L(s) = 1 | + (1.36 − 2.36i)2-s + (−1.5 + 0.866i)3-s + (−2.72 − 4.71i)4-s + (−1.93 − 1.11i)5-s + 4.72i·6-s − 9.40·8-s + (1.5 − 2.59i)9-s + (−5.28 + 3.05i)10-s + (8.16 + 4.71i)12-s + 3.87·15-s + (−7.38 + 12.7i)16-s + (−1.50 + 0.868i)17-s + (−4.09 − 7.08i)18-s + (−0.633 − 0.365i)19-s + 12.1i·20-s + ⋯ |
L(s) = 1 | + (0.964 − 1.67i)2-s + (−0.866 + 0.499i)3-s + (−1.36 − 2.35i)4-s + (−0.866 − 0.499i)5-s + 1.92i·6-s − 3.32·8-s + (0.5 − 0.866i)9-s + (−1.67 + 0.964i)10-s + (2.35 + 1.36i)12-s + 1.00·15-s + (−1.84 + 3.19i)16-s + (−0.364 + 0.210i)17-s + (−0.964 − 1.67i)18-s + (−0.145 − 0.0838i)19-s + 2.72i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.379 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.278636 + 0.186919i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.278636 + 0.186919i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 - 0.866i)T \) |
| 5 | \( 1 + (1.93 + 1.11i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.36 + 2.36i)T + (-1 - 1.73i)T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (1.50 - 0.868i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.633 + 0.365i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.31 - 5.73i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (-3.54 + 2.04i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + (11.8 + 6.83i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (7.25 + 12.5i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (11.7 + 6.77i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (8.39 - 14.5i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 10.1iT - 83T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.949091474941318864866534035801, −9.410556183388722186928516084835, −8.257504797086117390326218640680, −6.61216688123674386066355707851, −5.54322369718546455992688227308, −4.80892248539293258061056788169, −4.04677631204267386943109816537, −3.29815486009201404755093691168, −1.58491331983702887863941245395, −0.14290459423679411181904900616,
2.96228899726449226571025117009, 4.31885424542533392178548343095, 4.80127392638770088870133528630, 6.13265413770993834575311731207, 6.46627550062594913351448772119, 7.43610335996495044186470683685, 7.926001553289077411904792843126, 8.844407678035175978787183421973, 10.36323941919505449438083017669, 11.42540002687409057169397383860