L(s) = 1 | + 2.45·2-s − 1.73i·3-s + 4.03·4-s − 2.23i·5-s − 4.25i·6-s + 4.98·8-s − 2.99·9-s − 5.49i·10-s − 6.98i·12-s − 3.87·15-s + 4.19·16-s + 8.06i·17-s − 7.36·18-s − 5.62i·19-s − 9.01i·20-s + ⋯ |
L(s) = 1 | + 1.73·2-s − 0.999i·3-s + 2.01·4-s − 0.999i·5-s − 1.73i·6-s + 1.76·8-s − 0.999·9-s − 1.73i·10-s − 2.01i·12-s − 0.999·15-s + 1.04·16-s + 1.95i·17-s − 1.73·18-s − 1.29i·19-s − 2.01i·20-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(0.156+0.987i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(0.156+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
0.156+0.987i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(734,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), 0.156+0.987i)
|
Particular Values
L(1) |
≈ |
3.01520−2.57490i |
L(21) |
≈ |
3.01520−2.57490i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+1.73iT |
| 5 | 1+2.23iT |
| 7 | 1 |
good | 2 | 1−2.45T+2T2 |
| 11 | 1−11T2 |
| 13 | 1+13T2 |
| 17 | 1−8.06iT−17T2 |
| 19 | 1+5.62iT−19T2 |
| 23 | 1−9.58T+23T2 |
| 29 | 1−29T2 |
| 31 | 1−4.42iT−31T2 |
| 37 | 1−37T2 |
| 41 | 1+41T2 |
| 43 | 1−43T2 |
| 47 | 1+1.02iT−47T2 |
| 53 | 1−9.43T+53T2 |
| 59 | 1+59T2 |
| 61 | 1+4.08iT−61T2 |
| 67 | 1−67T2 |
| 71 | 1−71T2 |
| 73 | 1+73T2 |
| 79 | 1+5.83T+79T2 |
| 83 | 1−15.0iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72403285965587659356639900631, −9.055162184233632104065484299155, −8.342608783501796109676806698376, −7.17466154433091162502011989568, −6.48158104637942069324271231277, −5.53792746586298195211712858449, −4.88113362675234728932986694625, −3.76215833450480333689431179457, −2.59862615173252316792534236377, −1.35360987229339559928335704982,
2.58860331521543202201731583219, 3.20709784012133919765093998174, 4.13523522116466720489947671982, 5.08862613055917404078844906831, 5.78034352333377268780883799186, 6.78650340920078416595711722034, 7.56653485620405067707913036115, 9.075637560150727912544095930668, 10.01772450706269686019815765952, 10.86909383120797948597968176213