L(s) = 1 | + 2.45·2-s − 1.73i·3-s + 4.03·4-s − 2.23i·5-s − 4.25i·6-s + 4.98·8-s − 2.99·9-s − 5.49i·10-s − 6.98i·12-s − 3.87·15-s + 4.19·16-s + 8.06i·17-s − 7.36·18-s − 5.62i·19-s − 9.01i·20-s + ⋯ |
L(s) = 1 | + 1.73·2-s − 0.999i·3-s + 2.01·4-s − 0.999i·5-s − 1.73i·6-s + 1.76·8-s − 0.999·9-s − 1.73i·10-s − 2.01i·12-s − 0.999·15-s + 1.04·16-s + 1.95i·17-s − 1.73·18-s − 1.29i·19-s − 2.01i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.156 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.01520 - 2.57490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.01520 - 2.57490i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 1.73iT \) |
| 5 | \( 1 + 2.23iT \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.45T + 2T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 8.06iT - 17T^{2} \) |
| 19 | \( 1 + 5.62iT - 19T^{2} \) |
| 23 | \( 1 - 9.58T + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 4.42iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 1.02iT - 47T^{2} \) |
| 53 | \( 1 - 9.43T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 4.08iT - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 + 5.83T + 79T^{2} \) |
| 83 | \( 1 - 15.0iT - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72403285965587659356639900631, −9.055162184233632104065484299155, −8.342608783501796109676806698376, −7.17466154433091162502011989568, −6.48158104637942069324271231277, −5.53792746586298195211712858449, −4.88113362675234728932986694625, −3.76215833450480333689431179457, −2.59862615173252316792534236377, −1.35360987229339559928335704982,
2.58860331521543202201731583219, 3.20709784012133919765093998174, 4.13523522116466720489947671982, 5.08862613055917404078844906831, 5.78034352333377268780883799186, 6.78650340920078416595711722034, 7.56653485620405067707913036115, 9.075637560150727912544095930668, 10.01772450706269686019815765952, 10.86909383120797948597968176213