Properties

Label 735.2.p.d
Level $735$
Weight $2$
Character orbit 735.p
Analytic conductor $5.869$
Analytic rank $0$
Dimension $16$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.721389578983833600000000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 7^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{7} - \beta_{2}) q^{2} + (\beta_{3} - 1) q^{3} + ( - \beta_{9} - \beta_{8} - 2 \beta_{3} - 2) q^{4} - \beta_{11} q^{5} + ( - 2 \beta_{7} + \beta_{2}) q^{6} + (\beta_{14} + \beta_{6} + 2 \beta_{2}) q^{8}+ \cdots + (3 \beta_{14} + 4 \beta_{7} + \cdots + 4 \beta_{2}) q^{96}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{3} - 16 q^{4} + 24 q^{9} + 48 q^{12} - 32 q^{16} + 40 q^{25} - 96 q^{36} + 128 q^{64} - 72 q^{68} - 120 q^{75} + 120 q^{80} - 72 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 8x^{14} + 44x^{12} + 128x^{10} + 223x^{8} - 464x^{6} - 724x^{4} + 784x^{2} + 2401 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 1072 \nu^{14} + 6557 \nu^{12} + 25896 \nu^{10} + 258070 \nu^{8} - 224432 \nu^{6} + \cdots + 3985660 ) / 12647439 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 76 \nu^{15} - 419 \nu^{13} - 3897 \nu^{11} - 29632 \nu^{9} - 84316 \nu^{7} - 154695 \nu^{5} + \cdots + 801395 \nu ) / 743967 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1576 \nu^{14} + 7268 \nu^{12} + 28704 \nu^{10} - 12139 \nu^{8} - 248768 \nu^{6} - 1688292 \nu^{4} + \cdots + 202027 ) / 4215813 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 4262 \nu^{15} + 13915 \nu^{13} - 51774 \nu^{11} - 895085 \nu^{9} - 4570117 \nu^{7} + \cdots + 28614824 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1576 \nu^{15} + 7268 \nu^{13} + 28704 \nu^{11} - 12139 \nu^{9} - 248768 \nu^{7} + \cdots + 12849466 \nu ) / 4215813 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 5194 \nu^{15} - 29693 \nu^{13} - 223998 \nu^{11} - 822251 \nu^{9} - 3077509 \nu^{7} + \cdots + 40050101 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 6608 \nu^{15} - 68366 \nu^{13} - 407226 \nu^{11} - 1526905 \nu^{9} - 3697816 \nu^{7} + \cdots - 2218720 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 99 \nu^{14} - 878 \nu^{12} - 4941 \nu^{10} - 14598 \nu^{8} - 24658 \nu^{6} + 52506 \nu^{4} + \cdots - 26950 ) / 106281 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 1902 \nu^{14} - 12910 \nu^{12} - 74946 \nu^{10} - 228534 \nu^{8} - 526307 \nu^{6} + \cdots - 864164 ) / 1806777 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 11908 \nu^{15} + 10036 \nu^{13} - 44223 \nu^{11} - 1527802 \nu^{9} - 4033300 \nu^{7} + \cdots - 4991875 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 18208 \nu^{14} - 148024 \nu^{12} - 798060 \nu^{10} - 2425142 \nu^{8} - 4325648 \nu^{6} + \cdots - 14731850 ) / 12647439 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 3006 \nu^{14} - 15880 \nu^{12} - 92121 \nu^{10} - 160884 \nu^{8} - 234062 \nu^{6} + \cdots + 5487706 ) / 1806777 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 4026 \nu^{14} + 28154 \nu^{12} + 132972 \nu^{10} + 275532 \nu^{8} + 80773 \nu^{6} + \cdots + 13393072 ) / 1806777 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 29401 \nu^{15} - 198821 \nu^{13} - 998676 \nu^{11} - 2095238 \nu^{9} - 1382458 \nu^{7} + \cdots - 42597415 \nu ) / 12647439 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 34448 \nu^{15} + 269378 \nu^{13} + 1399308 \nu^{11} + 3980116 \nu^{9} + 5538928 \nu^{7} + \cdots + 81635470 \nu ) / 12647439 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} + 2\beta_{5} - \beta_{4} ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{13} - 2\beta_{12} + \beta_{9} + 4\beta_{8} - 14\beta_{3} - 14 ) / 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{15} + 2\beta_{10} + 5\beta_{7} + 6\beta_{6} - 9\beta_{5} - 6\beta_{4} + 4\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -4\beta_{13} + 12\beta_{12} + 21\beta_{11} - 20\beta_{9} - 24\beta_{8} + 42\beta_{3} ) / 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -13\beta_{15} - 18\beta_{10} - 38\beta_{7} - 30\beta_{6} + 10\beta_{5} + 30\beta_{4} + 62\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -25\beta_{13} - 2\beta_{12} - 126\beta_{11} + 92\beta_{9} + 46\beta_{8} - 126\beta _1 + 140 ) / 7 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -7\beta_{15} + 42\beta_{14} + 77\beta_{10} - 126\beta_{7} + 64\beta_{6} + 65\beta_{5} - \beta_{4} - 189\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 24\beta_{13} - 72\beta_{12} - 216\beta_{9} + 312\beta_{8} - 161\beta_{3} + 588\beta _1 - 161 ) / 7 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 360 \beta_{15} + 168 \beta_{14} - 12 \beta_{10} + 1104 \beta_{7} - 218 \beta_{6} + 75 \beta_{5} + \cdots - 780 \beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 409\beta_{13} - 303\beta_{12} + 2520\beta_{11} - 727\beta_{9} - 2166\beta_{8} - 1526\beta_{3} ) / 7 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 1595 \beta_{15} - 2772 \beta_{14} - 1341 \beta_{10} - 325 \beta_{7} + 957 \beta_{6} + \cdots + 5872 \beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 584\beta_{13} + 2476\beta_{12} - 9387\beta_{11} + 7568\beta_{9} + 3784\beta_{8} - 9387\beta _1 - 15246 ) / 7 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 1925 \beta_{15} + 8736 \beta_{14} + 5915 \beta_{10} - 19530 \beta_{7} + 4082 \beta_{6} + \cdots - 2205 \beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( -19359\beta_{13} + 6865\beta_{12} - 30617\beta_{9} + 4393\beta_{8} + 95732\beta_{3} + 27930\beta _1 + 95732 ) / 7 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 6744 \beta_{15} + 18123 \beta_{14} - 10855 \beta_{10} + 41942 \beta_{7} - 70463 \beta_{6} + \cdots - 67763 \beta_{2} ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-\beta_{3}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
374.1
1.22796 + 0.279124i
−1.36434 1.59774i
−0.372250 + 1.20300i
0.701515 + 1.98043i
−0.701515 1.98043i
0.372250 1.20300i
1.36434 + 1.59774i
−1.22796 0.279124i
1.22796 0.279124i
−1.36434 + 1.59774i
−0.372250 1.20300i
0.701515 1.98043i
−0.701515 + 1.98043i
0.372250 + 1.20300i
1.36434 1.59774i
−1.22796 + 0.279124i
−1.36434 2.36311i −1.50000 0.866025i −2.72286 + 4.71613i −1.93649 + 1.11803i 4.72622i 0 9.40228 1.50000 + 2.59808i 5.28407 + 3.05076i
374.2 −1.22796 2.12688i −1.50000 0.866025i −2.01575 + 3.49139i 1.93649 1.11803i 4.25377i 0 4.98920 1.50000 + 2.59808i −4.75585 2.74579i
374.3 −0.701515 1.21506i −1.50000 0.866025i 0.0157530 0.0272850i 1.93649 1.11803i 2.43012i 0 −2.85026 1.50000 + 2.59808i −2.71696 1.56864i
374.4 −0.372250 0.644756i −1.50000 0.866025i 0.722860 1.25203i −1.93649 + 1.11803i 1.28951i 0 −2.56534 1.50000 + 2.59808i 1.44172 + 0.832376i
374.5 0.372250 + 0.644756i −1.50000 0.866025i 0.722860 1.25203i −1.93649 + 1.11803i 1.28951i 0 2.56534 1.50000 + 2.59808i −1.44172 0.832376i
374.6 0.701515 + 1.21506i −1.50000 0.866025i 0.0157530 0.0272850i 1.93649 1.11803i 2.43012i 0 2.85026 1.50000 + 2.59808i 2.71696 + 1.56864i
374.7 1.22796 + 2.12688i −1.50000 0.866025i −2.01575 + 3.49139i 1.93649 1.11803i 4.25377i 0 −4.98920 1.50000 + 2.59808i 4.75585 + 2.74579i
374.8 1.36434 + 2.36311i −1.50000 0.866025i −2.72286 + 4.71613i −1.93649 + 1.11803i 4.72622i 0 −9.40228 1.50000 + 2.59808i −5.28407 3.05076i
509.1 −1.36434 + 2.36311i −1.50000 + 0.866025i −2.72286 4.71613i −1.93649 1.11803i 4.72622i 0 9.40228 1.50000 2.59808i 5.28407 3.05076i
509.2 −1.22796 + 2.12688i −1.50000 + 0.866025i −2.01575 3.49139i 1.93649 + 1.11803i 4.25377i 0 4.98920 1.50000 2.59808i −4.75585 + 2.74579i
509.3 −0.701515 + 1.21506i −1.50000 + 0.866025i 0.0157530 + 0.0272850i 1.93649 + 1.11803i 2.43012i 0 −2.85026 1.50000 2.59808i −2.71696 + 1.56864i
509.4 −0.372250 + 0.644756i −1.50000 + 0.866025i 0.722860 + 1.25203i −1.93649 1.11803i 1.28951i 0 −2.56534 1.50000 2.59808i 1.44172 0.832376i
509.5 0.372250 0.644756i −1.50000 + 0.866025i 0.722860 + 1.25203i −1.93649 1.11803i 1.28951i 0 2.56534 1.50000 2.59808i −1.44172 + 0.832376i
509.6 0.701515 1.21506i −1.50000 + 0.866025i 0.0157530 + 0.0272850i 1.93649 + 1.11803i 2.43012i 0 2.85026 1.50000 2.59808i 2.71696 1.56864i
509.7 1.22796 2.12688i −1.50000 + 0.866025i −2.01575 3.49139i 1.93649 + 1.11803i 4.25377i 0 −4.98920 1.50000 2.59808i 4.75585 2.74579i
509.8 1.36434 2.36311i −1.50000 + 0.866025i −2.72286 4.71613i −1.93649 1.11803i 4.72622i 0 −9.40228 1.50000 2.59808i −5.28407 + 3.05076i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 374.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
7.d odd 6 1 inner
21.c even 2 1 inner
21.h odd 6 1 inner
35.c odd 2 1 inner
35.j even 6 1 inner
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.p.d 16
3.b odd 2 1 735.2.p.e 16
5.b even 2 1 735.2.p.e 16
7.b odd 2 1 735.2.p.e 16
7.c even 3 1 735.2.g.a 16
7.c even 3 1 735.2.p.e 16
7.d odd 6 1 735.2.g.a 16
7.d odd 6 1 inner 735.2.p.d 16
15.d odd 2 1 CM 735.2.p.d 16
21.c even 2 1 inner 735.2.p.d 16
21.g even 6 1 735.2.g.a 16
21.g even 6 1 735.2.p.e 16
21.h odd 6 1 735.2.g.a 16
21.h odd 6 1 inner 735.2.p.d 16
35.c odd 2 1 inner 735.2.p.d 16
35.i odd 6 1 735.2.g.a 16
35.i odd 6 1 735.2.p.e 16
35.j even 6 1 735.2.g.a 16
35.j even 6 1 inner 735.2.p.d 16
105.g even 2 1 735.2.p.e 16
105.o odd 6 1 735.2.g.a 16
105.o odd 6 1 735.2.p.e 16
105.p even 6 1 735.2.g.a 16
105.p even 6 1 inner 735.2.p.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.2.g.a 16 7.c even 3 1
735.2.g.a 16 7.d odd 6 1
735.2.g.a 16 21.g even 6 1
735.2.g.a 16 21.h odd 6 1
735.2.g.a 16 35.i odd 6 1
735.2.g.a 16 35.j even 6 1
735.2.g.a 16 105.o odd 6 1
735.2.g.a 16 105.p even 6 1
735.2.p.d 16 1.a even 1 1 trivial
735.2.p.d 16 7.d odd 6 1 inner
735.2.p.d 16 15.d odd 2 1 CM
735.2.p.d 16 21.c even 2 1 inner
735.2.p.d 16 21.h odd 6 1 inner
735.2.p.d 16 35.c odd 2 1 inner
735.2.p.d 16 35.j even 6 1 inner
735.2.p.d 16 105.p even 6 1 inner
735.2.p.e 16 3.b odd 2 1
735.2.p.e 16 5.b even 2 1
735.2.p.e 16 7.b odd 2 1
735.2.p.e 16 7.c even 3 1
735.2.p.e 16 21.g even 6 1
735.2.p.e 16 35.i odd 6 1
735.2.p.e 16 105.g even 2 1
735.2.p.e 16 105.o odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):

\( T_{2}^{16} + 16T_{2}^{14} + 176T_{2}^{12} + 1024T_{2}^{10} + 4303T_{2}^{8} + 8672T_{2}^{6} + 12464T_{2}^{4} + 6272T_{2}^{2} + 2401 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{257}^{2} - 12T_{257} + 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 16 T^{14} + \cdots + 2401 \) Copy content Toggle raw display
$3$ \( (T^{2} + 3 T + 3)^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 5 T^{2} + 25)^{4} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} \) Copy content Toggle raw display
$17$ \( (T^{8} - 68 T^{6} + \cdots + 38416)^{2} \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 3208542736 \) Copy content Toggle raw display
$23$ \( T^{16} + 184 T^{14} + \cdots + 92236816 \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 13533010268176 \) Copy content Toggle raw display
$37$ \( T^{16} \) Copy content Toggle raw display
$41$ \( T^{16} \) Copy content Toggle raw display
$43$ \( T^{16} \) Copy content Toggle raw display
$47$ \( (T^{8} - 188 T^{6} + \cdots + 38416)^{2} \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 9993716528656 \) Copy content Toggle raw display
$59$ \( T^{16} \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 17\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( T^{16} \) Copy content Toggle raw display
$73$ \( T^{16} \) Copy content Toggle raw display
$79$ \( (T^{8} + 316 T^{6} + \cdots + 92236816)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 332 T^{2} + 23716)^{4} \) Copy content Toggle raw display
$89$ \( T^{16} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less