L(s) = 1 | − 1.51·2-s + (−1.66 − 0.476i)3-s + 0.294·4-s + (0.775 − 2.09i)5-s + (2.52 + 0.722i)6-s + 2.58·8-s + (2.54 + 1.58i)9-s + (−1.17 + 3.17i)10-s + 2.14i·11-s + (−0.490 − 0.140i)12-s − 3.48·13-s + (−2.29 + 3.12i)15-s − 4.50·16-s + 3.57i·17-s + (−3.85 − 2.40i)18-s − 1.22i·19-s + ⋯ |
L(s) = 1 | − 1.07·2-s + (−0.961 − 0.275i)3-s + 0.147·4-s + (0.346 − 0.937i)5-s + (1.02 + 0.294i)6-s + 0.913·8-s + (0.848 + 0.529i)9-s + (−0.371 + 1.00i)10-s + 0.647i·11-s + (−0.141 − 0.0405i)12-s − 0.965·13-s + (−0.591 + 0.806i)15-s − 1.12·16-s + 0.867i·17-s + (−0.908 − 0.566i)18-s − 0.280i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 - 0.221i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 - 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.500436 + 0.0562466i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.500436 + 0.0562466i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.66 + 0.476i)T \) |
| 5 | \( 1 + (-0.775 + 2.09i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 1.51T + 2T^{2} \) |
| 11 | \( 1 - 2.14iT - 11T^{2} \) |
| 13 | \( 1 + 3.48T + 13T^{2} \) |
| 17 | \( 1 - 3.57iT - 17T^{2} \) |
| 19 | \( 1 + 1.22iT - 19T^{2} \) |
| 23 | \( 1 - 1.51T + 23T^{2} \) |
| 29 | \( 1 - 5.95iT - 29T^{2} \) |
| 31 | \( 1 + 3.17iT - 31T^{2} \) |
| 37 | \( 1 - 7.80iT - 37T^{2} \) |
| 41 | \( 1 - 11.8T + 41T^{2} \) |
| 43 | \( 1 - 2.99iT - 43T^{2} \) |
| 47 | \( 1 - 6.10iT - 47T^{2} \) |
| 53 | \( 1 - 11.2T + 53T^{2} \) |
| 59 | \( 1 + 2.16T + 59T^{2} \) |
| 61 | \( 1 + 3.39iT - 61T^{2} \) |
| 67 | \( 1 - 10.3iT - 67T^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 - 6.85T + 73T^{2} \) |
| 79 | \( 1 + 1.88T + 79T^{2} \) |
| 83 | \( 1 + 9.10iT - 83T^{2} \) |
| 89 | \( 1 - 1.77T + 89T^{2} \) |
| 97 | \( 1 - 1.32T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.20195822778352397853823661247, −9.630888394188933091757836218470, −8.826538605411777022506774960746, −7.83986423520135101495408966361, −7.16334546629806346446861757023, −6.03218304013966704791314865584, −4.94303605644368709404316992082, −4.40253254363522616379739570003, −2.02674578096365277978578099842, −0.934157258717622031828074566707,
0.58413804265747357271270940679, 2.33943488734371595700592440606, 3.90642701935412226777154981957, 5.09101692645056914478478046596, 6.00054361514303294328229248228, 7.09619458023411752185073348117, 7.57143344896631631514888219502, 8.918102659414848953927303949689, 9.686775526056532084350634735722, 10.23542909689979247025013858767