Properties

Label 728.2.ds.b.405.3
Level $728$
Weight $2$
Character 728.405
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(293,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 13 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 405.3
Root \(-1.58915 + 0.688914i\) of defining polynomial
Character \(\chi\) \(=\) 728.405
Dual form 728.2.ds.b.293.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(0.688914 + 1.19323i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.88215 + 1.88215i) q^{5} +(0.504320 + 1.88215i) q^{6} +(-2.55560 + 0.684771i) q^{7} +(2.00000 + 2.00000i) q^{8} +(0.550796 - 0.954007i) q^{9} +(-3.25997 + 1.88215i) q^{10} +2.75565i q^{12} +(-2.62094 + 2.47602i) q^{13} -3.74166 q^{14} +(-3.54248 - 0.949204i) q^{15} +(2.00000 + 3.46410i) q^{16} +(1.10159 - 1.10159i) q^{18} +(0.623770 + 2.32794i) q^{19} +(-5.14212 + 1.37783i) q^{20} +(-2.57768 - 2.57768i) q^{21} +(3.01441 - 1.74037i) q^{23} +(-1.00864 + 3.76429i) q^{24} -2.08495i q^{25} +(-4.48655 + 2.42298i) q^{26} +5.65129 q^{27} +(-5.11120 - 1.36954i) q^{28} +(-4.49168 - 2.59327i) q^{30} +(1.46410 + 5.46410i) q^{32} +(3.52117 - 6.09885i) q^{35} +(1.90801 - 1.10159i) q^{36} +3.40834i q^{38} +(-4.76007 - 1.42162i) q^{39} -7.52859 q^{40} +(-2.57768 - 4.46467i) q^{42} +(0.758902 + 2.83226i) q^{45} +(4.75478 - 1.27404i) q^{46} +(-2.75565 + 4.77293i) q^{48} +(6.06218 - 3.50000i) q^{49} +(0.763146 - 2.84810i) q^{50} +(-7.01562 + 1.66766i) q^{52} +(7.71980 + 2.06851i) q^{54} +(-6.48074 - 3.74166i) q^{56} +(-2.34805 + 2.34805i) q^{57} +(3.25336 - 0.871734i) q^{59} +(-5.18655 - 5.18655i) q^{60} +(6.02709 - 10.4392i) q^{61} +(-0.754338 + 2.81523i) q^{63} +8.00000i q^{64} +(0.272752 - 9.59323i) q^{65} +(4.15334 + 2.39793i) q^{69} +(7.04235 - 7.04235i) q^{70} +(4.29022 + 16.0113i) q^{71} +(3.00961 - 0.806422i) q^{72} +(2.48784 - 1.43635i) q^{75} +(-1.24754 + 4.65588i) q^{76} +(-5.98203 - 3.68428i) q^{78} +15.7417 q^{79} +(-10.2842 - 2.75565i) q^{80} +(2.24086 + 3.88128i) q^{81} +(11.4889 - 11.4889i) q^{83} +(-1.88699 - 7.04235i) q^{84} +4.14672i q^{90} +(5.00256 - 8.12246i) q^{91} +6.96148 q^{92} +(-5.55555 - 3.20750i) q^{95} +(-5.51131 + 5.51131i) q^{96} +(9.56218 - 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{2} + 32 q^{8} - 16 q^{9} - 56 q^{15} + 32 q^{16} - 32 q^{18} - 96 q^{30} - 32 q^{32} + 48 q^{36} + 72 q^{39} - 24 q^{46} + 56 q^{50} + 88 q^{57} - 32 q^{60} - 112 q^{63} + 16 q^{65} - 16 q^{71}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.965926 + 0.258819i
\(3\) 0.688914 + 1.19323i 0.397744 + 0.688914i 0.993447 0.114291i \(-0.0364597\pi\)
−0.595703 + 0.803205i \(0.703126\pi\)
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) −1.88215 + 1.88215i −0.841722 + 0.841722i −0.989083 0.147361i \(-0.952922\pi\)
0.147361 + 0.989083i \(0.452922\pi\)
\(6\) 0.504320 + 1.88215i 0.205888 + 0.768383i
\(7\) −2.55560 + 0.684771i −0.965926 + 0.258819i
\(8\) 2.00000 + 2.00000i 0.707107 + 0.707107i
\(9\) 0.550796 0.954007i 0.183599 0.318002i
\(10\) −3.25997 + 1.88215i −1.03089 + 0.595187i
\(11\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(12\) 2.75565i 0.795489i
\(13\) −2.62094 + 2.47602i −0.726917 + 0.686725i
\(14\) −3.74166 −1.00000
\(15\) −3.54248 0.949204i −0.914664 0.245083i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 1.10159 1.10159i 0.259648 0.259648i
\(19\) 0.623770 + 2.32794i 0.143103 + 0.534066i 0.999833 + 0.0183009i \(0.00582570\pi\)
−0.856730 + 0.515765i \(0.827508\pi\)
\(20\) −5.14212 + 1.37783i −1.14981 + 0.308092i
\(21\) −2.57768 2.57768i −0.562496 0.562496i
\(22\) 0 0
\(23\) 3.01441 1.74037i 0.628548 0.362892i −0.151642 0.988436i \(-0.548456\pi\)
0.780189 + 0.625543i \(0.215123\pi\)
\(24\) −1.00864 + 3.76429i −0.205888 + 0.768383i
\(25\) 2.08495i 0.416991i
\(26\) −4.48655 + 2.42298i −0.879886 + 0.475185i
\(27\) 5.65129 1.08759
\(28\) −5.11120 1.36954i −0.965926 0.258819i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) −4.49168 2.59327i −0.820065 0.473465i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) 1.46410 + 5.46410i 0.258819 + 0.965926i
\(33\) 0 0
\(34\) 0 0
\(35\) 3.52117 6.09885i 0.595187 1.03089i
\(36\) 1.90801 1.10159i 0.318002 0.183599i
\(37\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(38\) 3.40834i 0.552906i
\(39\) −4.76007 1.42162i −0.762221 0.227642i
\(40\) −7.52859 −1.19037
\(41\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(42\) −2.57768 4.46467i −0.397744 0.688914i
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) 0.758902 + 2.83226i 0.113130 + 0.422209i
\(46\) 4.75478 1.27404i 0.701054 0.187847i
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −2.75565 + 4.77293i −0.397744 + 0.688914i
\(49\) 6.06218 3.50000i 0.866025 0.500000i
\(50\) 0.763146 2.84810i 0.107925 0.402782i
\(51\) 0 0
\(52\) −7.01562 + 1.66766i −0.972891 + 0.231263i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 7.71980 + 2.06851i 1.05053 + 0.281489i
\(55\) 0 0
\(56\) −6.48074 3.74166i −0.866025 0.500000i
\(57\) −2.34805 + 2.34805i −0.311007 + 0.311007i
\(58\) 0 0
\(59\) 3.25336 0.871734i 0.423551 0.113490i −0.0407464 0.999170i \(-0.512974\pi\)
0.464297 + 0.885679i \(0.346307\pi\)
\(60\) −5.18655 5.18655i −0.669580 0.669580i
\(61\) 6.02709 10.4392i 0.771690 1.33661i −0.164946 0.986303i \(-0.552745\pi\)
0.936636 0.350304i \(-0.113922\pi\)
\(62\) 0 0
\(63\) −0.754338 + 2.81523i −0.0950377 + 0.354686i
\(64\) 8.00000i 1.00000i
\(65\) 0.272752 9.59323i 0.0338308 1.18989i
\(66\) 0 0
\(67\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(68\) 0 0
\(69\) 4.15334 + 2.39793i 0.500003 + 0.288677i
\(70\) 7.04235 7.04235i 0.841722 0.841722i
\(71\) 4.29022 + 16.0113i 0.509156 + 1.90020i 0.428723 + 0.903436i \(0.358964\pi\)
0.0804327 + 0.996760i \(0.474370\pi\)
\(72\) 3.00961 0.806422i 0.354686 0.0950377i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 2.48784 1.43635i 0.287271 0.165856i
\(76\) −1.24754 + 4.65588i −0.143103 + 0.534066i
\(77\) 0 0
\(78\) −5.98203 3.68428i −0.677331 0.417163i
\(79\) 15.7417 1.77107 0.885537 0.464568i \(-0.153790\pi\)
0.885537 + 0.464568i \(0.153790\pi\)
\(80\) −10.2842 2.75565i −1.14981 0.308092i
\(81\) 2.24086 + 3.88128i 0.248984 + 0.431253i
\(82\) 0 0
\(83\) 11.4889 11.4889i 1.26107 1.26107i 0.310502 0.950573i \(-0.399503\pi\)
0.950573 0.310502i \(-0.100497\pi\)
\(84\) −1.88699 7.04235i −0.205888 0.768383i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(90\) 4.14672i 0.437102i
\(91\) 5.00256 8.12246i 0.524411 0.851465i
\(92\) 6.96148 0.725785
\(93\) 0 0
\(94\) 0 0
\(95\) −5.55555 3.20750i −0.569988 0.329083i
\(96\) −5.51131 + 5.51131i −0.562496 + 0.562496i
\(97\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(98\) 9.56218 2.56218i 0.965926 0.258819i
\(99\) 0 0
\(100\) 2.08495 3.61125i 0.208495 0.361125i
\(101\) −11.4256 + 6.59655i −1.13689 + 0.656382i −0.945658 0.325164i \(-0.894581\pi\)
−0.191229 + 0.981546i \(0.561247\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −10.1939 0.289831i −0.999596 0.0284203i
\(105\) 9.70314 0.946929
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 9.78831 + 5.65129i 0.941881 + 0.543795i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.48331 7.48331i −0.707107 0.707107i
\(113\) −10.6125 + 18.3814i −0.998339 + 1.72917i −0.449271 + 0.893396i \(0.648316\pi\)
−0.549068 + 0.835778i \(0.685017\pi\)
\(114\) −4.06695 + 2.34805i −0.380905 + 0.219915i
\(115\) −2.39793 + 8.94919i −0.223608 + 0.834517i
\(116\) 0 0
\(117\) 0.918540 + 3.86418i 0.0849190 + 0.357243i
\(118\) 4.76324 0.438492
\(119\) 0 0
\(120\) −5.18655 8.98336i −0.473465 0.820065i
\(121\) −9.52628 5.50000i −0.866025 0.500000i
\(122\) 12.0542 12.0542i 1.09133 1.09133i
\(123\) 0 0
\(124\) 0 0
\(125\) −5.48655 5.48655i −0.490732 0.490732i
\(126\) −2.06089 + 3.56957i −0.183599 + 0.318002i
\(127\) 8.22111 4.74646i 0.729506 0.421180i −0.0887357 0.996055i \(-0.528283\pi\)
0.818241 + 0.574875i \(0.194949\pi\)
\(128\) −2.92820 + 10.9282i −0.258819 + 0.965926i
\(129\) 0 0
\(130\) 3.88395 13.0048i 0.340645 1.14059i
\(131\) 6.89883 0.602753 0.301377 0.953505i \(-0.402554\pi\)
0.301377 + 0.953505i \(0.402554\pi\)
\(132\) 0 0
\(133\) −3.18821 5.52215i −0.276453 0.478831i
\(134\) 0 0
\(135\) −10.6365 + 10.6365i −0.915448 + 0.915448i
\(136\) 0 0
\(137\) −13.0526 + 3.49743i −1.11516 + 0.298805i −0.768922 0.639343i \(-0.779207\pi\)
−0.346235 + 0.938148i \(0.612540\pi\)
\(138\) 4.79586 + 4.79586i 0.408251 + 0.408251i
\(139\) 10.0049 17.3290i 0.848604 1.46983i −0.0338497 0.999427i \(-0.510777\pi\)
0.882454 0.470399i \(-0.155890\pi\)
\(140\) 12.1977 7.04235i 1.03089 0.595187i
\(141\) 0 0
\(142\) 23.4422i 1.96723i
\(143\) 0 0
\(144\) 4.40637 0.367197
\(145\) 0 0
\(146\) 0 0
\(147\) 8.35263 + 4.82239i 0.688914 + 0.397744i
\(148\) 0 0
\(149\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(150\) 3.92419 1.05148i 0.320409 0.0858532i
\(151\) −13.5035 13.5035i −1.09890 1.09890i −0.994540 0.104357i \(-0.966722\pi\)
−0.104357 0.994540i \(-0.533278\pi\)
\(152\) −3.40834 + 5.90342i −0.276453 + 0.478831i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −6.82306 7.22240i −0.546282 0.578255i
\(157\) −9.78477 −0.780909 −0.390455 0.920622i \(-0.627682\pi\)
−0.390455 + 0.920622i \(0.627682\pi\)
\(158\) 21.5035 + 5.76185i 1.71073 + 0.458388i
\(159\) 0 0
\(160\) −13.0399 7.52859i −1.03089 0.595187i
\(161\) −6.51187 + 6.51187i −0.513207 + 0.513207i
\(162\) 1.64042 + 6.12214i 0.128884 + 0.481001i
\(163\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 19.8994 11.4889i 1.54449 0.891715i
\(167\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) 10.3107i 0.795489i
\(169\) 0.738629 12.9790i 0.0568176 0.998385i
\(170\) 0 0
\(171\) 2.56444 + 0.687140i 0.196108 + 0.0525469i
\(172\) 0 0
\(173\) 19.3686 + 11.1824i 1.47256 + 0.850186i 0.999524 0.0308546i \(-0.00982288\pi\)
0.473041 + 0.881040i \(0.343156\pi\)
\(174\) 0 0
\(175\) 1.42772 + 5.32831i 0.107925 + 0.402782i
\(176\) 0 0
\(177\) 3.28146 + 3.28146i 0.246650 + 0.246650i
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) −1.51780 + 5.66452i −0.113130 + 0.422209i
\(181\) 25.8903i 1.92441i −0.272326 0.962205i \(-0.587793\pi\)
0.272326 0.962205i \(-0.412207\pi\)
\(182\) 9.80665 9.26443i 0.726917 0.686725i
\(183\) 16.6086 1.22774
\(184\) 9.50956 + 2.54808i 0.701054 + 0.187847i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −14.4424 + 3.86984i −1.05053 + 0.281489i
\(190\) −6.41500 6.41500i −0.465393 0.465393i
\(191\) 2.38751 4.13530i 0.172754 0.299219i −0.766627 0.642092i \(-0.778067\pi\)
0.939382 + 0.342873i \(0.111400\pi\)
\(192\) −9.54587 + 5.51131i −0.688914 + 0.397744i
\(193\) −1.52193 + 5.67992i −0.109551 + 0.408850i −0.998822 0.0485316i \(-0.984546\pi\)
0.889271 + 0.457381i \(0.151213\pi\)
\(194\) 0 0
\(195\) 11.6349 6.28345i 0.833190 0.449967i
\(196\) 14.0000 1.00000
\(197\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 4.16991 4.16991i 0.294857 0.294857i
\(201\) 0 0
\(202\) −18.0221 + 4.82901i −1.26803 + 0.339768i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3.83436i 0.266506i
\(208\) −13.8191 4.12715i −0.958180 0.286166i
\(209\) 0 0
\(210\) 13.2547 + 3.55160i 0.914664 + 0.245083i
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) −16.1497 + 16.1497i −1.10656 + 1.10656i
\(214\) 0 0
\(215\) 0 0
\(216\) 11.3026 + 11.3026i 0.769043 + 0.769043i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(224\) −7.48331 12.9615i −0.500000 0.866025i
\(225\) −1.98906 1.14838i −0.132604 0.0765590i
\(226\) −21.2250 + 21.2250i −1.41186 + 1.41186i
\(227\) 7.24262 + 27.0298i 0.480710 + 1.79403i 0.598647 + 0.801013i \(0.295705\pi\)
−0.117938 + 0.993021i \(0.537628\pi\)
\(228\) −6.41500 + 1.71889i −0.424844 + 0.113837i
\(229\) −21.2737 21.2737i −1.40581 1.40581i −0.779893 0.625913i \(-0.784726\pi\)
−0.625913 0.779893i \(-0.715274\pi\)
\(230\) −6.55127 + 11.3471i −0.431978 + 0.748207i
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1628i 1.32091i −0.750867 0.660454i \(-0.770364\pi\)
0.750867 0.660454i \(-0.229636\pi\)
\(234\) −0.159638 + 5.61477i −0.0104359 + 0.367049i
\(235\) 0 0
\(236\) 6.50671 + 1.74347i 0.423551 + 0.113490i
\(237\) 10.8446 + 18.7835i 0.704435 + 1.22012i
\(238\) 0 0
\(239\) 21.8599 21.8599i 1.41400 1.41400i 0.694737 0.719264i \(-0.255521\pi\)
0.719264 0.694737i \(-0.244479\pi\)
\(240\) −3.79682 14.1699i −0.245083 0.914664i
\(241\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 5.38941 9.33474i 0.345731 0.598824i
\(244\) 20.8785 12.0542i 1.33661 0.771690i
\(245\) −4.82239 + 17.9974i −0.308092 + 1.14981i
\(246\) 0 0
\(247\) −7.39890 4.55692i −0.470780 0.289950i
\(248\) 0 0
\(249\) 21.6239 + 5.79410i 1.37036 + 0.367186i
\(250\) −5.48655 9.50298i −0.347000 0.601021i
\(251\) −17.4973 10.1020i −1.10442 0.637636i −0.167039 0.985950i \(-0.553421\pi\)
−0.937378 + 0.348315i \(0.886754\pi\)
\(252\) −4.12178 + 4.12178i −0.259648 + 0.259648i
\(253\) 0 0
\(254\) 12.9676 3.47465i 0.813658 0.218019i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.0656 16.3432i 0.624245 1.01356i
\(261\) 0 0
\(262\) 9.42397 + 2.52515i 0.582215 + 0.156004i
\(263\) −11.6059 20.1021i −0.715653 1.23955i −0.962707 0.270546i \(-0.912796\pi\)
0.247054 0.969002i \(-0.420537\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −2.33393 8.71036i −0.143103 0.534066i
\(267\) 0 0
\(268\) 0 0
\(269\) −15.7485 + 27.2772i −0.960202 + 1.66312i −0.238215 + 0.971212i \(0.576562\pi\)
−0.721987 + 0.691907i \(0.756771\pi\)
\(270\) −18.4230 + 10.6365i −1.12119 + 0.647320i
\(271\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(272\) 0 0
\(273\) 13.1383 + 0.373546i 0.795168 + 0.0226080i
\(274\) −19.1103 −1.15449
\(275\) 0 0
\(276\) 4.79586 + 8.30667i 0.288677 + 0.500003i
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 20.0098 20.0098i 1.20011 1.20011i
\(279\) 0 0
\(280\) 19.2401 5.15536i 1.14981 0.308092i
\(281\) −7.51669 7.51669i −0.448408 0.448408i 0.446417 0.894825i \(-0.352700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) −26.5467 + 15.3268i −1.57804 + 0.911082i −0.582907 + 0.812539i \(0.698085\pi\)
−0.995133 + 0.0985428i \(0.968582\pi\)
\(284\) −8.58045 + 32.0227i −0.509156 + 1.90020i
\(285\) 8.83876i 0.523563i
\(286\) 0 0
\(287\) 0 0
\(288\) 6.01921 + 1.61284i 0.354686 + 0.0950377i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.4045 + 6.53918i −1.42573 + 0.382023i −0.887512 0.460784i \(-0.847568\pi\)
−0.538216 + 0.842807i \(0.680902\pi\)
\(294\) 9.64479 + 9.64479i 0.562496 + 0.562496i
\(295\) −4.48256 + 7.76402i −0.260985 + 0.452039i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.59139 + 12.0251i −0.207695 + 0.695432i
\(300\) 5.74541 0.331711
\(301\) 0 0
\(302\) −13.5035 23.3887i −0.777037 1.34587i
\(303\) −15.7425 9.08891i −0.904380 0.522144i
\(304\) −6.81668 + 6.81668i −0.390964 + 0.390964i
\(305\) 8.30429 + 30.9920i 0.475502 + 1.77460i
\(306\) 0 0
\(307\) 21.2296 + 21.2296i 1.21164 + 1.21164i 0.970489 + 0.241146i \(0.0775234\pi\)
0.241146 + 0.970489i \(0.422477\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −6.67689 12.3634i −0.378005 0.699939i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −13.3662 3.58147i −0.754301 0.202114i
\(315\) −3.87890 6.71845i −0.218551 0.378542i
\(316\) 27.2654 + 15.7417i 1.53380 + 0.885537i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −15.0572 15.0572i −0.841722 0.841722i
\(321\) 0 0
\(322\) −11.2789 + 6.51187i −0.628548 + 0.362892i
\(323\) 0 0
\(324\) 8.96343i 0.497969i
\(325\) 5.16239 + 5.46453i 0.286358 + 0.303118i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(332\) 31.3884 8.41049i 1.72266 0.461585i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 3.77398 14.0847i 0.205888 0.768383i
\(337\) 0.708287i 0.0385828i −0.999814 0.0192914i \(-0.993859\pi\)
0.999814 0.0192914i \(-0.00614103\pi\)
\(338\) 5.75963 17.4593i 0.313283 0.949660i
\(339\) −29.2443 −1.58833
\(340\) 0 0
\(341\) 0 0
\(342\) 3.25158 + 1.87730i 0.175825 + 0.101513i
\(343\) −13.0958 + 13.0958i −0.707107 + 0.707107i
\(344\) 0 0
\(345\) −12.3304 + 3.30393i −0.663849 + 0.177878i
\(346\) 22.3649 + 22.3649i 1.20234 + 1.20234i
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 5.19288 19.3801i 0.277969 1.03739i −0.675857 0.737032i \(-0.736226\pi\)
0.953826 0.300360i \(-0.0971069\pi\)
\(350\) 7.80118i 0.416991i
\(351\) −14.8117 + 13.9927i −0.790588 + 0.746875i
\(352\) 0 0
\(353\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(354\) 3.28146 + 5.68366i 0.174408 + 0.302083i
\(355\) −38.2105 22.0609i −2.02800 1.17087i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.74963 2.74963i −0.145120 0.145120i 0.630814 0.775934i \(-0.282721\pi\)
−0.775934 + 0.630814i \(0.782721\pi\)
\(360\) −4.14672 + 7.18233i −0.218551 + 0.378542i
\(361\) 11.4243 6.59580i 0.601277 0.347147i
\(362\) 9.47650 35.3668i 0.498074 1.85884i
\(363\) 15.1561i 0.795489i
\(364\) 16.7871 9.06596i 0.879886 0.475185i
\(365\) 0 0
\(366\) 22.6877 + 6.07916i 1.18591 + 0.317763i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 12.0576 + 6.96148i 0.628548 + 0.362892i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 2.76697 10.3265i 0.142886 0.533257i
\(376\) 0 0
\(377\) 0 0
\(378\) −21.1452 −1.08759
\(379\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(380\) −6.41500 11.1111i −0.329083 0.569988i
\(381\) 11.3273 + 6.53980i 0.580314 + 0.335044i
\(382\) 4.77503 4.77503i 0.244312 0.244312i
\(383\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) −15.0572 + 4.03456i −0.768383 + 0.205888i
\(385\) 0 0
\(386\) −4.15799 + 7.20185i −0.211636 + 0.366565i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 18.1934 4.32469i 0.921259 0.218989i
\(391\) 0 0
\(392\) 19.1244 + 5.12436i 0.965926 + 0.258819i
\(393\) 4.75269 + 8.23191i 0.239742 + 0.415245i
\(394\) 0 0
\(395\) −29.6281 + 29.6281i −1.49075 + 1.49075i
\(396\) 0 0
\(397\) 36.4521 9.76731i 1.82948 0.490207i 0.831604 0.555369i \(-0.187423\pi\)
0.997875 + 0.0651619i \(0.0207564\pi\)
\(398\) 0 0
\(399\) 4.39281 7.60856i 0.219915 0.380905i
\(400\) 7.22249 4.16991i 0.361125 0.208495i
\(401\) 4.10862 15.3336i 0.205175 0.765723i −0.784221 0.620481i \(-0.786937\pi\)
0.989396 0.145242i \(-0.0463961\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −26.3862 −1.31276
\(405\) −11.5228 3.08752i −0.572571 0.153420i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(410\) 0 0
\(411\) −13.1653 13.1653i −0.649398 0.649398i
\(412\) 0 0
\(413\) −7.71734 + 4.45561i −0.379745 + 0.219246i
\(414\) 1.40347 5.23783i 0.0689769 0.257425i
\(415\) 43.2477i 2.12295i
\(416\) −17.3666 10.6959i −0.851465 0.524411i
\(417\) 27.5700 1.35011
\(418\) 0 0
\(419\) 1.48404 + 2.57043i 0.0725002 + 0.125574i 0.899996 0.435897i \(-0.143569\pi\)
−0.827496 + 0.561471i \(0.810236\pi\)
\(420\) 16.8063 + 9.70314i 0.820065 + 0.473465i
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −27.9720 + 16.1497i −1.35525 + 0.782454i
\(427\) −8.25435 + 30.8057i −0.399456 + 1.49079i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.4101 + 10.5599i 1.89832 + 0.508653i 0.997173 + 0.0751385i \(0.0239399\pi\)
0.901146 + 0.433515i \(0.142727\pi\)
\(432\) 11.3026 + 19.5766i 0.543795 + 0.941881i
\(433\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.93178 + 5.93178i 0.283755 + 0.283755i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 7.71115i 0.367197i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −5.47817 20.4448i −0.258819 0.965926i
\(449\) −35.4281 + 9.49293i −1.67196 + 0.447999i −0.965637 0.259895i \(-0.916312\pi\)
−0.706319 + 0.707894i \(0.749646\pi\)
\(450\) −2.29677 2.29677i −0.108271 0.108271i
\(451\) 0 0
\(452\) −36.7627 + 21.2250i −1.72917 + 0.998339i
\(453\) 6.81007 25.4155i 0.319965 1.19412i
\(454\) 39.5744i 1.85732i
\(455\) 5.87212 + 24.7032i 0.275289 + 1.15810i
\(456\) −9.39221 −0.439831
\(457\) −38.0460 10.1944i −1.77972 0.476873i −0.789184 0.614157i \(-0.789496\pi\)
−0.990532 + 0.137283i \(0.956163\pi\)
\(458\) −21.2737 36.8471i −0.994055 1.72175i
\(459\) 0 0
\(460\) −13.1025 + 13.1025i −0.610909 + 0.610909i
\(461\) 7.75003 + 28.9235i 0.360955 + 1.34710i 0.872822 + 0.488038i \(0.162287\pi\)
−0.511867 + 0.859064i \(0.671046\pi\)
\(462\) 0 0
\(463\) −28.2019 28.2019i −1.31065 1.31065i −0.920935 0.389716i \(-0.872573\pi\)
−0.389716 0.920935i \(-0.627427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 7.38009 27.5429i 0.341876 1.27590i
\(467\) 42.7899i 1.98008i 0.140792 + 0.990039i \(0.455035\pi\)
−0.140792 + 0.990039i \(0.544965\pi\)
\(468\) −2.27322 + 7.61149i −0.105080 + 0.351841i
\(469\) 0 0
\(470\) 0 0
\(471\) −6.74086 11.6755i −0.310602 0.537979i
\(472\) 8.25018 + 4.76324i 0.379745 + 0.219246i
\(473\) 0 0
\(474\) 7.93883 + 29.6281i 0.364642 + 1.36086i
\(475\) 4.85365 1.30053i 0.222701 0.0596725i
\(476\) 0 0
\(477\) 0 0
\(478\) 37.8625 21.8599i 1.73179 0.999850i
\(479\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(480\) 20.7462i 0.946929i
\(481\) 0 0
\(482\) 0 0
\(483\) −12.2563 3.28406i −0.557681 0.149430i
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) 10.7788 10.7788i 0.488937 0.488937i
\(487\) 11.0039 + 41.0670i 0.498633 + 1.86092i 0.508652 + 0.860972i \(0.330144\pi\)
−0.0100195 + 0.999950i \(0.503189\pi\)
\(488\) 32.9326 8.82427i 1.49079 0.399456i
\(489\) 0 0
\(490\) −13.1750 + 22.8198i −0.595187 + 1.03089i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −8.43913 8.93305i −0.379694 0.401917i
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9282 37.9807i −0.983614 1.70367i
\(498\) 27.4180 + 15.8298i 1.22863 + 0.709349i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) −4.01643 14.9895i −0.179620 0.670352i
\(501\) 0 0
\(502\) −20.2041 20.2041i −0.901753 0.901753i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) −7.13914 + 4.12178i −0.318002 + 0.183599i
\(505\) 9.08891 33.9203i 0.404451 1.50943i
\(506\) 0 0
\(507\) 15.9958 8.06005i 0.710400 0.357959i
\(508\) 18.9858 0.842361
\(509\) 43.4962 + 11.6548i 1.92793 + 0.516588i 0.980443 + 0.196805i \(0.0630567\pi\)
0.947491 + 0.319783i \(0.103610\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −16.0000 + 16.0000i −0.707107 + 0.707107i
\(513\) 3.52510 + 13.1559i 0.155637 + 0.580845i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 30.8150i 1.35263i
\(520\) 19.7320 18.6409i 0.865304 0.817460i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.70594 + 2.95478i 0.0745957 + 0.129204i 0.900910 0.434005i \(-0.142900\pi\)
−0.826315 + 0.563209i \(0.809567\pi\)
\(524\) 11.9491 + 6.89883i 0.522000 + 0.301377i
\(525\) −5.37434 + 5.37434i −0.234555 + 0.234555i
\(526\) −8.49614 31.7080i −0.370449 1.38254i
\(527\) 0 0
\(528\) 0 0
\(529\) −5.44222 + 9.42621i −0.236618 + 0.409835i
\(530\) 0 0
\(531\) 0.960296 3.58387i 0.0416733 0.155527i
\(532\) 12.7528i 0.552906i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −31.4970 + 31.4970i −1.35793 + 1.35793i
\(539\) 0 0
\(540\) −29.0596 + 7.78649i −1.25053 + 0.335077i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) 30.8932 17.8362i 1.32575 0.765423i
\(544\) 0 0
\(545\) 0 0
\(546\) 17.8106 + 5.31923i 0.762221 + 0.227642i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −26.1051 6.99485i −1.11516 0.298805i
\(549\) −6.63940 11.4998i −0.283363 0.490798i
\(550\) 0 0
\(551\) 0 0
\(552\) 3.51081 + 13.1025i 0.149430 + 0.557681i
\(553\) −40.2294 + 10.7794i −1.71073 + 0.458388i
\(554\) 0 0
\(555\) 0 0
\(556\) 34.6580 20.0098i 1.46983 0.848604i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 28.1694 1.19037
\(561\) 0 0
\(562\) −7.51669 13.0193i −0.317072 0.549185i
\(563\) −40.1801 23.1980i −1.69339 0.977679i −0.951746 0.306886i \(-0.900713\pi\)
−0.741644 0.670794i \(-0.765954\pi\)
\(564\) 0 0
\(565\) −14.6222 54.5707i −0.615159 2.29581i
\(566\) −41.8735 + 11.2200i −1.76007 + 0.471611i
\(567\) −8.38452 8.38452i −0.352117 0.352117i
\(568\) −23.4422 + 40.6031i −0.983614 + 1.70367i
\(569\) 39.2039 22.6344i 1.64351 0.948882i 0.663941 0.747785i \(-0.268883\pi\)
0.979571 0.201097i \(-0.0644506\pi\)
\(570\) 3.23521 12.0740i 0.135508 0.505723i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 6.57916 0.274848
\(574\) 0 0
\(575\) −3.62859 6.28490i −0.151323 0.262099i
\(576\) 7.63206 + 4.40637i 0.318002 + 0.183599i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 6.22243 + 23.2224i 0.258819 + 0.965926i
\(579\) −7.82595 + 2.09696i −0.325235 + 0.0871466i
\(580\) 0 0
\(581\) −21.4938 + 37.2284i −0.891715 + 1.54449i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −9.00178 5.54412i −0.372178 0.229221i
\(586\) −35.7307 −1.47602
\(587\) 45.8628 + 12.2889i 1.89296 + 0.507218i 0.998152 + 0.0607706i \(0.0193558\pi\)
0.894810 + 0.446447i \(0.147311\pi\)
\(588\) 9.64479 + 16.7053i 0.397744 + 0.688914i
\(589\) 0 0
\(590\) −8.96512 + 8.96512i −0.369088 + 0.369088i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −9.30743 + 15.1121i −0.380609 + 0.617981i
\(599\) −1.39767 −0.0571073 −0.0285537 0.999592i \(-0.509090\pi\)
−0.0285537 + 0.999592i \(0.509090\pi\)
\(600\) 7.84838 + 2.10297i 0.320409 + 0.0858532i
\(601\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.88523 36.8922i −0.402224 1.50112i
\(605\) 28.2817 7.57805i 1.14981 0.308092i
\(606\) −18.1778 18.1778i −0.738424 0.738424i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −11.8068 + 6.81668i −0.478831 + 0.276453i
\(609\) 0 0
\(610\) 45.3755i 1.83720i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(614\) 21.2296 + 36.7707i 0.856755 + 1.48394i
\(615\) 0 0
\(616\) 0 0
\(617\) 9.33281 + 34.8305i 0.375725 + 1.40222i 0.852283 + 0.523081i \(0.175218\pi\)
−0.476558 + 0.879143i \(0.658116\pi\)
\(618\) 0 0
\(619\) 14.5577 + 14.5577i 0.585121 + 0.585121i 0.936306 0.351185i \(-0.114221\pi\)
−0.351185 + 0.936306i \(0.614221\pi\)
\(620\) 0 0
\(621\) 17.0353 9.83533i 0.683603 0.394678i
\(622\) 0 0
\(623\) 0 0
\(624\) −4.59549 19.3326i −0.183967 0.773924i
\(625\) 31.0777 1.24311
\(626\) 0 0
\(627\) 0 0
\(628\) −16.9477 9.78477i −0.676287 0.390455i
\(629\) 0 0
\(630\) −2.83955 10.5973i −0.113130 0.422209i
\(631\) 10.5031 2.81430i 0.418122 0.112035i −0.0436231 0.999048i \(-0.513890\pi\)
0.461745 + 0.887013i \(0.347223\pi\)
\(632\) 31.4833 + 31.4833i 1.25234 + 1.25234i
\(633\) 0 0
\(634\) 0 0
\(635\) −6.53980 + 24.4069i −0.259524 + 0.968557i
\(636\) 0 0
\(637\) −7.22251 + 24.1834i −0.286166 + 0.958180i
\(638\) 0 0
\(639\) 17.6380 + 4.72608i 0.697747 + 0.186961i
\(640\) −15.0572 26.0798i −0.595187 1.03089i
\(641\) −24.0569 13.8892i −0.950189 0.548592i −0.0570491 0.998371i \(-0.518169\pi\)
−0.893140 + 0.449780i \(0.851502\pi\)
\(642\) 0 0
\(643\) −12.9259 48.2402i −0.509748 1.90241i −0.422876 0.906187i \(-0.638980\pi\)
−0.0868719 0.996219i \(-0.527687\pi\)
\(644\) −17.7908 + 4.76702i −0.701054 + 0.187847i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) −3.28084 + 12.2443i −0.128884 + 0.481001i
\(649\) 0 0
\(650\) 5.05180 + 9.35426i 0.198148 + 0.366904i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) −12.9846 + 12.9846i −0.507350 + 0.507350i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 12.7932 47.7450i 0.497599 1.85706i −0.0173592 0.999849i \(-0.505526\pi\)
0.514958 0.857215i \(-0.327807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 45.9558 1.78343
\(665\) 16.3942 + 4.39281i 0.635739 + 0.170346i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 10.3107 17.8587i 0.397744 0.688914i
\(673\) 38.8844 22.4499i 1.49889 0.865382i 0.498886 0.866668i \(-0.333743\pi\)
0.999999 + 0.00128586i \(0.000409302\pi\)
\(674\) 0.259251 0.967538i 0.00998598 0.0372682i
\(675\) 11.7827i 0.453515i
\(676\) 14.2583 21.7417i 0.548398 0.836218i
\(677\) 49.5015 1.90250 0.951248 0.308427i \(-0.0998025\pi\)
0.951248 + 0.308427i \(0.0998025\pi\)
\(678\) −39.9485 10.7042i −1.53421 0.411091i
\(679\) 0 0
\(680\) 0 0
\(681\) −27.2634 + 27.2634i −1.04473 + 1.04473i
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 3.75460 + 3.75460i 0.143561 + 0.143561i
\(685\) 17.9842 31.1495i 0.687140 1.19016i
\(686\) −22.6826 + 13.0958i −0.866025 + 0.500000i
\(687\) 10.7287 40.0402i 0.409327 1.52763i
\(688\) 0 0
\(689\) 0 0
\(690\) −18.0530 −0.687267
\(691\) −50.7388 13.5954i −1.93020 0.517195i −0.975809 0.218625i \(-0.929843\pi\)
−0.954388 0.298570i \(-0.903490\pi\)
\(692\) 22.3649 + 38.7371i 0.850186 + 1.47256i
\(693\) 0 0
\(694\) 0 0
\(695\) 13.7850 + 51.4464i 0.522896 + 1.95147i
\(696\) 0 0
\(697\) 0 0
\(698\) 14.1872 24.5730i 0.536994 0.930101i
\(699\) 24.0589 13.8904i 0.909991 0.525384i
\(700\) −2.85543 + 10.6566i −0.107925 + 0.402782i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −25.3548 + 13.6929i −0.956955 + 0.516807i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.6820 24.6820i 0.928264 0.928264i
\(708\) 2.40220 + 8.96512i 0.0902801 + 0.336930i
\(709\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(710\) −44.1217 44.1217i −1.65586 1.65586i
\(711\) 8.67045 15.0177i 0.325167 0.563206i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 41.1436 + 11.0244i 1.53654 + 0.411713i
\(718\) −2.74963 4.76250i −0.102615 0.177735i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) −8.29344 + 8.29344i −0.309078 + 0.309078i
\(721\) 0 0
\(722\) 18.0201 4.82846i 0.670637 0.179697i
\(723\) 0 0
\(724\) 25.8903 44.8433i 0.962205 1.66659i
\(725\) 0 0
\(726\) 5.54752 20.7036i 0.205888 0.768383i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 26.2500 6.23981i 0.972891 0.231263i
\(729\) 28.2965 1.04802
\(730\) 0 0
\(731\) 0 0
\(732\) 28.7669 + 16.6086i 1.06326 + 0.613871i
\(733\) 36.9968 36.9968i 1.36651 1.36651i 0.501140 0.865366i \(-0.332914\pi\)
0.865366 0.501140i \(-0.167086\pi\)
\(734\) 0 0
\(735\) −24.7973 + 6.64443i −0.914664 + 0.245083i
\(736\) 13.9230 + 13.9230i 0.513207 + 0.513207i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(740\) 0 0
\(741\) 0.340270 11.9679i 0.0125001 0.439653i
\(742\) 0 0
\(743\) −31.7715 8.51314i −1.16558 0.312317i −0.376389 0.926462i \(-0.622834\pi\)
−0.789193 + 0.614145i \(0.789501\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.63246 17.2886i −0.169493 0.632556i
\(748\) 0 0
\(749\) 0 0
\(750\) 7.55951 13.0935i 0.276034 0.478105i
\(751\) 47.2211 27.2631i 1.72312 0.994845i 0.810860 0.585240i \(-0.199000\pi\)
0.912263 0.409605i \(-0.134333\pi\)
\(752\) 0 0
\(753\) 27.8377i 1.01446i
\(754\) 0 0
\(755\) 50.8310 1.84993
\(756\) −28.8848 7.73967i −1.05053 0.281489i
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −4.69611 17.5261i −0.170346 0.635739i
\(761\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(762\) 13.0796 + 13.0796i 0.473824 + 0.473824i
\(763\) 0 0
\(764\) 8.27059 4.77503i 0.299219 0.172754i
\(765\) 0 0
\(766\) 0 0
\(767\) −6.36841 + 10.3401i −0.229950 + 0.373361i
\(768\) −22.0452 −0.795489
\(769\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.31598 + 8.31598i −0.299299 + 0.299299i
\(773\) −9.19540 34.3177i −0.330736 1.23432i −0.908419 0.418061i \(-0.862710\pi\)
0.577683 0.816261i \(-0.303957\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 26.4356 + 0.751612i 0.946547 + 0.0269120i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 + 14.0000i 0.866025 + 0.500000i
\(785\) 18.4164 18.4164i 0.657308 0.657308i
\(786\) 3.47921 + 12.9846i 0.124099 + 0.463145i
\(787\) −1.13955 + 0.305342i −0.0406207 + 0.0108843i −0.279072 0.960270i \(-0.590027\pi\)
0.238451 + 0.971154i \(0.423360\pi\)
\(788\) 0 0
\(789\) 15.9910 27.6972i 0.569294 0.986046i
\(790\) −51.3174 + 29.6281i −1.82579 + 1.05412i
\(791\) 14.5342 54.2425i 0.516778 1.92864i
\(792\) 0 0
\(793\) 10.0511 + 42.2838i 0.356926 + 1.50154i
\(794\) 53.3696 1.89402
\(795\) 0 0
\(796\) 0 0
\(797\) 42.6397 + 24.6181i 1.51038 + 0.872016i 0.999927 + 0.0121083i \(0.00385430\pi\)
0.510449 + 0.859908i \(0.329479\pi\)
\(798\) 8.78561 8.78561i 0.311007 0.311007i
\(799\) 0 0
\(800\) 11.3924 3.05258i 0.402782 0.107925i
\(801\) 0 0
\(802\) 11.2250 19.4422i 0.396368 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 24.5126i 0.863955i
\(806\) 0 0
\(807\) −43.3974 −1.52766
\(808\) −36.0442 9.65803i −1.26803 0.339768i
\(809\) −5.83746 10.1108i −0.205234 0.355476i 0.744973 0.667094i \(-0.232462\pi\)
−0.950207 + 0.311619i \(0.899129\pi\)
\(810\) −14.6103 8.43525i −0.513353 0.296384i
\(811\) 14.2843 14.2843i 0.501591 0.501591i −0.410341 0.911932i \(-0.634590\pi\)
0.911932 + 0.410341i \(0.134590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −4.99350 9.24630i −0.174487 0.323092i
\(820\) 0 0
\(821\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(822\) −13.1653 22.8030i −0.459194 0.795347i
\(823\) −48.5187 28.0123i −1.69126 0.976448i −0.953506 0.301376i \(-0.902554\pi\)
−0.737752 0.675072i \(-0.764112\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −12.1729 + 3.26173i −0.423551 + 0.113490i
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 3.83436 6.64130i 0.133253 0.230801i
\(829\) 40.2532 23.2402i 1.39805 0.807166i 0.403864 0.914819i \(-0.367667\pi\)
0.994189 + 0.107653i \(0.0343334\pi\)
\(830\) −15.8298 + 59.0775i −0.549459 + 2.05061i
\(831\) 0 0
\(832\) −19.8082 20.9675i −0.686725 0.726917i
\(833\) 0 0
\(834\) 37.6614 + 10.0913i 1.30411 + 0.349434i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 1.08639 + 4.05448i 0.0375288 + 0.140060i
\(839\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(840\) 19.4063 + 19.4063i 0.669580 + 0.669580i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 3.79081 14.1475i 0.130563 0.487266i
\(844\) 0 0
\(845\) 23.0382 + 25.8186i 0.792537 + 0.888187i
\(846\) 0 0
\(847\) 28.1116 + 7.53248i 0.965926 + 0.258819i
\(848\) 0 0
\(849\) −36.5768 21.1176i −1.25531 0.724755i
\(850\) 0 0
\(851\) 0 0
\(852\) −44.1217 + 11.8224i −1.51158 + 0.405028i
\(853\) −0.102517 0.102517i −0.00351011 0.00351011i 0.705350 0.708860i \(-0.250790\pi\)
−0.708860 + 0.705350i \(0.750790\pi\)
\(854\) −22.5513 + 39.0600i −0.771690 + 1.33661i
\(855\) −6.11996 + 3.53336i −0.209298 + 0.120838i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −0.440260 −0.0150215 −0.00751074 0.999972i \(-0.502391\pi\)
−0.00751074 + 0.999972i \(0.502391\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 49.9701 + 28.8502i 1.70199 + 0.982643i
\(863\) −29.0285 + 29.0285i −0.988143 + 0.988143i −0.999931 0.0117879i \(-0.996248\pi\)
0.0117879 + 0.999931i \(0.496248\pi\)
\(864\) 8.27406 + 30.8792i 0.281489 + 1.05053i
\(865\) −57.5015 + 15.4075i −1.95511 + 0.523870i
\(866\) 0 0
\(867\) −11.7115 + 20.2850i −0.397744 + 0.688914i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 5.93178 + 10.2741i 0.200645 + 0.347528i
\(875\) 17.7784 + 10.2644i 0.601021 + 0.347000i
\(876\) 0 0
\(877\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(878\) 0 0
\(879\) −24.6154 24.6154i −0.830256 0.830256i
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 2.82248 10.5336i 0.0950377 0.354686i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) −12.3524 −0.415221
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) −17.7596 + 17.7596i −0.595639 + 0.595639i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −16.8230 + 3.99893i −0.561702 + 0.133520i
\(898\) −51.8704 −1.73094
\(899\) 0 0
\(900\) −2.29677 3.97812i −0.0765590 0.132604i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −57.9877 + 15.5378i −1.92864 + 0.516778i
\(905\) 48.7293 + 48.7293i 1.61982 + 1.61982i
\(906\) 18.6054 32.2256i 0.618125 1.07062i
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) −14.4852 + 54.0597i −0.480710 + 1.79403i
\(909\) 14.5334i 0.482043i
\(910\) −1.02055 + 35.8946i −0.0338308 + 1.18989i
\(911\) −52.1724 −1.72855 −0.864274 0.503022i \(-0.832222\pi\)
−0.864274 + 0.503022i \(0.832222\pi\)
\(912\) −12.8300 3.43779i −0.424844 0.113837i
\(913\) 0 0
\(914\) −48.2404 27.8516i −1.59565 0.921249i
\(915\) −31.2598 + 31.2598i −1.03342 + 1.03342i
\(916\) −15.5734 58.1208i −0.514561 1.92037i
\(917\) −17.6306 + 4.72411i −0.582215 + 0.156004i
\(918\) 0 0
\(919\) 30.3077 52.4946i 0.999760 1.73164i 0.480921 0.876764i \(-0.340303\pi\)
0.518840 0.854872i \(-0.326364\pi\)
\(920\) −22.6942 + 13.1025i −0.748207 + 0.431978i
\(921\) −10.7065 + 39.9572i −0.352791 + 1.31663i
\(922\) 42.3470i 1.39462i
\(923\) −50.8888 31.3420i −1.67503 1.03164i
\(924\) 0 0
\(925\) 0 0
\(926\) −28.2019 48.8470i −0.926770 1.60521i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(930\) 0 0
\(931\) 11.9292 + 11.9292i 0.390964 + 0.390964i
\(932\) 20.1628 34.9230i 0.660454 1.14394i
\(933\) 0 0
\(934\) −15.6622 + 58.4520i −0.512482 + 1.91261i
\(935\) 0 0
\(936\) −5.89127 + 9.56543i −0.192562 + 0.312656i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18.7454 18.7454i 0.611083 0.611083i −0.332145 0.943228i \(-0.607772\pi\)
0.943228 + 0.332145i \(0.107772\pi\)
\(942\) −4.93465 18.4164i −0.160780 0.600038i
\(943\) 0 0
\(944\) 9.52649 + 9.52649i 0.310061 + 0.310061i
\(945\) 19.8992 34.4664i 0.647320 1.12119i
\(946\) 0 0
\(947\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(948\) 43.3786i 1.40887i
\(949\) 0 0
\(950\) 7.10623 0.230557
\(951\) 0 0
\(952\) 0 0
\(953\) 45.8326 + 26.4615i 1.48466 + 0.857171i 0.999848 0.0174443i \(-0.00555298\pi\)
0.484817 + 0.874616i \(0.338886\pi\)
\(954\) 0 0
\(955\) 3.28958 + 12.2769i 0.106448 + 0.397271i
\(956\) 59.7224 16.0026i 1.93156 0.517560i
\(957\) 0 0
\(958\) 0 0
\(959\) 30.9622 17.8760i 0.999822 0.577247i
\(960\) 7.59363 28.3398i 0.245083 0.914664i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.82595 13.5549i −0.251926 0.436349i
\(966\) −15.5404 8.97223i −0.500003 0.288677i
\(967\) 17.7750 17.7750i 0.571606 0.571606i −0.360971 0.932577i \(-0.617555\pi\)
0.932577 + 0.360971i \(0.117555\pi\)
\(968\) −8.05256 30.0526i −0.258819 0.965926i
\(969\) 0 0
\(970\) 0 0
\(971\) −18.9155 + 32.7626i −0.607027 + 1.05140i 0.384701 + 0.923041i \(0.374305\pi\)
−0.991728 + 0.128360i \(0.959029\pi\)
\(972\) 18.6695 10.7788i 0.598824 0.345731i
\(973\) −13.7021 + 51.1370i −0.439270 + 1.63938i
\(974\) 60.1262i 1.92657i
\(975\) −2.96402 + 9.92453i −0.0949247 + 0.317839i
\(976\) 48.2167 1.54338
\(977\) −51.3562 13.7609i −1.64303 0.440249i −0.685381 0.728184i \(-0.740364\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −26.3501 + 26.3501i −0.841722 + 0.841722i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −8.25834 15.2917i −0.262733 0.486494i
\(989\) 0 0
\(990\) 0 0
\(991\) 24.4777 + 42.3965i 0.777558 + 1.34677i 0.933345 + 0.358980i \(0.116875\pi\)
−0.155787 + 0.987791i \(0.549791\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −16.0525 59.9089i −0.509156 1.90020i
\(995\) 0 0
\(996\) 31.6595 + 31.6595i 1.00317 + 1.00317i
\(997\) −31.5072 + 54.5720i −0.997843 + 1.72831i −0.442065 + 0.896983i \(0.645754\pi\)
−0.555777 + 0.831331i \(0.687579\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.b.405.3 yes 16
7.6 odd 2 inner 728.2.ds.b.405.2 yes 16
8.5 even 2 inner 728.2.ds.b.405.2 yes 16
13.7 odd 12 inner 728.2.ds.b.293.3 yes 16
56.13 odd 2 CM 728.2.ds.b.405.3 yes 16
91.20 even 12 inner 728.2.ds.b.293.2 16
104.85 odd 12 inner 728.2.ds.b.293.2 16
728.293 even 12 inner 728.2.ds.b.293.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.b.293.2 16 91.20 even 12 inner
728.2.ds.b.293.2 16 104.85 odd 12 inner
728.2.ds.b.293.3 yes 16 13.7 odd 12 inner
728.2.ds.b.293.3 yes 16 728.293 even 12 inner
728.2.ds.b.405.2 yes 16 7.6 odd 2 inner
728.2.ds.b.405.2 yes 16 8.5 even 2 inner
728.2.ds.b.405.3 yes 16 1.1 even 1 trivial
728.2.ds.b.405.3 yes 16 56.13 odd 2 CM