Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [735,2,Mod(734,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.734");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 735.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 16.0.721389578983833600000000.5 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
734.1 |
|
−2.72868 | − | 1.73205i | 5.44572 | 2.23607i | 4.72622i | 0 | −9.40228 | −3.00000 | − | 6.10152i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.2 | −2.72868 | 1.73205i | 5.44572 | − | 2.23607i | − | 4.72622i | 0 | −9.40228 | −3.00000 | 6.10152i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.3 | −2.45591 | − | 1.73205i | 4.03151 | − | 2.23607i | 4.25377i | 0 | −4.98920 | −3.00000 | 5.49159i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.4 | −2.45591 | 1.73205i | 4.03151 | 2.23607i | − | 4.25377i | 0 | −4.98920 | −3.00000 | − | 5.49159i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.5 | −1.40303 | − | 1.73205i | −0.0315060 | − | 2.23607i | 2.43012i | 0 | 2.85026 | −3.00000 | 3.13727i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.6 | −1.40303 | 1.73205i | −0.0315060 | 2.23607i | − | 2.43012i | 0 | 2.85026 | −3.00000 | − | 3.13727i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.7 | −0.744500 | − | 1.73205i | −1.44572 | 2.23607i | 1.28951i | 0 | 2.56534 | −3.00000 | − | 1.66475i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.8 | −0.744500 | 1.73205i | −1.44572 | − | 2.23607i | − | 1.28951i | 0 | 2.56534 | −3.00000 | 1.66475i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.9 | 0.744500 | − | 1.73205i | −1.44572 | 2.23607i | − | 1.28951i | 0 | −2.56534 | −3.00000 | 1.66475i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.10 | 0.744500 | 1.73205i | −1.44572 | − | 2.23607i | 1.28951i | 0 | −2.56534 | −3.00000 | − | 1.66475i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.11 | 1.40303 | − | 1.73205i | −0.0315060 | − | 2.23607i | − | 2.43012i | 0 | −2.85026 | −3.00000 | − | 3.13727i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.12 | 1.40303 | 1.73205i | −0.0315060 | 2.23607i | 2.43012i | 0 | −2.85026 | −3.00000 | 3.13727i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.13 | 2.45591 | − | 1.73205i | 4.03151 | − | 2.23607i | − | 4.25377i | 0 | 4.98920 | −3.00000 | − | 5.49159i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.14 | 2.45591 | 1.73205i | 4.03151 | 2.23607i | 4.25377i | 0 | 4.98920 | −3.00000 | 5.49159i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.15 | 2.72868 | − | 1.73205i | 5.44572 | 2.23607i | − | 4.72622i | 0 | 9.40228 | −3.00000 | 6.10152i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
734.16 | 2.72868 | 1.73205i | 5.44572 | − | 2.23607i | 4.72622i | 0 | 9.40228 | −3.00000 | − | 6.10152i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
15.d | odd | 2 | 1 | CM by |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
35.c | odd | 2 | 1 | inner |
105.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.g.a | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 735.2.g.a | ✓ | 16 |
5.b | even | 2 | 1 | inner | 735.2.g.a | ✓ | 16 |
7.b | odd | 2 | 1 | inner | 735.2.g.a | ✓ | 16 |
7.c | even | 3 | 1 | 735.2.p.d | 16 | ||
7.c | even | 3 | 1 | 735.2.p.e | 16 | ||
7.d | odd | 6 | 1 | 735.2.p.d | 16 | ||
7.d | odd | 6 | 1 | 735.2.p.e | 16 | ||
15.d | odd | 2 | 1 | CM | 735.2.g.a | ✓ | 16 |
21.c | even | 2 | 1 | inner | 735.2.g.a | ✓ | 16 |
21.g | even | 6 | 1 | 735.2.p.d | 16 | ||
21.g | even | 6 | 1 | 735.2.p.e | 16 | ||
21.h | odd | 6 | 1 | 735.2.p.d | 16 | ||
21.h | odd | 6 | 1 | 735.2.p.e | 16 | ||
35.c | odd | 2 | 1 | inner | 735.2.g.a | ✓ | 16 |
35.i | odd | 6 | 1 | 735.2.p.d | 16 | ||
35.i | odd | 6 | 1 | 735.2.p.e | 16 | ||
35.j | even | 6 | 1 | 735.2.p.d | 16 | ||
35.j | even | 6 | 1 | 735.2.p.e | 16 | ||
105.g | even | 2 | 1 | inner | 735.2.g.a | ✓ | 16 |
105.o | odd | 6 | 1 | 735.2.p.d | 16 | ||
105.o | odd | 6 | 1 | 735.2.p.e | 16 | ||
105.p | even | 6 | 1 | 735.2.p.d | 16 | ||
105.p | even | 6 | 1 | 735.2.p.e | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
735.2.g.a | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
735.2.g.a | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
735.2.g.a | ✓ | 16 | 5.b | even | 2 | 1 | inner |
735.2.g.a | ✓ | 16 | 7.b | odd | 2 | 1 | inner |
735.2.g.a | ✓ | 16 | 15.d | odd | 2 | 1 | CM |
735.2.g.a | ✓ | 16 | 21.c | even | 2 | 1 | inner |
735.2.g.a | ✓ | 16 | 35.c | odd | 2 | 1 | inner |
735.2.g.a | ✓ | 16 | 105.g | even | 2 | 1 | inner |
735.2.p.d | 16 | 7.c | even | 3 | 1 | ||
735.2.p.d | 16 | 7.d | odd | 6 | 1 | ||
735.2.p.d | 16 | 21.g | even | 6 | 1 | ||
735.2.p.d | 16 | 21.h | odd | 6 | 1 | ||
735.2.p.d | 16 | 35.i | odd | 6 | 1 | ||
735.2.p.d | 16 | 35.j | even | 6 | 1 | ||
735.2.p.d | 16 | 105.o | odd | 6 | 1 | ||
735.2.p.d | 16 | 105.p | even | 6 | 1 | ||
735.2.p.e | 16 | 7.c | even | 3 | 1 | ||
735.2.p.e | 16 | 7.d | odd | 6 | 1 | ||
735.2.p.e | 16 | 21.g | even | 6 | 1 | ||
735.2.p.e | 16 | 21.h | odd | 6 | 1 | ||
735.2.p.e | 16 | 35.i | odd | 6 | 1 | ||
735.2.p.e | 16 | 35.j | even | 6 | 1 | ||
735.2.p.e | 16 | 105.o | odd | 6 | 1 | ||
735.2.p.e | 16 | 105.p | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .