L(s) = 1 | + (1.36 − 2.36i)2-s + (−1.5 + 0.866i)3-s + (−2.72 − 4.71i)4-s + (−1.93 − 1.11i)5-s + 4.72i·6-s − 9.40·8-s + (1.5 − 2.59i)9-s + (−5.28 + 3.05i)10-s + (8.16 + 4.71i)12-s + 3.87·15-s + (−7.38 + 12.7i)16-s + (−1.50 + 0.868i)17-s + (−4.09 − 7.08i)18-s + (−0.633 − 0.365i)19-s + 12.1i·20-s + ⋯ |
L(s) = 1 | + (0.964 − 1.67i)2-s + (−0.866 + 0.499i)3-s + (−1.36 − 2.35i)4-s + (−0.866 − 0.499i)5-s + 1.92i·6-s − 3.32·8-s + (0.5 − 0.866i)9-s + (−1.67 + 0.964i)10-s + (2.35 + 1.36i)12-s + 1.00·15-s + (−1.84 + 3.19i)16-s + (−0.364 + 0.210i)17-s + (−0.964 − 1.67i)18-s + (−0.145 − 0.0838i)19-s + 2.72i·20-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(0.379−0.925i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(0.379−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
0.379−0.925i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), 0.379−0.925i)
|
Particular Values
L(1) |
≈ |
0.278636+0.186919i |
L(21) |
≈ |
0.278636+0.186919i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.5−0.866i)T |
| 5 | 1+(1.93+1.11i)T |
| 7 | 1 |
good | 2 | 1+(−1.36+2.36i)T+(−1−1.73i)T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 13 | 1+13T2 |
| 17 | 1+(1.50−0.868i)T+(8.5−14.7i)T2 |
| 19 | 1+(0.633+0.365i)T+(9.5+16.4i)T2 |
| 23 | 1+(3.31−5.73i)T+(−11.5−19.9i)T2 |
| 29 | 1−29T2 |
| 31 | 1+(−3.54+2.04i)T+(15.5−26.8i)T2 |
| 37 | 1+(18.5+32.0i)T2 |
| 41 | 1+41T2 |
| 43 | 1−43T2 |
| 47 | 1+(11.8+6.83i)T+(23.5+40.7i)T2 |
| 53 | 1+(7.25+12.5i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(11.7+6.77i)T+(30.5+52.8i)T2 |
| 67 | 1+(33.5−58.0i)T2 |
| 71 | 1−71T2 |
| 73 | 1+(−36.5+63.2i)T2 |
| 79 | 1+(8.39−14.5i)T+(−39.5−68.4i)T2 |
| 83 | 1−10.1iT−83T2 |
| 89 | 1+(−44.5−77.0i)T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.949091474941318864866534035801, −9.410556183388722186928516084835, −8.257504797086117390326218640680, −6.61216688123674386066355707851, −5.54322369718546455992688227308, −4.80892248539293258061056788169, −4.04677631204267386943109816537, −3.29815486009201404755093691168, −1.58491331983702887863941245395, −0.14290459423679411181904900616,
2.96228899726449226571025117009, 4.31885424542533392178548343095, 4.80127392638770088870133528630, 6.13265413770993834575311731207, 6.46627550062594913351448772119, 7.43610335996495044186470683685, 7.926001553289077411904792843126, 8.844407678035175978787183421973, 10.36323941919505449438083017669, 11.42540002687409057169397383860