L(s) = 1 | − 3-s + (−1.5 − 2.59i)5-s + (0.5 − 2.59i)7-s − 2·9-s − 11-s + (−1 + 3.46i)13-s + (1.5 + 2.59i)15-s + (1 + 1.73i)17-s − 3·19-s + (−0.5 + 2.59i)21-s + (−2 + 3.46i)25-s + 5·27-s + (4.5 + 7.79i)29-s + (−0.5 + 0.866i)31-s + 33-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.670 − 1.16i)5-s + (0.188 − 0.981i)7-s − 0.666·9-s − 0.301·11-s + (−0.277 + 0.960i)13-s + (0.387 + 0.670i)15-s + (0.242 + 0.420i)17-s − 0.688·19-s + (−0.109 + 0.566i)21-s + (−0.400 + 0.692i)25-s + 0.962·27-s + (0.835 + 1.44i)29-s + (−0.0898 + 0.155i)31-s + 0.174·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.703 - 0.710i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.703 - 0.710i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.5 + 2.59i)T \) |
| 13 | \( 1 + (1 - 3.46i)T \) |
good | 3 | \( 1 + T + 3T^{2} \) |
| 5 | \( 1 + (1.5 + 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 17 | \( 1 + (-1 - 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + 3T + 19T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5 - 8.66i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.5 - 2.59i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.5 + 9.52i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 - 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6 + 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 5T + 61T^{2} \) |
| 67 | \( 1 + 9T + 67T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.5 - 9.52i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.5 - 7.79i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8T + 83T^{2} \) |
| 89 | \( 1 + (-5 + 8.66i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.5 + 11.2i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00542970929772758021743164874, −8.699245434152593349296847277192, −8.362682670475705107528823623482, −7.20874132291086813603661315875, −6.34680427516949457631538116206, −5.01161062926751993932665747937, −4.60077667820527999883254340837, −3.40608782404698359156344392919, −1.45242600029716425330608173542, 0,
2.50341705440163373610399575474, 3.21903736313216218490155977672, 4.71576316896358109364951279152, 5.74122411813187522605003405952, 6.36867670511174030911188506353, 7.54297387751119883840500787058, 8.182539007613774978172420930244, 9.212346144177994265292567663126, 10.43314165639347719582902835866