342i 0.276453 + 0.478831i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −6.82306 + 7.22240i −0.546282 + 0.578255i
\(157\) 9.78477 0.780909 0.390455 0.920622i \(-0.372318\pi\)
0.390455 + 0.920622i \(0.372318\pi\)
\(158\) 21.5035 5.76185i 1.71073 0.458388i
\(159\) 0 0
\(160\) 13.0399 7.52859i 1.03089 0.595187i
\(161\) −6.51187 6.51187i −0.513207 0.513207i
\(162\) 1.64042 6.12214i 0.128884 0.481001i
\(163\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −19.8994 11.4889i −1.54449 0.891715i
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 10.3107i 0.795489i
\(169\) 0.738629 + 12.9790i 0.0568176 + 0.998385i
\(170\) 0 0
\(171\) −2.56444 + 0.687140i −0.196108 + 0.0525469i
\(172\) 0 0
\(173\) −19.3686 + 11.1824i −1.47256 + 0.850186i −0.999524 0.0308546i \(-0.990177\pi\)
−0.473041 + 0.881040i \(0.656844\pi\)
\(174\) 0 0
\(175\) 1.42772 5.32831i 0.107925 0.402782i
\(176\) 0 0
\(177\) 3.28146 3.28146i 0.246650 0.246650i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 1.51780 + 5.66452i 0.113130 + 0.422209i
\(181\) 25.8903i 1.92441i −0.272326 0.962205i \(-0.587793\pi\)
0.272326 0.962205i \(-0.412207\pi\)
\(182\) −9.80665 9.26443i −0.726917 0.686725i
\(183\) 16.6086 1.22774
\(184\) 9.50956 2.54808i 0.701054 0.187847i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 14.4424 + 3.86984i 1.05053 + 0.281489i
\(190\) −6.41500 + 6.41500i −0.465393 + 0.465393i
\(191\) 2.38751 + 4.13530i 0.172754 + 0.299219i 0.939382 0.342873i \(-0.111400\pi\)
−0.766627 + 0.642092i \(0.778067\pi\)
\(192\) 9.54587 + 5.51131i 0.688914 + 0.397744i
\(193\) −1.52193 5.67992i −0.109551 0.408850i 0.889271 0.457381i \(-0.151213\pi\)
−0.998822 + 0.0485316i \(0.984546\pi\)
\(194\) 0 0
\(195\) −11.6349 6.28345i −0.833190 0.449967i
\(196\) 14.0000 1.00000
\(197\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 4.16991 + 4.16991i 0.294857 + 0.294857i
\(201\) 0 0
\(202\) 18.0221 + 4.82901i 1.26803 + 0.339768i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.83436i 0.266506i
\(208\) 13.8191 4.12715i 0.958180 0.286166i
\(209\) 0 0
\(210\) 13.2547 3.55160i 0.914664 0.245083i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 16.1497 + 16.1497i 1.10656 + 1.10656i
\(214\) 0 0
\(215\) 0 0
\(216\) −11.3026 + 11.3026i −0.769043 + 0.769043i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) −7.48331 + 12.9615i −0.500000 + 0.866025i
\(225\) −1.98906 + 1.14838i −0.132604 + 0.0765590i
\(226\) −21.2250 21.2250i −1.41186 1.41186i
\(227\) −7.24262 + 27.0298i −0.480710 + 1.79403i 0.117938 + 0.993021i \(0.462372\pi\)
−0.598647 + 0.801013i \(0.704295\pi\)
\(228\) −6.41500 1.71889i −0.424844 0.113837i
\(229\) 21.2737 21.2737i 1.40581 1.40581i 0.625913 0.779893i \(-0.284726\pi\)
0.779893 0.625913i \(-0.215274\pi\)
\(230\) 6.55127 + 11.3471i 0.431978 + 0.748207i
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1628i 1.32091i 0.750867 + 0.660454i \(0.229636\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0.159638 + 5.61477i 0.0104359 + 0.367049i
\(235\) 0 0
\(236\) −6.50671 + 1.74347i −0.423551 + 0.113490i
\(237\) −10.8446 + 18.7835i −0.704435 + 1.22012i
\(238\) 0 0
\(239\) 21.8599 + 21.8599i 1.41400 + 1.41400i 0.719264 + 0.694737i \(0.244479\pi\)
0.694737 + 0.719264i \(0.255521\pi\)
\(240\) −3.79682 + 14.1699i −0.245083 + 0.914664i
\(241\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(242\) −11.0000 + 11.0000i −0.707107 + 0.707107i
\(243\) −5.38941 9.33474i −0.345731 0.598824i
\(244\) −20.8785 12.0542i −1.33661 0.771690i
\(245\) 4.82239 + 17.9974i 0.308092 + 1.14981i
\(246\) 0 0
\(247\) −7.39890 + 4.55692i −0.470780 + 0.289950i
\(248\) 0 0
\(249\) 21.6239 5.79410i 1.37036 0.367186i
\(250\) 5.48655 9.50298i 0.347000 0.601021i
\(251\) 17.4973 10.1020i 1.10442 0.637636i 0.167039 0.985950i \(-0.446579\pi\)
0.937378 + 0.348315i \(0.113246\pi\)
\(252\) −4.12178 4.12178i −0.259648 0.259648i
\(253\) 0 0
\(254\) 12.9676 + 3.47465i 0.813658 + 0.218019i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.0656 + 16.3432i 0.624245 + 1.01356i
\(261\) 0 0
\(262\) −9.42397 + 2.52515i −0.582215 + 0.156004i
\(263\) −11.6059 + 20.1021i −0.715653 + 1.23955i 0.247054 + 0.969002i \(0.420537\pi\)
−0.962707 + 0.270546i \(0.912796\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 2.33393 8.71036i 0.143103 0.534066i
\(267\) 0 0
\(268\) 0 0
\(269\) 15.7485 + 27.2772i 0.960202 + 1.66312i 0.721987 + 0.691907i \(0.243229\pi\)
0.238215 + 0.971212i \(0.423438\pi\)
\(270\) −18.4230 10.6365i −1.12119 0.647320i
\(271\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(272\) 0 0
\(273\) 13.1383 0.373546i 0.795168 0.0226080i
\(274\) −19.1103 −1.15449
\(275\) 0 0
\(276\) −4.79586 + 8.30667i −0.288677 + 0.500003i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) −20.0098 20.0098i −1.20011 1.20011i
\(279\) 0 0
\(280\) −19.2401 5.15536i −1.14981 0.308092i
\(281\) −7.51669 + 7.51669i −0.448408 + 0.448408i −0.894825 0.446417i \(-0.852700\pi\)
0.446417 + 0.894825i \(0.352700\pi\)
\(282\) 0 0
\(283\) 26.5467 + 15.3268i 1.57804 + 0.911082i 0.995133 + 0.0985428i \(0.0314181\pi\)
0.582907 + 0.812539i \(0.301915\pi\)
\(284\) −8.58045 32.0227i −0.509156 1.90020i
\(285\) 8.83876i 0.523563i
\(286\) 0 0
\(287\) 0 0
\(288\) 6.01921 1.61284i 0.354686 0.0950377i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 24.4045 + 6.53918i 1.42573 + 0.382023i 0.887512 0.460784i \(-0.152432\pi\)
0.538216 + 0.842807i \(0.319098\pi\)
\(294\) −9.64479 + 9.64479i −0.562496 + 0.562496i
\(295\) −4.48256 7.76402i −0.260985 0.452039i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.59139 + 12.0251i 0.207695 + 0.695432i
\(300\) −5.74541 −0.331711
\(301\) 0 0
\(302\) −13.5035 + 23.3887i −0.777037 + 1.34587i
\(303\) −15.7425 + 9.08891i −0.904380 + 0.522144i
\(304\) 6.81668 + 6.81668i 0.390964 + 0.390964i
\(305\) 8.30429 30.9920i 0.475502 1.77460i
\(306\) 0 0
\(307\) −21.2296 + 21.2296i −1.21164 + 1.21164i −0.241146 + 0.970489i \(0.577523\pi\)
−0.970489 + 0.241146i \(0.922477\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −6.67689 + 12.3634i −0.378005 + 0.699939i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 13.3662 3.58147i 0.754301 0.202114i
\(315\) 3.87890 6.71845i 0.218551 0.378542i
\(316\) 27.2654 15.7417i 1.53380 0.885537i
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 15.0572 15.0572i 0.841722 0.841722i
\(321\) 0 0
\(322\) −11.2789 6.51187i −0.628548 0.362892i
\(323\) 0 0
\(324\) 8.96343i 0.497969i
\(325\) −5.16239 + 5.46453i −0.286358 + 0.303118i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(332\) −31.3884 8.41049i −1.72266 0.461585i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −3.77398 14.0847i −0.205888 0.768383i
\(337\) 0.708287i 0.0385828i 0.999814 + 0.0192914i \(0.00614103\pi\)
−0.999814 + 0.0192914i \(0.993859\pi\)
\(338\) 5.75963 + 17.4593i 0.313283 + 0.949660i
\(339\) 29.2443 1.58833
\(340\) 0 0
\(341\) 0 0
\(342\) −3.25158 + 1.87730i −0.175825 + 0.101513i
\(343\) −13.0958 13.0958i −0.707107 0.707107i
\(344\) 0 0
\(345\) −12.3304 3.30393i −0.663849 0.177878i
\(346\) −22.3649 + 22.3649i −1.20234 + 1.20234i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −5.19288 19.3801i −0.277969 1.03739i −0.953826 0.300360i \(-0.902893\pi\)
0.675857 0.737032i \(-0.263774\pi\)
\(350\) 7.80118i 0.416991i
\(351\) −14.8117 13.9927i −0.790588 0.746875i
\(352\) 0 0
\(353\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(354\) 3.28146 5.68366i 0.174408 0.302083i
\(355\) 38.2105 22.0609i 2.02800 1.17087i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.74963 + 2.74963i −0.145120 + 0.145120i −0.775934 0.630814i \(-0.782721\pi\)
0.630814 + 0.775934i \(0.282721\pi\)
\(360\) 4.14672 + 7.18233i 0.218551 + 0.378542i
\(361\) 11.4243 + 6.59580i 0.601277 + 0.347147i
\(362\) −9.47650 35.3668i −0.498074 1.85884i
\(363\) 15.1561i 0.795489i
\(364\) −16.7871 9.06596i −0.879886 0.475185i
\(365\) 0 0
\(366\) 22.6877 6.07916i 1.18591 0.317763i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 12.0576 6.96148i 0.628548 0.362892i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 2.76697 + 10.3265i 0.142886 + 0.533257i
\(376\) 0 0
\(377\) 0 0
\(378\) 21.1452 1.08759
\(379\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(380\) −6.41500 + 11.1111i −0.329083 + 0.569988i
\(381\) −11.3273 + 6.53980i −0.580314 + 0.335044i
\(382\) 4.77503 + 4.77503i 0.244312 + 0.244312i
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 15.0572 + 4.03456i 0.768383 + 0.205888i
\(385\) 0 0
\(386\) −4.15799 7.20185i −0.211636 0.366565i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −18.1934 4.32469i −0.921259 0.218989i
\(391\) 0 0
\(392\) 19.1244 5.12436i 0.965926 0.258819i
\(393\) 4.75269 8.23191i 0.239742 0.415245i
\(394\) 0 0
\(395\) 29.6281 + 29.6281i 1.49075 + 1.49075i
\(396\) 0 0
\(397\) −36.4521 9.76731i −1.82948 0.490207i −0.831604 0.555369i \(-0.812577\pi\)
−0.997875 + 0.0651619i \(0.979244\pi\)
\(398\) 0 0
\(399\) 4.39281 + 7.60856i 0.219915 + 0.380905i
\(400\) 7.22249 + 4.16991i 0.361125 + 0.208495i
\(401\) 4.10862 + 15.3336i 0.205175 + 0.765723i 0.989396 + 0.145242i \(0.0463961\pi\)
−0.784221 + 0.620481i \(0.786937\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 26.3862 1.31276
\(405\) 11.5228 3.08752i 0.572571 0.153420i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(410\) 0 0
\(411\) 13.1653 13.1653i 0.649398 0.649398i
\(412\) 0 0
\(413\) 7.71734 + 4.45561i 0.379745 + 0.219246i
\(414\) 1.40347 + 5.23783i 0.0689769 + 0.257425i
\(415\) 43.2477i 2.12295i
\(416\) 17.3666 10.6959i 0.851465 0.524411i
\(417\) 27.5700 1.35011
\(418\) 0 0
\(419\) −1.48404 + 2.57043i −0.0725002 + 0.125574i −0.899996 0.435897i \(-0.856431\pi\)
0.827496 + 0.561471i \(0.189764\pi\)
\(420\) 16.8063 9.70314i 0.820065 0.473465i
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 27.9720 + 16.1497i 1.35525 + 0.782454i
\(427\) 8.25435 + 30.8057i 0.399456 + 1.49079i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.4101 10.5599i 1.89832 0.508653i 0.901146 0.433515i \(-0.142727\pi\)
0.997173 0.0751385i \(-0.0239399\pi\)
\(432\) −11.3026 + 19.5766i −0.543795 + 0.941881i
\(433\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.93178 + 5.93178i −0.283755 + 0.283755i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 7.71115i 0.367197i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −5.47817 + 20.4448i −0.258819 + 0.965926i
\(449\) −35.4281 9.49293i −1.67196 0.447999i −0.706319 0.707894i \(-0.749646\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) −2.29677 + 2.29677i −0.108271 + 0.108271i
\(451\) 0 0
\(452\) −36.7627 21.2250i −1.72917 0.998339i
\(453\) −6.81007 25.4155i −0.319965 1.19412i
\(454\) 39.5744i 1.85732i
\(455\) 5.87212 24.7032i 0.275289 1.15810i
\(456\) −9.39221 −0.439831
\(457\) −38.0460 + 10.1944i −1.77972 + 0.476873i −0.990532 0.137283i \(-0.956163\pi\)
−0.789184 + 0.614157i \(0.789496\pi\)
\(458\) 21.2737 36.8471i 0.994055 1.72175i
\(459\) 0 0
\(460\) 13.1025 + 13.1025i 0.610909 + 0.610909i
\(461\) −7.75003 + 28.9235i −0.360955 + 1.34710i 0.511867 + 0.859064i \(0.328954\pi\)
−0.872822 + 0.488038i \(0.837713\pi\)
\(462\) 0 0
\(463\) −28.2019 + 28.2019i −1.31065 + 1.31065i −0.389716 + 0.920935i \(0.627427\pi\)
−0.920935 + 0.389716i \(0.872573\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 7.38009 + 27.5429i 0.341876 + 1.27590i
\(467\) 42.7899i 1.98008i 0.140792 + 0.990039i \(0.455035\pi\)
−0.140792 + 0.990039i \(0.544965\pi\)
\(468\) 2.27322 + 7.61149i 0.105080 + 0.351841i
\(469\) 0 0
\(470\) 0 0
\(471\) −6.74086 + 11.6755i −0.310602 + 0.537979i
\(472\) −8.25018 + 4.76324i −0.379745 + 0.219246i
\(473\) 0 0
\(474\) −7.93883 + 29.6281i −0.364642 + 1.36086i
\(475\) −4.85365 1.30053i −0.222701 0.0596725i
\(476\) 0 0
\(477\) 0 0
\(478\) 37.8625 + 21.8599i 1.73179 + 0.999850i
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 20.7462i 0.946929i
\(481\) 0 0
\(482\) 0 0
\(483\) 12.2563 3.28406i 0.557681 0.149430i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) −10.7788 10.7788i −0.488937 0.488937i
\(487\) 11.0039 41.0670i 0.498633 1.86092i −0.0100195 0.999950i \(-0.503189\pi\)
0.508652 0.860972i \(-0.330144\pi\)
\(488\) −32.9326 8.82427i −1.49079 0.399456i
\(489\) 0 0
\(490\) 13.1750 + 22.8198i 0.595187 + 1.03089i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.43913 + 8.93305i −0.379694 + 0.401917i
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9282 + 37.9807i −0.983614 + 1.70367i
\(498\) 27.4180 15.8298i 1.22863 0.709349i
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) 4.01643 14.9895i 0.179620 0.670352i
\(501\) 0 0
\(502\) 20.2041 20.2041i 0.901753 0.901753i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −7.13914 4.12178i −0.318002 0.183599i
\(505\) 9.08891 + 33.9203i 0.404451 + 1.50943i
\(506\) 0 0
\(507\) −15.9958 8.06005i −0.710400 0.357959i
\(508\) 18.9858 0.842361
\(509\) −43.4962 + 11.6548i −1.92793 + 0.516588i −0.947491 + 0.319783i \(0.896390\pi\)
−0.980443 + 0.196805i \(0.936943\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 3.52510 13.1559i 0.155637 0.580845i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 30.8150i 1.35263i
\(520\) 19.7320 + 18.6409i 0.865304 + 0.817460i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −1.70594 + 2.95478i −0.0745957 + 0.129204i −0.900910 0.434005i \(-0.857100\pi\)
0.826315 + 0.563209i \(0.190433\pi\)
\(524\) −11.9491 + 6.89883i −0.522000 + 0.301377i
\(525\) 5.37434 + 5.37434i 0.234555 + 0.234555i
\(526\) −8.49614 + 31.7080i −0.370449 + 1.38254i
\(527\) 0 0
\(528\) 0 0
\(529\) −5.44222 9.42621i −0.236618 0.409835i
\(530\) 0 0
\(531\) −0.960296 3.58387i −0.0416733 0.155527i
\(532\) 12.7528i 0.552906i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 31.4970 + 31.4970i 1.35793 + 1.35793i
\(539\) 0 0
\(540\) −29.0596 7.78649i −1.25053 0.335077i
\(541\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) 30.8932 + 17.8362i 1.32575 + 0.765423i
\(544\) 0 0
\(545\) 0 0
\(546\) 17.8106 5.31923i 0.762221 0.227642i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −26.1051 + 6.99485i −1.11516 + 0.298805i
\(549\) 6.63940 11.4998i 0.283363 0.490798i
\(550\) 0 0
\(551\) 0 0
\(552\) −3.51081 + 13.1025i −0.149430 + 0.557681i
\(553\) −40.2294 10.7794i −1.71073 0.458388i
\(554\) 0 0
\(555\) 0 0
\(556\) −34.6580 20.0098i −1.46983 0.848604i
\(557\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −28.1694 −1.19037
\(561\) 0 0
\(562\) −7.51669 + 13.0193i −0.317072 + 0.549185i
\(563\) 40.1801 23.1980i 1.69339 0.977679i 0.741644 0.670794i \(-0.234046\pi\)
0.951746 0.306886i \(-0.0992869\pi\)
\(564\) 0 0
\(565\) 14.6222 54.5707i 0.615159 2.29581i
\(566\) 41.8735 + 11.2200i 1.76007 + 0.471611i
\(567\) −8.38452 + 8.38452i −0.352117 + 0.352117i
\(568\) −23.4422 40.6031i −0.983614 1.70367i
\(569\) 39.2039 + 22.6344i 1.64351 + 0.948882i 0.979571 + 0.201097i \(0.0644506\pi\)
0.663941 + 0.747785i \(0.268883\pi\)
\(570\) −3.23521 12.0740i −0.135508 0.505723i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −6.57916 −0.274848
\(574\) 0 0
\(575\) −3.62859 + 6.28490i −0.151323 + 0.262099i
\(576\) 7.63206 4.40637i 0.318002 0.183599i
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 6.22243 23.2224i 0.258819 0.965926i
\(579\) 7.82595 + 2.09696i 0.325235 + 0.0871466i
\(580\) 0 0
\(581\) 21.4938 + 37.2284i 0.891715 + 1.54449i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −9.00178 + 5.54412i −0.372178 + 0.229221i
\(586\) 35.7307 1.47602
\(587\) −45.8628 + 12.2889i −1.89296 + 0.507218i −0.894810 + 0.446447i \(0.852689\pi\)
−0.998152 + 0.0607706i \(0.980644\pi\)
\(588\) −9.64479 + 16.7053i −0.397744 + 0.688914i
\(589\) 0 0
\(590\) −8.96512 8.96512i −0.369088 0.369088i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 9.30743 + 15.1121i 0.380609 + 0.617981i
\(599\) −1.39767 −0.0571073 −0.0285537 0.999592i \(-0.509090\pi\)
−0.0285537 + 0.999592i \(0.509090\pi\)
\(600\) −7.84838 + 2.10297i −0.320409 + 0.0858532i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.88523 + 36.8922i −0.402224 + 1.50112i
\(605\) −28.2817 7.57805i −1.14981 0.308092i
\(606\) −18.1778 + 18.1778i −0.738424 + 0.738424i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 11.8068 + 6.81668i 0.478831 + 0.276453i
\(609\) 0 0
\(610\) 45.3755i 1.83720i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(614\) −21.2296 + 36.7707i −0.856755 + 1.48394i
\(615\) 0 0
\(616\) 0 0
\(617\) 9.33281 34.8305i 0.375725 1.40222i −0.476558 0.879143i \(-0.658116\pi\)
0.852283 0.523081i \(-0.175218\pi\)
\(618\) 0 0
\(619\) −14.5577 + 14.5577i −0.585121 + 0.585121i −0.936306 0.351185i \(-0.885779\pi\)
0.351185 + 0.936306i \(0.385779\pi\)
\(620\) 0 0
\(621\) −17.0353 9.83533i −0.683603 0.394678i
\(622\) 0 0
\(623\) 0 0
\(624\) −4.59549 + 19.3326i −0.183967 + 0.773924i
\(625\) 31.0777 1.24311
\(626\) 0 0
\(627\) 0 0
\(628\) 16.9477 9.78477i 0.676287 0.390455i
\(629\) 0 0
\(630\) 2.83955 10.5973i 0.113130 0.422209i
\(631\) 10.5031 + 2.81430i 0.418122 + 0.112035i 0.461745 0.887013i \(-0.347223\pi\)
−0.0436231 + 0.999048i \(0.513890\pi\)
\(632\) 31.4833 31.4833i 1.25234 1.25234i
\(633\) 0 0
\(634\) 0 0
\(635\) 6.53980 + 24.4069i 0.259524 + 0.968557i
\(636\) 0 0
\(637\) 7.22251 + 24.1834i 0.286166 + 0.958180i
\(638\) 0 0
\(639\) 17.6380 4.72608i 0.697747 0.186961i
\(640\) 15.0572 26.0798i 0.595187 1.03089i
\(641\) −24.0569 + 13.8892i −0.950189 + 0.548592i −0.893140 0.449780i \(-0.851502\pi\)
−0.0570491 + 0.998371i \(0.518169\pi\)
\(642\) 0 0
\(643\) 12.9259 48.2402i 0.509748 1.90241i 0.0868719 0.996219i \(-0.472313\pi\)
0.422876 0.906187i \(-0.361020\pi\)
\(644\) −17.7908 4.76702i −0.701054 0.187847i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −3.28084 12.2443i −0.128884 0.481001i
\(649\) 0 0
\(650\) −5.05180 + 9.35426i −0.198148 + 0.366904i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) −12.9846 12.9846i −0.507350 0.507350i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −12.7932 47.7450i −0.497599 1.85706i −0.514958 0.857215i \(-0.672193\pi\)
0.0173592 0.999849i \(-0.494474\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −45.9558 −1.78343
\(665\) 16.3942 4.39281i 0.635739 0.170346i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −10.3107 17.8587i −0.397744 0.688914i
\(673\) 38.8844 + 22.4499i 1.49889 + 0.865382i 0.999999 0.00128586i \(-0.000409302\pi\)
0.498886 + 0.866668i \(0.333743\pi\)
\(674\) 0.259251 + 0.967538i 0.00998598 + 0.0372682i
\(675\) 11.7827i 0.453515i
\(676\) 14.2583 + 21.7417i 0.548398 + 0.836218i
\(677\) −49.5015 −1.90250 −0.951248 0.308427i \(-0.900198\pi\)
−0.951248 + 0.308427i \(0.900198\pi\)
\(678\) 39.9485 10.7042i 1.53421 0.411091i
\(679\) 0 0
\(680\) 0 0
\(681\) −27.2634 27.2634i −1.04473 1.04473i
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) −3.75460 + 3.75460i −0.143561 + 0.143561i
\(685\) −17.9842 31.1495i −0.687140 1.19016i
\(686\) −22.6826 13.0958i −0.866025 0.500000i
\(687\) 10.7287 + 40.0402i 0.409327 + 1.52763i
\(688\) 0 0
\(689\) 0 0
\(690\) −18.0530 −0.687267
\(691\) 50.7388 13.5954i 1.93020 0.517195i 0.954388 0.298570i \(-0.0965096\pi\)
0.975809 0.218625i \(-0.0701570\pi\)
\(692\) −22.3649 + 38.7371i −0.850186 + 1.47256i
\(693\) 0 0
\(694\) 0 0
\(695\) 13.7850 51.4464i 0.522896 1.95147i
\(696\) 0 0
\(697\) 0 0
\(698\) −14.1872 24.5730i −0.536994 0.930101i
\(699\) −24.0589 13.8904i −0.909991 0.525384i
\(700\) −2.85543 10.6566i −0.107925 0.402782i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −25.3548 13.6929i −0.956955 0.516807i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.6820 24.6820i −0.928264 0.928264i
\(708\) 2.40220 8.96512i 0.0902801 0.336930i
\(709\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(710\) 44.1217 44.1217i 1.65586 1.65586i
\(711\) 8.67045 + 15.0177i 0.325167 + 0.563206i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −41.1436 + 11.0244i −1.53654 + 0.411713i
\(718\) −2.74963 + 4.76250i −0.102615 + 0.177735i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 8.29344 + 8.29344i 0.309078 + 0.309078i
\(721\) 0 0
\(722\) 18.0201 + 4.82846i 0.670637 + 0.179697i
\(723\) 0 0
\(724\) −25.8903 44.8433i −0.962205 1.66659i
\(725\) 0 0
\(726\) −5.54752 20.7036i −0.205888 0.768383i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −26.2500 6.23981i −0.972891 0.231263i
\(729\) 28.2965 1.04802
\(730\) 0 0
\(731\) 0 0
\(732\) 28.7669 16.6086i 1.06326 0.613871i
\(733\) −36.9968 36.9968i −1.36651 1.36651i −0.865366 0.501140i \(-0.832914\pi\)
−0.501140 0.865366i \(-0.667086\pi\)
\(734\) 0 0
\(735\) −24.7973 6.64443i −0.914664 0.245083i
\(736\) 13.9230 13.9230i 0.513207 0.513207i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(740\) 0 0
\(741\) −0.340270 11.9679i −0.0125001 0.439653i
\(742\) 0 0
\(743\) −31.7715 + 8.51314i −1.16558 + 0.312317i −0.789193 0.614145i \(-0.789501\pi\)
−0.376389 + 0.926462i \(0.622834\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.63246 17.2886i 0.169493 0.632556i
\(748\) 0 0
\(749\) 0 0
\(750\) 7.55951 + 13.0935i 0.276034 + 0.478105i
\(751\) 47.2211 + 27.2631i 1.72312 + 0.994845i 0.912263 + 0.409605i \(0.134333\pi\)
0.810860 + 0.585240i \(0.199000\pi\)
\(752\) 0 0
\(753\) 27.8377i 1.01446i
\(754\) 0 0
\(755\) −50.8310 −1.84993
\(756\) 28.8848 7.73967i 1.05053 0.281489i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −4.69611 + 17.5261i −0.170346 + 0.635739i
\(761\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(762\) −13.0796 + 13.0796i −0.473824 + 0.473824i
\(763\) 0 0
\(764\) 8.27059 + 4.77503i 0.299219 + 0.172754i
\(765\) 0 0
\(766\) 0 0
\(767\) −6.36841 10.3401i −0.229950 0.373361i
\(768\) 22.0452 0.795489
\(769\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.31598 8.31598i −0.299299 0.299299i
\(773\) 9.19540 34.3177i 0.330736 1.23432i −0.577683 0.816261i \(-0.696043\pi\)
0.908419 0.418061i \(-0.137290\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −26.4356 + 0.751612i −0.946547 + 0.0269120i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 14.0000i 0.866025 0.500000i
\(785\) 18.4164 + 18.4164i 0.657308 + 0.657308i
\(786\) 3.47921 12.9846i 0.124099 0.463145i
\(787\) 1.13955 + 0.305342i 0.0406207 + 0.0108843i 0.279072 0.960270i \(-0.409973\pi\)
−0.238451 + 0.971154i \(0.576640\pi\)
\(788\) 0 0
\(789\) −15.9910 27.6972i −0.569294 0.986046i
\(790\) 51.3174 + 29.6281i 1.82579 + 1.05412i
\(791\) 14.5342 + 54.2425i 0.516778 + 1.92864i
\(792\) 0 0
\(793\) 10.0511 42.2838i 0.356926 1.50154i
\(794\) −53.3696 −1.89402
\(795\) 0 0
\(796\) 0 0
\(797\) −42.6397 + 24.6181i −1.51038 + 0.872016i −0.510449 + 0.859908i \(0.670521\pi\)
−0.999927 + 0.0121083i \(0.996146\pi\)
\(798\) 8.78561 + 8.78561i 0.311007 + 0.311007i
\(799\) 0 0
\(800\) 11.3924 + 3.05258i 0.402782 + 0.107925i
\(801\) 0 0
\(802\) 11.2250 + 19.4422i 0.396368 + 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 24.5126i 0.863955i
\(806\) 0 0
\(807\) −43.3974 −1.52766
\(808\) 36.0442 9.65803i 1.26803 0.339768i
\(809\) −5.83746 + 10.1108i −0.205234 + 0.355476i −0.950207 0.311619i \(-0.899129\pi\)
0.744973 + 0.667094i \(0.232462\pi\)
\(810\) 14.6103 8.43525i 0.513353 0.296384i
\(811\) −14.2843 14.2843i −0.501591 0.501591i 0.410341 0.911932i \(-0.365410\pi\)
−0.911932 + 0.410341i \(0.865410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.99350 9.24630i 0.174487 0.323092i
\(820\) 0 0
\(821\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(822\) 13.1653 22.8030i 0.459194 0.795347i
\(823\) −48.5187 + 28.0123i −1.69126 + 0.976448i −0.737752 + 0.675072i \(0.764112\pi\)
−0.953506 + 0.301376i \(0.902554\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 12.1729 + 3.26173i 0.423551 + 0.113490i
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 3.83436 + 6.64130i 0.133253 + 0.230801i
\(829\) −40.2532 23.2402i −1.39805 0.807166i −0.403864 0.914819i \(-0.632333\pi\)
−0.994189 + 0.107653i \(0.965667\pi\)
\(830\) −15.8298 59.0775i −0.549459 2.05061i
\(831\) 0 0
\(832\) 19.8082 20.9675i 0.686725 0.726917i
\(833\) 0 0
\(834\) 37.6614 10.0913i 1.30411 0.349434i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −1.08639 + 4.05448i −0.0375288 + 0.140060i
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) 19.4063 19.4063i 0.669580 0.669580i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) −3.79081 14.1475i −0.130563 0.487266i
\(844\) 0 0
\(845\) −23.0382 + 25.8186i −0.792537 + 0.888187i
\(846\) 0 0
\(847\) 28.1116 7.53248i 0.965926 0.258819i
\(848\) 0 0
\(849\) −36.5768 + 21.1176i −1.25531 + 0.724755i
\(850\) 0 0
\(851\) 0 0
\(852\) 44.1217 + 11.8224i 1.51158 + 0.405028i
\(853\) 0.102517 0.102517i 0.00351011 0.00351011i −0.705350 0.708860i \(-0.749210\pi\)
0.708860 + 0.705350i \(0.249210\pi\)
\(854\) 22.5513 + 39.0600i 0.771690 + 1.33661i
\(855\) −6.11996 3.53336i −0.209298 0.120838i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0.440260 0.0150215 0.00751074 0.999972i \(-0.497609\pi\)
0.00751074 + 0.999972i \(0.497609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 49.9701 28.8502i 1.70199 0.982643i
\(863\) −29.0285 29.0285i −0.988143 0.988143i 0.0117879 0.999931i \(-0.496248\pi\)
−0.999931 + 0.0117879i \(0.996248\pi\)
\(864\) −8.27406 + 30.8792i −0.281489 + 1.05053i
\(865\) −57.5015 15.4075i −1.95511 0.523870i
\(866\) 0 0
\(867\) 11.7115 + 20.2850i 0.397744 + 0.688914i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −5.93178 + 10.2741i −0.200645 + 0.347528i
\(875\) −17.7784 + 10.2644i −0.601021 + 0.347000i
\(876\) 0 0
\(877\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(878\) 0 0
\(879\) −24.6154 + 24.6154i −0.830256 + 0.830256i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 2.82248 + 10.5336i 0.0950377 + 0.354686i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 12.3524 0.415221
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) −17.7596 17.7596i −0.595639 0.595639i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −16.8230 3.99893i −0.561702 0.133520i
\(898\) −51.8704 −1.73094
\(899\) 0 0
\(900\) −2.29677 + 3.97812i −0.0765590 + 0.132604i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −57.9877 15.5378i −1.92864 0.516778i
\(905\) 48.7293 48.7293i 1.61982 1.61982i
\(906\) −18.6054 32.2256i −0.618125 1.07062i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 14.4852 + 54.0597i 0.480710 + 1.79403i
\(909\) 14.5334i 0.482043i
\(910\) −1.02055 35.8946i −0.0338308 1.18989i
\(911\) −52.1724 −1.72855 −0.864274 0.503022i \(-0.832222\pi\)
−0.864274 + 0.503022i \(0.832222\pi\)
\(912\) −12.8300 + 3.43779i −0.424844 + 0.113837i
\(913\) 0 0
\(914\) −48.2404 + 27.8516i −1.59565 + 0.921249i
\(915\) 31.2598 + 31.2598i 1.03342 + 1.03342i
\(916\) 15.5734 58.1208i 0.514561 1.92037i
\(917\) 17.6306 + 4.72411i 0.582215 + 0.156004i
\(918\) 0 0
\(919\) 30.3077 + 52.4946i 0.999760 + 1.73164i 0.518840 + 0.854872i \(0.326364\pi\)
0.480921 + 0.876764i \(0.340303\pi\)
\(920\) 22.6942 + 13.1025i 0.748207 + 0.431978i
\(921\) −10.7065 39.9572i −0.352791 1.31663i
\(922\) 42.3470i 1.39462i
\(923\) 50.8888 31.3420i 1.67503 1.03164i
\(924\) 0 0
\(925\) 0 0
\(926\) −28.2019 + 48.8470i −0.926770 + 1.60521i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(930\) 0 0
\(931\) −11.9292 + 11.9292i −0.390964 + 0.390964i
\(932\) 20.1628 + 34.9230i 0.660454 + 1.14394i
\(933\) 0 0
\(934\) 15.6622 + 58.4520i 0.512482 + 1.91261i
\(935\) 0 0
\(936\) 5.89127 + 9.56543i 0.192562 + 0.312656i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −18.7454 18.7454i −0.611083 0.611083i 0.332145 0.943228i \(-0.392228\pi\)
−0.943228 + 0.332145i \(0.892228\pi\)
\(942\) −4.93465 + 18.4164i −0.160780 + 0.600038i
\(943\) 0 0
\(944\) −9.52649 + 9.52649i −0.310061 + 0.310061i
\(945\) 19.8992 + 34.4664i 0.647320 + 1.12119i
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 43.3786i 1.40887i
\(949\) 0 0
\(950\) −7.10623 −0.230557
\(951\) 0 0
\(952\) 0 0
\(953\) 45.8326 26.4615i 1.48466 0.857171i 0.484817 0.874616i \(-0.338886\pi\)
0.999848 + 0.0174443i \(0.00555298\pi\)
\(954\) 0 0
\(955\) −3.28958 + 12.2769i −0.106448 + 0.397271i
\(956\) 59.7224 + 16.0026i 1.93156 + 0.517560i
\(957\) 0 0
\(958\) 0 0
\(959\) 30.9622 + 17.8760i 0.999822 + 0.577247i
\(960\) 7.59363 + 28.3398i 0.245083 + 0.914664i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.82595 13.5549i 0.251926 0.436349i
\(966\) 15.5404 8.97223i 0.500003 0.288677i
\(967\) 17.7750 + 17.7750i 0.571606 + 0.571606i 0.932577 0.360971i \(-0.117555\pi\)
−0.360971 + 0.932577i \(0.617555\pi\)
\(968\) −8.05256 + 30.0526i −0.258819 + 0.965926i
\(969\) 0 0
\(970\) 0 0
\(971\) 18.9155 + 32.7626i 0.607027 + 1.05140i 0.991728 + 0.128360i \(0.0409713\pi\)
−0.384701 + 0.923041i \(0.625695\pi\)
\(972\) −18.6695 10.7788i −0.598824 0.345731i
\(973\) 13.7021 + 51.1370i 0.439270 + 1.63938i
\(974\) 60.1262i 1.92657i
\(975\) −2.96402 9.92453i −0.0949247 0.317839i
\(976\) −48.2167 −1.54338
\(977\) −51.3562 + 13.7609i −1.64303 + 0.440249i −0.957650 0.287936i \(-0.907031\pi\)
−0.685381 + 0.728184i \(0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 26.3501 + 26.3501i 0.841722 + 0.841722i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −8.25834 + 15.2917i −0.262733 + 0.486494i
\(989\) 0 0
\(990\) 0 0
\(991\) 24.4777 42.3965i 0.777558 1.34677i −0.155787 0.987791i \(-0.549791\pi\)
0.933345 0.358980i \(-0.116875\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −16.0525 + 59.9089i −0.509156 + 1.90020i
\(995\) 0 0
\(996\) 31.6595 31.6595i 1.00317 1.00317i
\(997\) 31.5072 + 54.5720i 0.997843 + 1.72831i 0.555777 + 0.831331i \(0.312421\pi\)
0.442065 + 0.896983i \(0.354246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.b.293.2 16
7.6 odd 2 inner 728.2.ds.b.293.3 yes 16
8.5 even 2 inner 728.2.ds.b.293.3 yes 16
13.2 odd 12 inner 728.2.ds.b.405.2 yes 16
56.13 odd 2 CM 728.2.ds.b.293.2 16
91.41 even 12 inner 728.2.ds.b.405.3 yes 16
104.93 odd 12 inner 728.2.ds.b.405.3 yes 16
728.405 even 12 inner 728.2.ds.b.405.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.b.293.2 16 1.1 even 1 trivial
728.2.ds.b.293.2 16 56.13 odd 2 CM
728.2.ds.b.293.3 yes 16 7.6 odd 2 inner
728.2.ds.b.293.3 yes 16 8.5 even 2 inner
728.2.ds.b.405.2 yes 16 13.2 odd 12 inner
728.2.ds.b.405.2 yes 16 728.405 even 12 inner
728.2.ds.b.405.3 yes 16 91.41 even 12 inner
728.2.ds.b.405.3 yes 16 104.93 odd 12 inner