Properties

Label 735.2.g.a
Level 735735
Weight 22
Character orbit 735.g
Analytic conductor 5.8695.869
Analytic rank 00
Dimension 1616
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(734,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.734");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 735=3572 735 = 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 735.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.869004548565.86900454856
Analytic rank: 00
Dimension: 1616
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16+8x14+44x12+128x10+223x8464x6724x4+784x2+2401 x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2876 2^{8}\cdot 7^{6}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ3q2+β5q3+(β8+2)q4+β11q5+β1q6+(β92β3)q83q9+β6q10+(β14+2β5)q12+β10q15++(3β6+4β1)q96+O(q100) q - \beta_{3} q^{2} + \beta_{5} q^{3} + ( - \beta_{8} + 2) q^{4} + \beta_{11} q^{5} + \beta_1 q^{6} + (\beta_{9} - 2 \beta_{3}) q^{8} - 3 q^{9} + \beta_{6} q^{10} + (\beta_{14} + 2 \beta_{5}) q^{12} + \beta_{10} q^{15}+ \cdots + ( - 3 \beta_{6} + 4 \beta_1) q^{96}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+32q448q9+64q1680q2596q36+128q64+144q81+O(q100) 16 q + 32 q^{4} - 48 q^{9} + 64 q^{16} - 80 q^{25} - 96 q^{36} + 128 q^{64} + 144 q^{81}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+8x14+44x12+128x10+223x8464x6724x4+784x2+2401 x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 : Copy content Toggle raw display

β1\beta_{1}== (65ν154078ν1351682ν11316357ν91225031ν7++4240068ν)/4215813 ( 65 \nu^{15} - 4078 \nu^{13} - 51682 \nu^{11} - 316357 \nu^{9} - 1225031 \nu^{7} + \cdots + 4240068 \nu ) / 4215813 Copy content Toggle raw display
β2\beta_{2}== (333ν14+1814ν12+20169ν10+61722ν8+226708ν6249174ν4+6475154)/743967 ( 333 \nu^{14} + 1814 \nu^{12} + 20169 \nu^{10} + 61722 \nu^{8} + 226708 \nu^{6} - 249174 \nu^{4} + \cdots - 6475154 ) / 743967 Copy content Toggle raw display
β3\beta_{3}== (467ν15+3796ν13+21270ν11+62179ν9+110885ν7225705ν5+366226ν)/743967 ( 467 \nu^{15} + 3796 \nu^{13} + 21270 \nu^{11} + 62179 \nu^{9} + 110885 \nu^{7} - 225705 \nu^{5} + \cdots - 366226 \nu ) / 743967 Copy content Toggle raw display
β4\beta_{4}== (416ν145038ν1235507ν10164752ν8485725ν6905496ν4++1049286)/602259 ( - 416 \nu^{14} - 5038 \nu^{12} - 35507 \nu^{10} - 164752 \nu^{8} - 485725 \nu^{6} - 905496 \nu^{4} + \cdots + 1049286 ) / 602259 Copy content Toggle raw display
β5\beta_{5}== (3152ν14+14536ν12+57408ν1024278ν8497536ν63376584ν4++4619867)/4215813 ( 3152 \nu^{14} + 14536 \nu^{12} + 57408 \nu^{10} - 24278 \nu^{8} - 497536 \nu^{6} - 3376584 \nu^{4} + \cdots + 4619867 ) / 4215813 Copy content Toggle raw display
β6\beta_{6}== (12788ν15118391ν13703899ν112491939ν96346228ν7+11242315ν)/12647439 ( - 12788 \nu^{15} - 118391 \nu^{13} - 703899 \nu^{11} - 2491939 \nu^{9} - 6346228 \nu^{7} + \cdots - 11242315 \nu ) / 12647439 Copy content Toggle raw display
β7\beta_{7}== (784ν15+1690ν13+2190ν1172529ν9255160ν7896622ν5++3139430ν)/743967 ( 784 \nu^{15} + 1690 \nu^{13} + 2190 \nu^{11} - 72529 \nu^{9} - 255160 \nu^{7} - 896622 \nu^{5} + \cdots + 3139430 \nu ) / 743967 Copy content Toggle raw display
β8\beta_{8}== (753ν14+6868ν12+36990ν10+108930ν8+163589ν6387270ν4++1299284)/743967 ( 753 \nu^{14} + 6868 \nu^{12} + 36990 \nu^{10} + 108930 \nu^{8} + 163589 \nu^{6} - 387270 \nu^{4} + \cdots + 1299284 ) / 743967 Copy content Toggle raw display
β9\beta_{9}== (1036ν15+6313ν13+31659ν11+62366ν9+79892ν7710379ν5++669095ν)/743967 ( 1036 \nu^{15} + 6313 \nu^{13} + 31659 \nu^{11} + 62366 \nu^{9} + 79892 \nu^{7} - 710379 \nu^{5} + \cdots + 669095 \nu ) / 743967 Copy content Toggle raw display
β10\beta_{10}== (48ν14+433ν12+2308ν10+7516ν8+11488ν626290ν488652ν2+52430)/35427 ( 48\nu^{14} + 433\nu^{12} + 2308\nu^{10} + 7516\nu^{8} + 11488\nu^{6} - 26290\nu^{4} - 88652\nu^{2} + 52430 ) / 35427 Copy content Toggle raw display
β11\beta_{11}== (80ν14587ν123204ν108992ν818880ν6+26304ν415484ν244590)/52479 ( -80\nu^{14} - 587\nu^{12} - 3204\nu^{10} - 8992\nu^{8} - 18880\nu^{6} + 26304\nu^{4} - 15484\nu^{2} - 44590 ) / 52479 Copy content Toggle raw display
β12\beta_{12}== (28079ν15+207511ν13+1032996ν11+2276044ν9+1085018ν7++85821932ν)/12647439 ( 28079 \nu^{15} + 207511 \nu^{13} + 1032996 \nu^{11} + 2276044 \nu^{9} + 1085018 \nu^{7} + \cdots + 85821932 \nu ) / 12647439 Copy content Toggle raw display
β13\beta_{13}== (37616ν15315308ν131717926ν115390767ν910004680ν7+70216510ν)/12647439 ( - 37616 \nu^{15} - 315308 \nu^{13} - 1717926 \nu^{11} - 5390767 \nu^{9} - 10004680 \nu^{7} + \cdots - 70216510 \nu ) / 12647439 Copy content Toggle raw display
β14\beta_{14}== (2311ν1415992ν1287844ν10230258ν8395405ν6+1649928)/602259 ( - 2311 \nu^{14} - 15992 \nu^{12} - 87844 \nu^{10} - 230258 \nu^{8} - 395405 \nu^{6} + \cdots - 1649928 ) / 602259 Copy content Toggle raw display
β15\beta_{15}== (6422ν15+41353ν13+219822ν11+507391ν9+751901ν7++1073786ν)/743967 ( 6422 \nu^{15} + 41353 \nu^{13} + 219822 \nu^{11} + 507391 \nu^{9} + 751901 \nu^{7} + \cdots + 1073786 \nu ) / 743967 Copy content Toggle raw display
ν\nu== (2β127β33β1)/14 ( 2\beta_{12} - 7\beta_{3} - 3\beta_1 ) / 14 Copy content Toggle raw display
ν2\nu^{2}== (5β145β814β5+4β42β214)/14 ( -5\beta_{14} - 5\beta_{8} - 14\beta_{5} + 4\beta_{4} - 2\beta_{2} - 14 ) / 14 Copy content Toggle raw display
ν3\nu^{3}== (3β154β133β12+4β9+6β7+8β6+27β36β1)/14 ( -3\beta_{15} - 4\beta_{13} - 3\beta_{12} + 4\beta_{9} + 6\beta_{7} + 8\beta_{6} + 27\beta_{3} - 6\beta_1 ) / 14 Copy content Toggle raw display
ν4\nu^{4}== (4β14+21β1121β10+32β8+42β520β44β242)/14 ( 4\beta_{14} + 21\beta_{11} - 21\beta_{10} + 32\beta_{8} + 42\beta_{5} - 20\beta_{4} - 4\beta_{2} - 42 ) / 14 Copy content Toggle raw display
ν5\nu^{5}== (10β15+3β1310β1267β9+8β741β620β3+50β1)/14 ( 10\beta_{15} + 3\beta_{13} - 10\beta_{12} - 67\beta_{9} + 8\beta_{7} - 41\beta_{6} - 20\beta_{3} + 50\beta_1 ) / 14 Copy content Toggle raw display
ν6\nu^{6}== (92β14252β1127β8+23β4+27β2+280)/14 ( 92\beta_{14} - 252\beta_{11} - 27\beta_{8} + 23\beta_{4} + 27\beta_{2} + 280 ) / 14 Copy content Toggle raw display
ν7\nu^{7}== (21β15+98β13+65β12+315β991β7147β6+24β1)/14 ( - 21 \beta_{15} + 98 \beta_{13} + 65 \beta_{12} + 315 \beta_{9} - 91 \beta_{7} - 147 \beta_{6} + \cdots - 24 \beta_1 ) / 14 Copy content Toggle raw display
ν8\nu^{8}== (264β14+588β11+588β10768β8161β524β472β2161)/14 ( -264\beta_{14} + 588\beta_{11} + 588\beta_{10} - 768\beta_{8} - 161\beta_{5} - 24\beta_{4} - 72\beta_{2} - 161 ) / 14 Copy content Toggle raw display
ν9\nu^{9}== (25β15732β13311β1224β936β7+1464β6+622β1)/14 ( 25 \beta_{15} - 732 \beta_{13} - 311 \beta_{12} - 24 \beta_{9} - 36 \beta_{7} + 1464 \beta_{6} + \cdots - 622 \beta_1 ) / 14 Copy content Toggle raw display
ν10\nu^{10}== (1333β14+2520β112520β10+3196β81526β5+197β4++1526)/14 ( - 1333 \beta_{14} + 2520 \beta_{11} - 2520 \beta_{10} + 3196 \beta_{8} - 1526 \beta_{5} + 197 \beta_{4} + \cdots + 1526 ) / 14 Copy content Toggle raw display
ν11\nu^{11}== (297β15+2103β13+1551β125618β9+1849β7+1287β1)/14 ( 297 \beta_{15} + 2103 \beta_{13} + 1551 \beta_{12} - 5618 \beta_{9} + 1849 \beta_{7} + \cdots - 1287 \beta_1 ) / 14 Copy content Toggle raw display
ν12\nu^{12}== (3784β149387β11+1530β8+946β41530β215246)/7 ( 3784\beta_{14} - 9387\beta_{11} + 1530\beta_{8} + 946\beta_{4} - 1530\beta_{2} - 15246 ) / 7 Copy content Toggle raw display
ν13\nu^{13}== (4368β15+140β134940β12+21735β92065β7++22698β1)/14 ( - 4368 \beta_{15} + 140 \beta_{13} - 4940 \beta_{12} + 21735 \beta_{9} - 2065 \beta_{7} + \cdots + 22698 \beta_1 ) / 14 Copy content Toggle raw display
ν14\nu^{14}== (8101β14+27930β11+27930β1046268β8+95732β5++95732)/14 ( 8101 \beta_{14} + 27930 \beta_{11} + 27930 \beta_{10} - 46268 \beta_{8} + 95732 \beta_{5} + \cdots + 95732 ) / 14 Copy content Toggle raw display
ν15\nu^{15}== (26170β1524343β1310076β1221710β932565β7+20152β1)/14 ( 26170 \beta_{15} - 24343 \beta_{13} - 10076 \beta_{12} - 21710 \beta_{9} - 32565 \beta_{7} + \cdots - 20152 \beta_1 ) / 14 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/735Z)×\left(\mathbb{Z}/735\mathbb{Z}\right)^\times.

nn 346346 442442 491491
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
734.1
−1.36434 1.59774i
−1.36434 + 1.59774i
−1.22796 0.279124i
−1.22796 + 0.279124i
−0.701515 1.98043i
−0.701515 + 1.98043i
−0.372250 + 1.20300i
−0.372250 1.20300i
0.372250 1.20300i
0.372250 + 1.20300i
0.701515 + 1.98043i
0.701515 1.98043i
1.22796 + 0.279124i
1.22796 0.279124i
1.36434 + 1.59774i
1.36434 1.59774i
−2.72868 1.73205i 5.44572 2.23607i 4.72622i 0 −9.40228 −3.00000 6.10152i
734.2 −2.72868 1.73205i 5.44572 2.23607i 4.72622i 0 −9.40228 −3.00000 6.10152i
734.3 −2.45591 1.73205i 4.03151 2.23607i 4.25377i 0 −4.98920 −3.00000 5.49159i
734.4 −2.45591 1.73205i 4.03151 2.23607i 4.25377i 0 −4.98920 −3.00000 5.49159i
734.5 −1.40303 1.73205i −0.0315060 2.23607i 2.43012i 0 2.85026 −3.00000 3.13727i
734.6 −1.40303 1.73205i −0.0315060 2.23607i 2.43012i 0 2.85026 −3.00000 3.13727i
734.7 −0.744500 1.73205i −1.44572 2.23607i 1.28951i 0 2.56534 −3.00000 1.66475i
734.8 −0.744500 1.73205i −1.44572 2.23607i 1.28951i 0 2.56534 −3.00000 1.66475i
734.9 0.744500 1.73205i −1.44572 2.23607i 1.28951i 0 −2.56534 −3.00000 1.66475i
734.10 0.744500 1.73205i −1.44572 2.23607i 1.28951i 0 −2.56534 −3.00000 1.66475i
734.11 1.40303 1.73205i −0.0315060 2.23607i 2.43012i 0 −2.85026 −3.00000 3.13727i
734.12 1.40303 1.73205i −0.0315060 2.23607i 2.43012i 0 −2.85026 −3.00000 3.13727i
734.13 2.45591 1.73205i 4.03151 2.23607i 4.25377i 0 4.98920 −3.00000 5.49159i
734.14 2.45591 1.73205i 4.03151 2.23607i 4.25377i 0 4.98920 −3.00000 5.49159i
734.15 2.72868 1.73205i 5.44572 2.23607i 4.72622i 0 9.40228 −3.00000 6.10152i
734.16 2.72868 1.73205i 5.44572 2.23607i 4.72622i 0 9.40228 −3.00000 6.10152i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 734.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
3.b odd 2 1 inner
5.b even 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner
35.c odd 2 1 inner
105.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.g.a 16
3.b odd 2 1 inner 735.2.g.a 16
5.b even 2 1 inner 735.2.g.a 16
7.b odd 2 1 inner 735.2.g.a 16
7.c even 3 1 735.2.p.d 16
7.c even 3 1 735.2.p.e 16
7.d odd 6 1 735.2.p.d 16
7.d odd 6 1 735.2.p.e 16
15.d odd 2 1 CM 735.2.g.a 16
21.c even 2 1 inner 735.2.g.a 16
21.g even 6 1 735.2.p.d 16
21.g even 6 1 735.2.p.e 16
21.h odd 6 1 735.2.p.d 16
21.h odd 6 1 735.2.p.e 16
35.c odd 2 1 inner 735.2.g.a 16
35.i odd 6 1 735.2.p.d 16
35.i odd 6 1 735.2.p.e 16
35.j even 6 1 735.2.p.d 16
35.j even 6 1 735.2.p.e 16
105.g even 2 1 inner 735.2.g.a 16
105.o odd 6 1 735.2.p.d 16
105.o odd 6 1 735.2.p.e 16
105.p even 6 1 735.2.p.d 16
105.p even 6 1 735.2.p.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.2.g.a 16 1.a even 1 1 trivial
735.2.g.a 16 3.b odd 2 1 inner
735.2.g.a 16 5.b even 2 1 inner
735.2.g.a 16 7.b odd 2 1 inner
735.2.g.a 16 15.d odd 2 1 CM
735.2.g.a 16 21.c even 2 1 inner
735.2.g.a 16 35.c odd 2 1 inner
735.2.g.a 16 105.g even 2 1 inner
735.2.p.d 16 7.c even 3 1
735.2.p.d 16 7.d odd 6 1
735.2.p.d 16 21.g even 6 1
735.2.p.d 16 21.h odd 6 1
735.2.p.d 16 35.i odd 6 1
735.2.p.d 16 35.j even 6 1
735.2.p.d 16 105.o odd 6 1
735.2.p.d 16 105.p even 6 1
735.2.p.e 16 7.c even 3 1
735.2.p.e 16 7.d odd 6 1
735.2.p.e 16 21.g even 6 1
735.2.p.e 16 21.h odd 6 1
735.2.p.e 16 35.i odd 6 1
735.2.p.e 16 35.j even 6 1
735.2.p.e 16 105.o odd 6 1
735.2.p.e 16 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2816T26+80T24128T22+49 T_{2}^{8} - 16T_{2}^{6} + 80T_{2}^{4} - 128T_{2}^{2} + 49 acting on S2new(735,[χ])S_{2}^{\mathrm{new}}(735, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T816T6++49)2 (T^{8} - 16 T^{6} + \cdots + 49)^{2} Copy content Toggle raw display
33 (T2+3)8 (T^{2} + 3)^{8} Copy content Toggle raw display
55 (T2+5)8 (T^{2} + 5)^{8} Copy content Toggle raw display
77 T16 T^{16} Copy content Toggle raw display
1111 T16 T^{16} Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 (T4+68T2+196)4 (T^{4} + 68 T^{2} + 196)^{4} Copy content Toggle raw display
1919 (T8+152T6++56644)2 (T^{8} + 152 T^{6} + \cdots + 56644)^{2} Copy content Toggle raw display
2323 (T8184T6++9604)2 (T^{8} - 184 T^{6} + \cdots + 9604)^{2} Copy content Toggle raw display
2929 T16 T^{16} Copy content Toggle raw display
3131 (T8+248T6++3678724)2 (T^{8} + 248 T^{6} + \cdots + 3678724)^{2} Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 (T4+188T2+196)4 (T^{4} + 188 T^{2} + 196)^{4} Copy content Toggle raw display
5353 (T8424T6++3161284)2 (T^{8} - 424 T^{6} + \cdots + 3161284)^{2} Copy content Toggle raw display
5959 T16 T^{16} Copy content Toggle raw display
6161 (T8+488T6++42016324)2 (T^{8} + 488 T^{6} + \cdots + 42016324)^{2} Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 T16 T^{16} Copy content Toggle raw display
7979 (T4316T2+9604)4 (T^{4} - 316 T^{2} + 9604)^{4} Copy content Toggle raw display
8383 (T4+332T2+23716)4 (T^{4} + 332 T^{2} + 23716)^{4} Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 T16 T^{16} Copy content Toggle raw display
show more
show less