L(s) = 1 | + (0.701 + 1.21i)2-s + (−1.5 − 0.866i)3-s + (0.0157 − 0.0272i)4-s + (1.93 − 1.11i)5-s − 2.43i·6-s + 2.85·8-s + (1.5 + 2.59i)9-s + (2.71 + 1.56i)10-s + (−0.0472 + 0.0272i)12-s − 3.87·15-s + (1.96 + 3.40i)16-s + (−6.98 − 4.03i)17-s + (−2.10 + 3.64i)18-s + (5.76 − 3.32i)19-s − 0.0704i·20-s + ⋯ |
L(s) = 1 | + (0.496 + 0.859i)2-s + (−0.866 − 0.499i)3-s + (0.00787 − 0.0136i)4-s + (0.866 − 0.499i)5-s − 0.992i·6-s + 1.00·8-s + (0.5 + 0.866i)9-s + (0.859 + 0.496i)10-s + (−0.0136 + 0.00787i)12-s − 1.00·15-s + (0.491 + 0.852i)16-s + (−1.69 − 0.977i)17-s + (−0.496 + 0.859i)18-s + (1.32 − 0.763i)19-s − 0.0157i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.188i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 + 0.188i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.91895 - 0.182513i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.91895 - 0.182513i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 + 0.866i)T \) |
| 5 | \( 1 + (-1.93 + 1.11i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.701 - 1.21i)T + (-1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (6.98 + 4.03i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.76 + 3.32i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.111 + 0.192i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (-8.84 - 5.10i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + (0.886 - 0.511i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.54 + 9.60i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (13.0 - 7.53i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.91 + 5.05i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 15.0iT - 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40619543048951888408385927793, −9.550011786532002029413263756167, −8.487402118520978122412752119478, −7.27424949617216490460142953521, −6.70864321116137886435947618551, −5.97024156465507578616722291308, −5.00707427160934197894986710117, −4.67238919055432237512579345245, −2.41012262124259710933505301600, −1.06944182156322602394991522636,
1.55599893875830309781945744555, 2.80088856083354210935939408992, 3.92599101477187146245069125615, 4.78602030502439427327725364607, 5.88789743199492640759808375927, 6.60183819434215832765471560444, 7.68037992021194934683674501212, 9.059555977474144378979279061003, 10.01715317723032320004227329080, 10.50703337102210298161302633942