Properties

Label 735.2.g.b.734.5
Level $735$
Weight $2$
Character 735.734
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(734,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.734");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 734.5
Character \(\chi\) \(=\) 735.734
Dual form 735.2.g.b.734.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.51469 q^{2} +(-1.66512 - 0.476833i) q^{3} +0.294280 q^{4} +(0.775809 - 2.09717i) q^{5} +(2.52214 + 0.722254i) q^{6} +2.58363 q^{8} +(2.54526 + 1.58797i) q^{9} +(-1.17511 + 3.17656i) q^{10} +2.14830i q^{11} +(-0.490013 - 0.140323i) q^{12} -3.48097 q^{13} +(-2.29182 + 3.12211i) q^{15} -4.50196 q^{16} +3.57718i q^{17} +(-3.85528 - 2.40528i) q^{18} -1.22234i q^{19} +(0.228305 - 0.617156i) q^{20} -3.25401i q^{22} +1.51469 q^{23} +(-4.30206 - 1.23196i) q^{24} +(-3.79624 - 3.25401i) q^{25} +5.27259 q^{26} +(-3.48097 - 3.85783i) q^{27} +5.95645i q^{29} +(3.47139 - 4.72902i) q^{30} -3.17656i q^{31} +1.65180 q^{32} +(1.02438 - 3.57718i) q^{33} -5.41832i q^{34} +(0.749020 + 0.467309i) q^{36} +7.80350i q^{37} +1.85147i q^{38} +(5.79624 + 1.65984i) q^{39} +(2.00441 - 5.41832i) q^{40} +11.8685 q^{41} +2.99294i q^{43} +0.632203i q^{44} +(5.30488 - 4.10588i) q^{45} -2.29428 q^{46} +6.10167i q^{47} +(7.49631 + 2.14668i) q^{48} +(5.75012 + 4.92881i) q^{50} +(1.70572 - 5.95645i) q^{51} -1.02438 q^{52} +11.2260 q^{53} +(5.27259 + 5.84341i) q^{54} +(4.50535 + 1.66667i) q^{55} +(-0.582853 + 2.03535i) q^{57} -9.02216i q^{58} -2.16935 q^{59} +(-0.674437 + 0.918776i) q^{60} -3.39872i q^{61} +4.81149i q^{62} +6.50196 q^{64} +(-2.70057 + 7.30019i) q^{65} +(-1.55162 + 5.41832i) q^{66} +10.3176i q^{67} +1.05269i q^{68} +(-2.52214 - 0.722254i) q^{69} -10.3968i q^{71} +(6.57602 + 4.10273i) q^{72} +6.85557 q^{73} -11.8199i q^{74} +(4.76958 + 7.22849i) q^{75} -0.359711i q^{76} +(-8.77950 - 2.51414i) q^{78} -1.88284 q^{79} +(-3.49266 + 9.44137i) q^{80} +(3.95670 + 8.08360i) q^{81} -17.9771 q^{82} -9.10486i q^{83} +(7.50196 + 2.77521i) q^{85} -4.53337i q^{86} +(2.84023 - 9.91821i) q^{87} +5.55042i q^{88} +1.77992 q^{89} +(-8.03524 + 6.21913i) q^{90} +0.445743 q^{92} +(-1.51469 + 5.28936i) q^{93} -9.24213i q^{94} +(-2.56346 - 0.948304i) q^{95} +(-2.75045 - 0.787632i) q^{96} +1.32584 q^{97} +(-3.41144 + 5.46799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 12 q^{9} - 24 q^{15} + 24 q^{16} + 24 q^{25} - 36 q^{30} + 84 q^{36} + 24 q^{39} - 72 q^{46} + 24 q^{51} - 24 q^{60} + 24 q^{64} - 96 q^{79} + 12 q^{81} + 48 q^{85} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.51469 −1.07105 −0.535523 0.844521i \(-0.679886\pi\)
−0.535523 + 0.844521i \(0.679886\pi\)
\(3\) −1.66512 0.476833i −0.961358 0.275300i
\(4\) 0.294280 0.147140
\(5\) 0.775809 2.09717i 0.346952 0.937883i
\(6\) 2.52214 + 0.722254i 1.02966 + 0.294859i
\(7\) 0 0
\(8\) 2.58363 0.913452
\(9\) 2.54526 + 1.58797i 0.848420 + 0.529323i
\(10\) −1.17511 + 3.17656i −0.371602 + 1.00452i
\(11\) 2.14830i 0.647737i 0.946102 + 0.323869i \(0.104984\pi\)
−0.946102 + 0.323869i \(0.895016\pi\)
\(12\) −0.490013 0.140323i −0.141454 0.0405077i
\(13\) −3.48097 −0.965448 −0.482724 0.875773i \(-0.660353\pi\)
−0.482724 + 0.875773i \(0.660353\pi\)
\(14\) 0 0
\(15\) −2.29182 + 3.12211i −0.591745 + 0.806126i
\(16\) −4.50196 −1.12549
\(17\) 3.57718i 0.867594i 0.901011 + 0.433797i \(0.142827\pi\)
−0.901011 + 0.433797i \(0.857173\pi\)
\(18\) −3.85528 2.40528i −0.908697 0.566930i
\(19\) 1.22234i 0.280425i −0.990121 0.140212i \(-0.955222\pi\)
0.990121 0.140212i \(-0.0447785\pi\)
\(20\) 0.228305 0.617156i 0.0510506 0.138000i
\(21\) 0 0
\(22\) 3.25401i 0.693757i
\(23\) 1.51469 0.315834 0.157917 0.987452i \(-0.449522\pi\)
0.157917 + 0.987452i \(0.449522\pi\)
\(24\) −4.30206 1.23196i −0.878155 0.251473i
\(25\) −3.79624 3.25401i −0.759248 0.650801i
\(26\) 5.27259 1.03404
\(27\) −3.48097 3.85783i −0.669913 0.742439i
\(28\) 0 0
\(29\) 5.95645i 1.10608i 0.833153 + 0.553042i \(0.186533\pi\)
−0.833153 + 0.553042i \(0.813467\pi\)
\(30\) 3.47139 4.72902i 0.633786 0.863398i
\(31\) 3.17656i 0.570527i −0.958449 0.285263i \(-0.907919\pi\)
0.958449 0.285263i \(-0.0920811\pi\)
\(32\) 1.65180 0.291999
\(33\) 1.02438 3.57718i 0.178322 0.622708i
\(34\) 5.41832i 0.929234i
\(35\) 0 0
\(36\) 0.749020 + 0.467309i 0.124837 + 0.0778848i
\(37\) 7.80350i 1.28289i 0.767170 + 0.641444i \(0.221664\pi\)
−0.767170 + 0.641444i \(0.778336\pi\)
\(38\) 1.85147i 0.300348i
\(39\) 5.79624 + 1.65984i 0.928141 + 0.265788i
\(40\) 2.00441 5.41832i 0.316925 0.856711i
\(41\) 11.8685 1.85355 0.926773 0.375622i \(-0.122571\pi\)
0.926773 + 0.375622i \(0.122571\pi\)
\(42\) 0 0
\(43\) 2.99294i 0.456419i 0.973612 + 0.228209i \(0.0732871\pi\)
−0.973612 + 0.228209i \(0.926713\pi\)
\(44\) 0.632203i 0.0953082i
\(45\) 5.30488 4.10588i 0.790805 0.612068i
\(46\) −2.29428 −0.338273
\(47\) 6.10167i 0.890020i 0.895526 + 0.445010i \(0.146800\pi\)
−0.895526 + 0.445010i \(0.853200\pi\)
\(48\) 7.49631 + 2.14668i 1.08200 + 0.309847i
\(49\) 0 0
\(50\) 5.75012 + 4.92881i 0.813190 + 0.697038i
\(51\) 1.70572 5.95645i 0.238849 0.834069i
\(52\) −1.02438 −0.142056
\(53\) 11.2260 1.54201 0.771006 0.636828i \(-0.219754\pi\)
0.771006 + 0.636828i \(0.219754\pi\)
\(54\) 5.27259 + 5.84341i 0.717508 + 0.795187i
\(55\) 4.50535 + 1.66667i 0.607502 + 0.224734i
\(56\) 0 0
\(57\) −0.582853 + 2.03535i −0.0772008 + 0.269589i
\(58\) 9.02216i 1.18467i
\(59\) −2.16935 −0.282425 −0.141213 0.989979i \(-0.545100\pi\)
−0.141213 + 0.989979i \(0.545100\pi\)
\(60\) −0.674437 + 0.918776i −0.0870694 + 0.118613i
\(61\) 3.39872i 0.435162i −0.976042 0.217581i \(-0.930183\pi\)
0.976042 0.217581i \(-0.0698166\pi\)
\(62\) 4.81149i 0.611060i
\(63\) 0 0
\(64\) 6.50196 0.812745
\(65\) −2.70057 + 7.30019i −0.334964 + 0.905477i
\(66\) −1.55162 + 5.41832i −0.190991 + 0.666949i
\(67\) 10.3176i 1.26050i 0.776392 + 0.630250i \(0.217048\pi\)
−0.776392 + 0.630250i \(0.782952\pi\)
\(68\) 1.05269i 0.127658i
\(69\) −2.52214 0.722254i −0.303630 0.0869491i
\(70\) 0 0
\(71\) 10.3968i 1.23387i −0.787013 0.616936i \(-0.788374\pi\)
0.787013 0.616936i \(-0.211626\pi\)
\(72\) 6.57602 + 4.10273i 0.774991 + 0.483512i
\(73\) 6.85557 0.802384 0.401192 0.915994i \(-0.368596\pi\)
0.401192 + 0.915994i \(0.368596\pi\)
\(74\) 11.8199i 1.37403i
\(75\) 4.76958 + 7.22849i 0.550744 + 0.834674i
\(76\) 0.359711i 0.0412617i
\(77\) 0 0
\(78\) −8.77950 2.51414i −0.994082 0.284671i
\(79\) −1.88284 −0.211836 −0.105918 0.994375i \(-0.533778\pi\)
−0.105918 + 0.994375i \(0.533778\pi\)
\(80\) −3.49266 + 9.44137i −0.390491 + 1.05558i
\(81\) 3.95670 + 8.08360i 0.439633 + 0.898177i
\(82\) −17.9771 −1.98523
\(83\) 9.10486i 0.999388i −0.866202 0.499694i \(-0.833446\pi\)
0.866202 0.499694i \(-0.166554\pi\)
\(84\) 0 0
\(85\) 7.50196 + 2.77521i 0.813702 + 0.301014i
\(86\) 4.53337i 0.488846i
\(87\) 2.84023 9.91821i 0.304505 1.06334i
\(88\) 5.55042i 0.591677i
\(89\) 1.77992 0.188672 0.0943358 0.995540i \(-0.469927\pi\)
0.0943358 + 0.995540i \(0.469927\pi\)
\(90\) −8.03524 + 6.21913i −0.846989 + 0.655554i
\(91\) 0 0
\(92\) 0.445743 0.0464719
\(93\) −1.51469 + 5.28936i −0.157066 + 0.548481i
\(94\) 9.24213i 0.953253i
\(95\) −2.56346 0.948304i −0.263005 0.0972940i
\(96\) −2.75045 0.787632i −0.280716 0.0803874i
\(97\) 1.32584 0.134618 0.0673092 0.997732i \(-0.478559\pi\)
0.0673092 + 0.997732i \(0.478559\pi\)
\(98\) 0 0
\(99\) −3.41144 + 5.46799i −0.342863 + 0.549553i
\(100\) −1.11716 0.957590i −0.111716 0.0957590i
\(101\) 13.4201 1.33535 0.667675 0.744453i \(-0.267290\pi\)
0.667675 + 0.744453i \(0.267290\pi\)
\(102\) −2.58363 + 9.02216i −0.255818 + 0.893327i
\(103\) 5.78683 0.570194 0.285097 0.958499i \(-0.407974\pi\)
0.285097 + 0.958499i \(0.407974\pi\)
\(104\) −8.99355 −0.881890
\(105\) 0 0
\(106\) −17.0039 −1.65157
\(107\) 3.88645 0.375717 0.187859 0.982196i \(-0.439845\pi\)
0.187859 + 0.982196i \(0.439845\pi\)
\(108\) −1.02438 1.13528i −0.0985711 0.109243i
\(109\) 5.20768 0.498805 0.249403 0.968400i \(-0.419766\pi\)
0.249403 + 0.968400i \(0.419766\pi\)
\(110\) −6.82420 2.52449i −0.650662 0.240701i
\(111\) 3.72097 12.9938i 0.353179 1.23331i
\(112\) 0 0
\(113\) 9.36235 0.880736 0.440368 0.897817i \(-0.354848\pi\)
0.440368 + 0.897817i \(0.354848\pi\)
\(114\) 0.882841 3.08292i 0.0826856 0.288742i
\(115\) 1.17511 3.17656i 0.109579 0.296216i
\(116\) 1.75286i 0.162749i
\(117\) −8.85998 5.52768i −0.819105 0.511034i
\(118\) 3.28589 0.302490
\(119\) 0 0
\(120\) −5.92121 + 8.06639i −0.540530 + 0.736357i
\(121\) 6.38480 0.580436
\(122\) 5.14801i 0.466079i
\(123\) −19.7625 5.65929i −1.78192 0.510281i
\(124\) 0.934799i 0.0839474i
\(125\) −9.76936 + 5.43687i −0.873798 + 0.486289i
\(126\) 0 0
\(127\) 9.57778i 0.849891i −0.905219 0.424945i \(-0.860293\pi\)
0.905219 0.424945i \(-0.139707\pi\)
\(128\) −13.1520 −1.16249
\(129\) 1.42713 4.98361i 0.125652 0.438782i
\(130\) 4.09052 11.0575i 0.358762 0.969807i
\(131\) −9.45016 −0.825665 −0.412832 0.910807i \(-0.635460\pi\)
−0.412832 + 0.910807i \(0.635460\pi\)
\(132\) 0.301455 1.05269i 0.0262383 0.0916253i
\(133\) 0 0
\(134\) 15.6280i 1.35005i
\(135\) −10.7911 + 4.30725i −0.928749 + 0.370709i
\(136\) 9.24213i 0.792506i
\(137\) 10.7055 0.914634 0.457317 0.889304i \(-0.348810\pi\)
0.457317 + 0.889304i \(0.348810\pi\)
\(138\) 3.82026 + 1.09399i 0.325202 + 0.0931265i
\(139\) 4.11136i 0.348721i 0.984682 + 0.174360i \(0.0557858\pi\)
−0.984682 + 0.174360i \(0.944214\pi\)
\(140\) 0 0
\(141\) 2.90948 10.1600i 0.245022 0.855629i
\(142\) 15.7479i 1.32153i
\(143\) 7.47817i 0.625356i
\(144\) −11.4587 7.14898i −0.954888 0.595748i
\(145\) 12.4917 + 4.62107i 1.03738 + 0.383759i
\(146\) −10.3841 −0.859390
\(147\) 0 0
\(148\) 2.29642i 0.188764i
\(149\) 2.54374i 0.208391i 0.994557 + 0.104196i \(0.0332268\pi\)
−0.994557 + 0.104196i \(0.966773\pi\)
\(150\) −7.22443 10.9489i −0.589872 0.893975i
\(151\) −5.61912 −0.457277 −0.228639 0.973511i \(-0.573427\pi\)
−0.228639 + 0.973511i \(0.573427\pi\)
\(152\) 3.15808i 0.256154i
\(153\) −5.68046 + 9.10486i −0.459238 + 0.736084i
\(154\) 0 0
\(155\) −6.66178 2.46440i −0.535087 0.197946i
\(156\) 1.70572 + 0.488459i 0.136567 + 0.0391080i
\(157\) −13.9239 −1.11125 −0.555623 0.831434i \(-0.687520\pi\)
−0.555623 + 0.831434i \(0.687520\pi\)
\(158\) 2.85192 0.226886
\(159\) −18.6927 5.35294i −1.48243 0.424516i
\(160\) 1.28148 3.46410i 0.101310 0.273861i
\(161\) 0 0
\(162\) −5.99317 12.2441i −0.470868 0.961990i
\(163\) 4.07070i 0.318842i −0.987211 0.159421i \(-0.949037\pi\)
0.987211 0.159421i \(-0.0509627\pi\)
\(164\) 3.49266 0.272731
\(165\) −6.70724 4.92351i −0.522158 0.383295i
\(166\) 13.7910i 1.07039i
\(167\) 13.9722i 1.08120i 0.841279 + 0.540602i \(0.181803\pi\)
−0.841279 + 0.540602i \(0.818197\pi\)
\(168\) 0 0
\(169\) −0.882841 −0.0679109
\(170\) −11.3631 4.20358i −0.871512 0.322400i
\(171\) 1.94104 3.11118i 0.148435 0.237918i
\(172\) 0.880763i 0.0671576i
\(173\) 10.0027i 0.760488i 0.924886 + 0.380244i \(0.124160\pi\)
−0.924886 + 0.380244i \(0.875840\pi\)
\(174\) −4.30206 + 15.0230i −0.326139 + 1.13889i
\(175\) 0 0
\(176\) 9.67157i 0.729022i
\(177\) 3.61223 + 1.03442i 0.271512 + 0.0777516i
\(178\) −2.69603 −0.202076
\(179\) 16.2095i 1.21155i 0.795634 + 0.605777i \(0.207138\pi\)
−0.795634 + 0.605777i \(0.792862\pi\)
\(180\) 1.56112 1.20828i 0.116359 0.0900599i
\(181\) 19.4123i 1.44290i 0.692465 + 0.721451i \(0.256525\pi\)
−0.692465 + 0.721451i \(0.743475\pi\)
\(182\) 0 0
\(183\) −1.62062 + 5.65929i −0.119800 + 0.418347i
\(184\) 3.91340 0.288500
\(185\) 16.3653 + 6.05403i 1.20320 + 0.445101i
\(186\) 2.29428 8.01172i 0.168225 0.587448i
\(187\) −7.68487 −0.561973
\(188\) 1.79560i 0.130958i
\(189\) 0 0
\(190\) 3.88284 + 1.43639i 0.281691 + 0.104206i
\(191\) 12.7038i 0.919212i −0.888123 0.459606i \(-0.847991\pi\)
0.888123 0.459606i \(-0.152009\pi\)
\(192\) −10.8266 3.10035i −0.781339 0.223748i
\(193\) 20.8195i 1.49862i −0.662218 0.749311i \(-0.730385\pi\)
0.662218 0.749311i \(-0.269615\pi\)
\(194\) −2.00823 −0.144182
\(195\) 7.97775 10.8680i 0.571298 0.778272i
\(196\) 0 0
\(197\) −2.23465 −0.159212 −0.0796062 0.996826i \(-0.525366\pi\)
−0.0796062 + 0.996826i \(0.525366\pi\)
\(198\) 5.16727 8.28229i 0.367222 0.588597i
\(199\) 24.9220i 1.76667i 0.468739 + 0.883337i \(0.344708\pi\)
−0.468739 + 0.883337i \(0.655292\pi\)
\(200\) −9.80809 8.40716i −0.693537 0.594476i
\(201\) 4.91979 17.1801i 0.347016 1.21179i
\(202\) −20.3273 −1.43022
\(203\) 0 0
\(204\) 0.501960 1.75286i 0.0351442 0.122725i
\(205\) 9.20768 24.8902i 0.643092 1.73841i
\(206\) −8.76525 −0.610704
\(207\) 3.85528 + 2.40528i 0.267960 + 0.167179i
\(208\) 15.6712 1.08660
\(209\) 2.62596 0.181641
\(210\) 0 0
\(211\) −6.61520 −0.455409 −0.227705 0.973730i \(-0.573122\pi\)
−0.227705 + 0.973730i \(0.573122\pi\)
\(212\) 3.30360 0.226892
\(213\) −4.95754 + 17.3119i −0.339685 + 1.18619i
\(214\) −5.88676 −0.402411
\(215\) 6.27670 + 2.32195i 0.428067 + 0.158356i
\(216\) −8.99355 9.96721i −0.611934 0.678183i
\(217\) 0 0
\(218\) −7.88801 −0.534243
\(219\) −11.4154 3.26896i −0.771378 0.220896i
\(220\) 1.32584 + 0.490469i 0.0893879 + 0.0330674i
\(221\) 12.4521i 0.837617i
\(222\) −5.63611 + 19.6815i −0.378271 + 1.32094i
\(223\) −4.31027 −0.288637 −0.144318 0.989531i \(-0.546099\pi\)
−0.144318 + 0.989531i \(0.546099\pi\)
\(224\) 0 0
\(225\) −4.49515 14.3106i −0.299677 0.954041i
\(226\) −14.1810 −0.943309
\(227\) 11.1112i 0.737478i 0.929533 + 0.368739i \(0.120210\pi\)
−0.929533 + 0.368739i \(0.879790\pi\)
\(228\) −0.171522 + 0.598963i −0.0113593 + 0.0396673i
\(229\) 9.97400i 0.659101i 0.944138 + 0.329550i \(0.106897\pi\)
−0.944138 + 0.329550i \(0.893103\pi\)
\(230\) −1.77992 + 4.81149i −0.117365 + 0.317261i
\(231\) 0 0
\(232\) 15.3893i 1.01036i
\(233\) 20.6287 1.35143 0.675716 0.737162i \(-0.263835\pi\)
0.675716 + 0.737162i \(0.263835\pi\)
\(234\) 13.4201 + 8.37271i 0.877300 + 0.547341i
\(235\) 12.7962 + 4.73373i 0.834735 + 0.308795i
\(236\) −0.638397 −0.0415561
\(237\) 3.13516 + 0.897801i 0.203650 + 0.0583184i
\(238\) 0 0
\(239\) 2.87353i 0.185873i 0.995672 + 0.0929365i \(0.0296254\pi\)
−0.995672 + 0.0929365i \(0.970375\pi\)
\(240\) 10.3177 14.0556i 0.666003 0.907286i
\(241\) 26.0722i 1.67946i −0.543007 0.839728i \(-0.682714\pi\)
0.543007 0.839728i \(-0.317286\pi\)
\(242\) −9.67098 −0.621674
\(243\) −2.73386 15.3469i −0.175377 0.984501i
\(244\) 1.00018i 0.0640298i
\(245\) 0 0
\(246\) 29.9340 + 8.57206i 1.90852 + 0.546534i
\(247\) 4.25494i 0.270735i
\(248\) 8.20706i 0.521149i
\(249\) −4.34150 + 15.1607i −0.275131 + 0.960771i
\(250\) 14.7975 8.23516i 0.935878 0.520837i
\(251\) −0.161120 −0.0101698 −0.00508489 0.999987i \(-0.501619\pi\)
−0.00508489 + 0.999987i \(0.501619\pi\)
\(252\) 0 0
\(253\) 3.25401i 0.204578i
\(254\) 14.5074i 0.910272i
\(255\) −11.1684 8.19825i −0.699390 0.513394i
\(256\) 6.91732 0.432332
\(257\) 13.1303i 0.819045i 0.912300 + 0.409522i \(0.134305\pi\)
−0.912300 + 0.409522i \(0.865695\pi\)
\(258\) −2.16166 + 7.54861i −0.134579 + 0.469956i
\(259\) 0 0
\(260\) −0.794725 + 2.14830i −0.0492867 + 0.133232i
\(261\) −9.45866 + 15.1607i −0.585476 + 0.938424i
\(262\) 14.3141 0.884325
\(263\) 17.7305 1.09331 0.546655 0.837358i \(-0.315901\pi\)
0.546655 + 0.837358i \(0.315901\pi\)
\(264\) 2.64663 9.24213i 0.162889 0.568814i
\(265\) 8.70925 23.5429i 0.535005 1.44623i
\(266\) 0 0
\(267\) −2.96379 0.848727i −0.181381 0.0519412i
\(268\) 3.03628i 0.185470i
\(269\) 4.40588 0.268631 0.134316 0.990939i \(-0.457116\pi\)
0.134316 + 0.990939i \(0.457116\pi\)
\(270\) 16.3451 6.52414i 0.994733 0.397046i
\(271\) 23.5890i 1.43293i 0.697623 + 0.716465i \(0.254241\pi\)
−0.697623 + 0.716465i \(0.745759\pi\)
\(272\) 16.1043i 0.976469i
\(273\) 0 0
\(274\) −16.2155 −0.979615
\(275\) 6.99059 8.15547i 0.421548 0.491793i
\(276\) −0.742216 0.212545i −0.0446762 0.0127937i
\(277\) 12.8318i 0.770987i 0.922710 + 0.385494i \(0.125969\pi\)
−0.922710 + 0.385494i \(0.874031\pi\)
\(278\) 6.22742i 0.373496i
\(279\) 5.04428 8.08517i 0.301993 0.484046i
\(280\) 0 0
\(281\) 21.2397i 1.26706i 0.773719 + 0.633528i \(0.218394\pi\)
−0.773719 + 0.633528i \(0.781606\pi\)
\(282\) −4.40695 + 15.3893i −0.262430 + 0.916418i
\(283\) −6.55412 −0.389602 −0.194801 0.980843i \(-0.562406\pi\)
−0.194801 + 0.980843i \(0.562406\pi\)
\(284\) 3.05957i 0.181552i
\(285\) 3.81629 + 2.80138i 0.226057 + 0.165940i
\(286\) 11.3271i 0.669786i
\(287\) 0 0
\(288\) 4.20426 + 2.62301i 0.247738 + 0.154562i
\(289\) 4.20376 0.247280
\(290\) −18.9210 6.99947i −1.11108 0.411023i
\(291\) −2.20768 0.632203i −0.129416 0.0370604i
\(292\) 2.01746 0.118063
\(293\) 3.71937i 0.217288i −0.994081 0.108644i \(-0.965349\pi\)
0.994081 0.108644i \(-0.0346509\pi\)
\(294\) 0 0
\(295\) −1.68300 + 4.54949i −0.0979881 + 0.264882i
\(296\) 20.1614i 1.17186i
\(297\) 8.28778 7.47817i 0.480906 0.433928i
\(298\) 3.85297i 0.223197i
\(299\) −5.27259 −0.304922
\(300\) 1.40359 + 2.12720i 0.0810366 + 0.122814i
\(301\) 0 0
\(302\) 8.51121 0.489765
\(303\) −22.3461 6.39915i −1.28375 0.367622i
\(304\) 5.50294i 0.315615i
\(305\) −7.12770 2.63676i −0.408131 0.150980i
\(306\) 8.60413 13.7910i 0.491865 0.788381i
\(307\) 11.2102 0.639800 0.319900 0.947451i \(-0.396351\pi\)
0.319900 + 0.947451i \(0.396351\pi\)
\(308\) 0 0
\(309\) −9.63578 2.75935i −0.548160 0.156974i
\(310\) 10.0905 + 3.73280i 0.573103 + 0.212009i
\(311\) −18.9210 −1.07291 −0.536456 0.843929i \(-0.680237\pi\)
−0.536456 + 0.843929i \(0.680237\pi\)
\(312\) 14.9754 + 4.28842i 0.847813 + 0.242784i
\(313\) −16.3805 −0.925879 −0.462940 0.886390i \(-0.653205\pi\)
−0.462940 + 0.886390i \(0.653205\pi\)
\(314\) 21.0903 1.19020
\(315\) 0 0
\(316\) −0.554083 −0.0311696
\(317\) −10.1167 −0.568212 −0.284106 0.958793i \(-0.591697\pi\)
−0.284106 + 0.958793i \(0.591697\pi\)
\(318\) 28.3136 + 8.10803i 1.58775 + 0.454676i
\(319\) −12.7962 −0.716452
\(320\) 5.04428 13.6357i 0.281984 0.762259i
\(321\) −6.47141 1.85319i −0.361199 0.103435i
\(322\) 0 0
\(323\) 4.37254 0.243295
\(324\) 1.16438 + 2.37884i 0.0646877 + 0.132158i
\(325\) 13.2146 + 11.3271i 0.733014 + 0.628315i
\(326\) 6.16584i 0.341494i
\(327\) −8.67142 2.48319i −0.479531 0.137321i
\(328\) 30.6638 1.69313
\(329\) 0 0
\(330\) 10.1594 + 7.45759i 0.559255 + 0.410527i
\(331\) 19.2755 1.05948 0.529738 0.848161i \(-0.322290\pi\)
0.529738 + 0.848161i \(0.322290\pi\)
\(332\) 2.67938i 0.147050i
\(333\) −12.3917 + 19.8619i −0.679062 + 1.08843i
\(334\) 21.1636i 1.15802i
\(335\) 21.6378 + 8.00452i 1.18220 + 0.437334i
\(336\) 0 0
\(337\) 23.6381i 1.28765i −0.765174 0.643824i \(-0.777347\pi\)
0.765174 0.643824i \(-0.222653\pi\)
\(338\) 1.33723 0.0727357
\(339\) −15.5895 4.46428i −0.846703 0.242466i
\(340\) 2.20768 + 0.816690i 0.119728 + 0.0442913i
\(341\) 6.82420 0.369551
\(342\) −2.94008 + 4.71247i −0.158981 + 0.254821i
\(343\) 0 0
\(344\) 7.73266i 0.416917i
\(345\) −3.47139 + 4.72902i −0.186893 + 0.254602i
\(346\) 15.1509i 0.814518i
\(347\) −15.9072 −0.853943 −0.426971 0.904265i \(-0.640420\pi\)
−0.426971 + 0.904265i \(0.640420\pi\)
\(348\) 0.835824 2.91873i 0.0448049 0.156461i
\(349\) 0.0192397i 0.00102988i 1.00000 0.000514938i \(0.000163910\pi\)
−1.00000 0.000514938i \(0.999836\pi\)
\(350\) 0 0
\(351\) 12.1172 + 13.4290i 0.646766 + 0.716786i
\(352\) 3.54856i 0.189139i
\(353\) 25.4200i 1.35297i −0.736457 0.676484i \(-0.763503\pi\)
0.736457 0.676484i \(-0.236497\pi\)
\(354\) −5.47140 1.56682i −0.290802 0.0832755i
\(355\) −21.8038 8.06593i −1.15723 0.428095i
\(356\) 0.523797 0.0277612
\(357\) 0 0
\(358\) 24.5523i 1.29763i
\(359\) 24.1789i 1.27611i −0.769989 0.638057i \(-0.779738\pi\)
0.769989 0.638057i \(-0.220262\pi\)
\(360\) 13.7059 10.6081i 0.722362 0.559095i
\(361\) 17.5059 0.921362
\(362\) 29.4035i 1.54542i
\(363\) −10.6315 3.04448i −0.558007 0.159794i
\(364\) 0 0
\(365\) 5.31861 14.3773i 0.278389 0.752542i
\(366\) 2.45474 8.57206i 0.128311 0.448069i
\(367\) 9.07272 0.473592 0.236796 0.971559i \(-0.423903\pi\)
0.236796 + 0.971559i \(0.423903\pi\)
\(368\) −6.81907 −0.355468
\(369\) 30.2084 + 18.8468i 1.57259 + 0.981125i
\(370\) −24.7883 9.16996i −1.28868 0.476724i
\(371\) 0 0
\(372\) −0.445743 + 1.55655i −0.0231107 + 0.0807035i
\(373\) 15.5637i 0.805856i 0.915232 + 0.402928i \(0.132007\pi\)
−0.915232 + 0.402928i \(0.867993\pi\)
\(374\) 11.6402 0.601899
\(375\) 18.8597 4.39470i 0.973908 0.226941i
\(376\) 15.7645i 0.812991i
\(377\) 20.7342i 1.06787i
\(378\) 0 0
\(379\) 34.0984 1.75152 0.875758 0.482751i \(-0.160362\pi\)
0.875758 + 0.482751i \(0.160362\pi\)
\(380\) −0.754376 0.279067i −0.0386987 0.0143159i
\(381\) −4.56700 + 15.9482i −0.233975 + 0.817049i
\(382\) 19.2422i 0.984519i
\(383\) 10.5767i 0.540442i 0.962798 + 0.270221i \(0.0870967\pi\)
−0.962798 + 0.270221i \(0.912903\pi\)
\(384\) 21.8997 + 6.27133i 1.11757 + 0.320032i
\(385\) 0 0
\(386\) 31.5351i 1.60509i
\(387\) −4.75270 + 7.61781i −0.241593 + 0.387235i
\(388\) 0.390168 0.0198078
\(389\) 16.9347i 0.858624i 0.903156 + 0.429312i \(0.141244\pi\)
−0.903156 + 0.429312i \(0.858756\pi\)
\(390\) −12.0838 + 16.4616i −0.611887 + 0.833565i
\(391\) 5.41832i 0.274016i
\(392\) 0 0
\(393\) 15.7357 + 4.50615i 0.793760 + 0.227305i
\(394\) 3.38480 0.170524
\(395\) −1.46073 + 3.94864i −0.0734971 + 0.198677i
\(396\) −1.00392 + 1.60912i −0.0504489 + 0.0808614i
\(397\) −0.407827 −0.0204682 −0.0102341 0.999948i \(-0.503258\pi\)
−0.0102341 + 0.999948i \(0.503258\pi\)
\(398\) 37.7491i 1.89219i
\(399\) 0 0
\(400\) 17.0905 + 14.6494i 0.854526 + 0.732470i
\(401\) 27.9786i 1.39719i 0.715519 + 0.698593i \(0.246190\pi\)
−0.715519 + 0.698593i \(0.753810\pi\)
\(402\) −7.45195 + 26.0225i −0.371670 + 1.29789i
\(403\) 11.0575i 0.550814i
\(404\) 3.94927 0.196484
\(405\) 20.0223 2.02654i 0.994917 0.100700i
\(406\) 0 0
\(407\) −16.7643 −0.830974
\(408\) 4.40695 15.3893i 0.218177 0.761882i
\(409\) 2.62071i 0.129586i −0.997899 0.0647929i \(-0.979361\pi\)
0.997899 0.0647929i \(-0.0206387\pi\)
\(410\) −13.9468 + 37.7009i −0.688782 + 1.86192i
\(411\) −17.8260 5.10475i −0.879291 0.251799i
\(412\) 1.70295 0.0838984
\(413\) 0 0
\(414\) −5.83954 3.64325i −0.286998 0.179056i
\(415\) −19.0944 7.06364i −0.937309 0.346740i
\(416\) −5.74986 −0.281910
\(417\) 1.96043 6.84591i 0.0960027 0.335246i
\(418\) −3.97751 −0.194546
\(419\) 8.39649 0.410195 0.205098 0.978742i \(-0.434249\pi\)
0.205098 + 0.978742i \(0.434249\pi\)
\(420\) 0 0
\(421\) −7.84952 −0.382562 −0.191281 0.981535i \(-0.561264\pi\)
−0.191281 + 0.981535i \(0.561264\pi\)
\(422\) 10.0200 0.487764
\(423\) −9.68927 + 15.5303i −0.471109 + 0.755111i
\(424\) 29.0039 1.40855
\(425\) 11.6402 13.5798i 0.564632 0.658719i
\(426\) 7.50912 26.2222i 0.363818 1.27047i
\(427\) 0 0
\(428\) 1.14371 0.0552831
\(429\) −3.56584 + 12.4521i −0.172160 + 0.601192i
\(430\) −9.50724 3.51703i −0.458480 0.169606i
\(431\) 12.2576i 0.590428i −0.955431 0.295214i \(-0.904609\pi\)
0.955431 0.295214i \(-0.0953910\pi\)
\(432\) 15.6712 + 17.3678i 0.753981 + 0.835608i
\(433\) −5.13957 −0.246992 −0.123496 0.992345i \(-0.539411\pi\)
−0.123496 + 0.992345i \(0.539411\pi\)
\(434\) 0 0
\(435\) −18.5967 13.6511i −0.891643 0.654519i
\(436\) 1.53252 0.0733943
\(437\) 1.85147i 0.0885677i
\(438\) 17.2907 + 4.95146i 0.826182 + 0.236590i
\(439\) 16.6993i 0.797013i −0.917165 0.398507i \(-0.869529\pi\)
0.917165 0.398507i \(-0.130471\pi\)
\(440\) 11.6402 + 4.30607i 0.554924 + 0.205284i
\(441\) 0 0
\(442\) 18.8610i 0.897127i
\(443\) −0.252220 −0.0119833 −0.00599167 0.999982i \(-0.501907\pi\)
−0.00599167 + 0.999982i \(0.501907\pi\)
\(444\) 1.09501 3.82381i 0.0519668 0.181470i
\(445\) 1.38088 3.73280i 0.0654601 0.176952i
\(446\) 6.52871 0.309144
\(447\) 1.21294 4.23563i 0.0573700 0.200339i
\(448\) 0 0
\(449\) 28.8710i 1.36250i 0.732049 + 0.681252i \(0.238564\pi\)
−0.732049 + 0.681252i \(0.761436\pi\)
\(450\) 6.80875 + 21.6761i 0.320968 + 1.02182i
\(451\) 25.4971i 1.20061i
\(452\) 2.75516 0.129592
\(453\) 9.35652 + 2.67938i 0.439607 + 0.125888i
\(454\) 16.8300i 0.789873i
\(455\) 0 0
\(456\) −1.50588 + 5.25859i −0.0705193 + 0.246256i
\(457\) 24.0735i 1.12611i −0.826419 0.563056i \(-0.809625\pi\)
0.826419 0.563056i \(-0.190375\pi\)
\(458\) 15.1075i 0.705927i
\(459\) 13.8002 12.4521i 0.644136 0.581213i
\(460\) 0.345812 0.934799i 0.0161235 0.0435852i
\(461\) −39.8709 −1.85697 −0.928486 0.371367i \(-0.878889\pi\)
−0.928486 + 0.371367i \(0.878889\pi\)
\(462\) 0 0
\(463\) 29.8417i 1.38686i 0.720524 + 0.693430i \(0.243901\pi\)
−0.720524 + 0.693430i \(0.756099\pi\)
\(464\) 26.8157i 1.24489i
\(465\) 9.91757 + 7.28009i 0.459916 + 0.337606i
\(466\) −31.2461 −1.44745
\(467\) 4.18164i 0.193503i 0.995309 + 0.0967515i \(0.0308452\pi\)
−0.995309 + 0.0967515i \(0.969155\pi\)
\(468\) −2.60732 1.62669i −0.120523 0.0751937i
\(469\) 0 0
\(470\) −19.3823 7.17013i −0.894039 0.330733i
\(471\) 23.1850 + 6.63937i 1.06831 + 0.305926i
\(472\) −5.60480 −0.257982
\(473\) −6.42973 −0.295640
\(474\) −4.74879 1.35989i −0.218119 0.0624618i
\(475\) −3.97751 + 4.64030i −0.182501 + 0.212912i
\(476\) 0 0
\(477\) 28.5731 + 17.8266i 1.30827 + 0.816223i
\(478\) 4.35250i 0.199079i
\(479\) −27.9352 −1.27639 −0.638196 0.769874i \(-0.720319\pi\)
−0.638196 + 0.769874i \(0.720319\pi\)
\(480\) −3.78562 + 5.15710i −0.172789 + 0.235388i
\(481\) 27.1638i 1.23856i
\(482\) 39.4912i 1.79878i
\(483\) 0 0
\(484\) 1.87892 0.0854055
\(485\) 1.02860 2.78050i 0.0467062 0.126256i
\(486\) 4.14094 + 23.2457i 0.187837 + 1.05445i
\(487\) 37.2432i 1.68765i −0.536618 0.843826i \(-0.680298\pi\)
0.536618 0.843826i \(-0.319702\pi\)
\(488\) 8.78105i 0.397500i
\(489\) −1.94104 + 6.77821i −0.0877770 + 0.306521i
\(490\) 0 0
\(491\) 5.90572i 0.266522i 0.991081 + 0.133261i \(0.0425448\pi\)
−0.991081 + 0.133261i \(0.957455\pi\)
\(492\) −5.81571 1.66542i −0.262192 0.0750828i
\(493\) −21.3073 −0.959632
\(494\) 6.44490i 0.289970i
\(495\) 8.82067 + 11.3965i 0.396460 + 0.512234i
\(496\) 14.3007i 0.642122i
\(497\) 0 0
\(498\) 6.57602 22.9637i 0.294678 1.02903i
\(499\) −18.7402 −0.838926 −0.419463 0.907772i \(-0.637782\pi\)
−0.419463 + 0.907772i \(0.637782\pi\)
\(500\) −2.87493 + 1.59996i −0.128571 + 0.0715526i
\(501\) 6.66242 23.2655i 0.297655 1.03942i
\(502\) 0.244046 0.0108923
\(503\) 32.0398i 1.42858i 0.699849 + 0.714291i \(0.253251\pi\)
−0.699849 + 0.714291i \(0.746749\pi\)
\(504\) 0 0
\(505\) 10.4114 28.1442i 0.463303 1.25240i
\(506\) 4.92881i 0.219112i
\(507\) 1.47004 + 0.420968i 0.0652867 + 0.0186958i
\(508\) 2.81855i 0.125053i
\(509\) 19.1493 0.848778 0.424389 0.905480i \(-0.360489\pi\)
0.424389 + 0.905480i \(0.360489\pi\)
\(510\) 16.9166 + 12.4178i 0.749079 + 0.549869i
\(511\) 0 0
\(512\) 15.8265 0.699439
\(513\) −4.71559 + 4.25494i −0.208198 + 0.187860i
\(514\) 19.8883i 0.877235i
\(515\) 4.48948 12.1360i 0.197830 0.534775i
\(516\) 0.419977 1.46658i 0.0184885 0.0645625i
\(517\) −13.1082 −0.576499
\(518\) 0 0
\(519\) 4.76960 16.6557i 0.209362 0.731102i
\(520\) −6.97728 + 18.8610i −0.305974 + 0.827110i
\(521\) 3.88209 0.170077 0.0850387 0.996378i \(-0.472899\pi\)
0.0850387 + 0.996378i \(0.472899\pi\)
\(522\) 14.3269 22.9637i 0.627072 1.00510i
\(523\) 2.12383 0.0928687 0.0464343 0.998921i \(-0.485214\pi\)
0.0464343 + 0.998921i \(0.485214\pi\)
\(524\) −2.78100 −0.121488
\(525\) 0 0
\(526\) −26.8562 −1.17099
\(527\) 11.3631 0.494986
\(528\) −4.61172 + 16.1043i −0.200700 + 0.700851i
\(529\) −20.7057 −0.900249
\(530\) −13.1918 + 35.6601i −0.573015 + 1.54898i
\(531\) −5.52156 3.44486i −0.239615 0.149494i
\(532\) 0 0
\(533\) −41.3138 −1.78950
\(534\) 4.48922 + 1.28556i 0.194267 + 0.0556315i
\(535\) 3.01514 8.15055i 0.130356 0.352379i
\(536\) 26.6570i 1.15141i
\(537\) 7.72922 26.9908i 0.333541 1.16474i
\(538\) −6.67354 −0.287717
\(539\) 0 0
\(540\) −3.17561 + 1.26754i −0.136656 + 0.0545462i
\(541\) −15.1810 −0.652684 −0.326342 0.945252i \(-0.605816\pi\)
−0.326342 + 0.945252i \(0.605816\pi\)
\(542\) 35.7300i 1.53473i
\(543\) 9.25641 32.3238i 0.397231 1.38715i
\(544\) 5.90879i 0.253337i
\(545\) 4.04017 10.9214i 0.173062 0.467821i
\(546\) 0 0
\(547\) 11.7540i 0.502566i −0.967914 0.251283i \(-0.919148\pi\)
0.967914 0.251283i \(-0.0808525\pi\)
\(548\) 3.15042 0.134579
\(549\) 5.39707 8.65063i 0.230341 0.369200i
\(550\) −10.5886 + 12.3530i −0.451498 + 0.526733i
\(551\) 7.28081 0.310173
\(552\) −6.51629 1.86604i −0.277352 0.0794239i
\(553\) 0 0
\(554\) 19.4362i 0.825763i
\(555\) −24.3634 17.8842i −1.03417 0.759142i
\(556\) 1.20989i 0.0513108i
\(557\) −9.40270 −0.398405 −0.199203 0.979958i \(-0.563835\pi\)
−0.199203 + 0.979958i \(0.563835\pi\)
\(558\) −7.64051 + 12.2465i −0.323449 + 0.518436i
\(559\) 10.4183i 0.440649i
\(560\) 0 0
\(561\) 12.7962 + 3.66440i 0.540258 + 0.154711i
\(562\) 32.1716i 1.35708i
\(563\) 19.5266i 0.822949i 0.911421 + 0.411475i \(0.134986\pi\)
−0.911421 + 0.411475i \(0.865014\pi\)
\(564\) 0.856203 2.98990i 0.0360526 0.125897i
\(565\) 7.26340 19.6344i 0.305573 0.826027i
\(566\) 9.92744 0.417281
\(567\) 0 0
\(568\) 26.8615i 1.12708i
\(569\) 12.8982i 0.540722i 0.962759 + 0.270361i \(0.0871430\pi\)
−0.962759 + 0.270361i \(0.912857\pi\)
\(570\) −5.78049 4.24322i −0.242118 0.177729i
\(571\) −41.6642 −1.74359 −0.871796 0.489869i \(-0.837045\pi\)
−0.871796 + 0.489869i \(0.837045\pi\)
\(572\) 2.20068i 0.0920151i
\(573\) −6.05758 + 21.1533i −0.253059 + 0.883692i
\(574\) 0 0
\(575\) −5.75012 4.92881i −0.239797 0.205545i
\(576\) 16.5492 + 10.3249i 0.689549 + 0.430205i
\(577\) −7.48978 −0.311804 −0.155902 0.987773i \(-0.549828\pi\)
−0.155902 + 0.987773i \(0.549828\pi\)
\(578\) −6.36739 −0.264848
\(579\) −9.92744 + 34.6670i −0.412570 + 1.44071i
\(580\) 3.67605 + 1.35989i 0.152640 + 0.0564663i
\(581\) 0 0
\(582\) 3.34395 + 0.957590i 0.138611 + 0.0396934i
\(583\) 24.1169i 0.998819i
\(584\) 17.7123 0.732939
\(585\) −18.4661 + 14.2924i −0.763481 + 0.590920i
\(586\) 5.63369i 0.232726i
\(587\) 22.1920i 0.915961i −0.888962 0.457981i \(-0.848573\pi\)
0.888962 0.457981i \(-0.151427\pi\)
\(588\) 0 0
\(589\) −3.88284 −0.159990
\(590\) 2.54922 6.89106i 0.104950 0.283701i
\(591\) 3.72097 + 1.06556i 0.153060 + 0.0438311i
\(592\) 35.1310i 1.44388i
\(593\) 6.31375i 0.259275i −0.991561 0.129637i \(-0.958619\pi\)
0.991561 0.129637i \(-0.0413813\pi\)
\(594\) −12.5534 + 11.3271i −0.515072 + 0.464757i
\(595\) 0 0
\(596\) 0.748572i 0.0306627i
\(597\) 11.8836 41.4982i 0.486365 1.69841i
\(598\) 7.98632 0.326585
\(599\) 20.6648i 0.844339i −0.906517 0.422170i \(-0.861269\pi\)
0.906517 0.422170i \(-0.138731\pi\)
\(600\) 12.3229 + 18.6758i 0.503078 + 0.762435i
\(601\) 12.5956i 0.513785i 0.966440 + 0.256892i \(0.0826986\pi\)
−0.966440 + 0.256892i \(0.917301\pi\)
\(602\) 0 0
\(603\) −16.3841 + 26.2611i −0.667213 + 1.06943i
\(604\) −1.65360 −0.0672839
\(605\) 4.95339 13.3900i 0.201384 0.544381i
\(606\) 33.8474 + 9.69272i 1.37496 + 0.393740i
\(607\) 42.6766 1.73219 0.866095 0.499879i \(-0.166622\pi\)
0.866095 + 0.499879i \(0.166622\pi\)
\(608\) 2.01906i 0.0818838i
\(609\) 0 0
\(610\) 10.7962 + 3.99387i 0.437127 + 0.161707i
\(611\) 21.2397i 0.859268i
\(612\) −1.67165 + 2.67938i −0.0675724 + 0.108308i
\(613\) 5.32284i 0.214988i −0.994206 0.107494i \(-0.965717\pi\)
0.994206 0.107494i \(-0.0342826\pi\)
\(614\) −16.9800 −0.685255
\(615\) −27.2004 + 37.0547i −1.09683 + 1.49419i
\(616\) 0 0
\(617\) −30.1002 −1.21179 −0.605895 0.795545i \(-0.707185\pi\)
−0.605895 + 0.795545i \(0.707185\pi\)
\(618\) 14.5952 + 4.17956i 0.587105 + 0.168127i
\(619\) 12.7323i 0.511753i −0.966710 0.255876i \(-0.917636\pi\)
0.966710 0.255876i \(-0.0823640\pi\)
\(620\) −1.96043 0.725225i −0.0787328 0.0291258i
\(621\) −5.27259 5.84341i −0.211582 0.234488i
\(622\) 28.6594 1.14914
\(623\) 0 0
\(624\) −26.0944 7.47254i −1.04461 0.299141i
\(625\) 3.82288 + 24.7060i 0.152915 + 0.988239i
\(626\) 24.8113 0.991659
\(627\) −4.37254 1.25214i −0.174623 0.0500058i
\(628\) −4.09753 −0.163509
\(629\) −27.9145 −1.11303
\(630\) 0 0
\(631\) −17.4114 −0.693138 −0.346569 0.938024i \(-0.612653\pi\)
−0.346569 + 0.938024i \(0.612653\pi\)
\(632\) −4.86457 −0.193502
\(633\) 11.0151 + 3.15435i 0.437811 + 0.125374i
\(634\) 15.3237 0.608581
\(635\) −20.0862 7.43053i −0.797098 0.294872i
\(636\) −5.50089 1.57526i −0.218125 0.0624633i
\(637\) 0 0
\(638\) 19.3823 0.767353
\(639\) 16.5098 26.4625i 0.653118 1.04684i
\(640\) −10.2035 + 27.5821i −0.403328 + 1.09028i
\(641\) 1.31513i 0.0519444i −0.999663 0.0259722i \(-0.991732\pi\)
0.999663 0.0259722i \(-0.00826814\pi\)
\(642\) 9.80217 + 2.80700i 0.386861 + 0.110784i
\(643\) −39.2223 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(644\) 0 0
\(645\) −9.34429 6.85927i −0.367931 0.270083i
\(646\) −6.62304 −0.260580
\(647\) 6.23116i 0.244972i 0.992470 + 0.122486i \(0.0390867\pi\)
−0.992470 + 0.122486i \(0.960913\pi\)
\(648\) 10.2227 + 20.8850i 0.401584 + 0.820442i
\(649\) 4.66042i 0.182937i
\(650\) −20.0160 17.1570i −0.785092 0.672954i
\(651\) 0 0
\(652\) 1.19793i 0.0469144i
\(653\) 18.8618 0.738120 0.369060 0.929406i \(-0.379680\pi\)
0.369060 + 0.929406i \(0.379680\pi\)
\(654\) 13.1345 + 3.76127i 0.513599 + 0.147077i
\(655\) −7.33152 + 19.8186i −0.286466 + 0.774377i
\(656\) −53.4314 −2.08615
\(657\) 17.4492 + 10.8864i 0.680759 + 0.424721i
\(658\) 0 0
\(659\) 41.6170i 1.62117i −0.585622 0.810584i \(-0.699150\pi\)
0.585622 0.810584i \(-0.300850\pi\)
\(660\) −1.97381 1.44889i −0.0768304 0.0563981i
\(661\) 3.77854i 0.146968i −0.997296 0.0734842i \(-0.976588\pi\)
0.997296 0.0734842i \(-0.0234118\pi\)
\(662\) −29.1963 −1.13475
\(663\) −5.93756 + 20.7342i −0.230596 + 0.805250i
\(664\) 23.5236i 0.912894i
\(665\) 0 0
\(666\) 18.7696 30.0846i 0.727307 1.16576i
\(667\) 9.02216i 0.349339i
\(668\) 4.11175i 0.159088i
\(669\) 7.17712 + 2.05528i 0.277484 + 0.0794617i
\(670\) −32.7746 12.1244i −1.26619 0.468405i
\(671\) 7.30148 0.281871
\(672\) 0 0
\(673\) 31.2573i 1.20488i 0.798163 + 0.602441i \(0.205805\pi\)
−0.798163 + 0.602441i \(0.794195\pi\)
\(674\) 35.8043i 1.37913i
\(675\) 0.661201 + 25.9723i 0.0254496 + 0.999676i
\(676\) −0.259803 −0.00999242
\(677\) 8.73789i 0.335824i −0.985802 0.167912i \(-0.946297\pi\)
0.985802 0.167912i \(-0.0537025\pi\)
\(678\) 23.6132 + 6.76199i 0.906858 + 0.259693i
\(679\) 0 0
\(680\) 19.3823 + 7.17013i 0.743278 + 0.274962i
\(681\) 5.29820 18.5015i 0.203027 0.708981i
\(682\) −10.3365 −0.395807
\(683\) −21.8692 −0.836801 −0.418401 0.908263i \(-0.637409\pi\)
−0.418401 + 0.908263i \(0.637409\pi\)
\(684\) 0.571211 0.915559i 0.0218408 0.0350073i
\(685\) 8.30544 22.4513i 0.317334 0.857819i
\(686\) 0 0
\(687\) 4.75594 16.6079i 0.181450 0.633632i
\(688\) 13.4741i 0.513695i
\(689\) −39.0774 −1.48873
\(690\) 5.25807 7.16300i 0.200171 0.272691i
\(691\) 22.5359i 0.857306i 0.903469 + 0.428653i \(0.141012\pi\)
−0.903469 + 0.428653i \(0.858988\pi\)
\(692\) 2.94359i 0.111898i
\(693\) 0 0
\(694\) 24.0944 0.914612
\(695\) 8.62221 + 3.18963i 0.327059 + 0.120989i
\(696\) 7.33811 25.6250i 0.278151 0.971313i
\(697\) 42.4557i 1.60813i
\(698\) 0.0291421i 0.00110305i
\(699\) −34.3493 9.83646i −1.29921 0.372049i
\(700\) 0 0
\(701\) 35.5019i 1.34089i −0.741960 0.670444i \(-0.766104\pi\)
0.741960 0.670444i \(-0.233896\pi\)
\(702\) −18.3537 20.3407i −0.692716 0.767711i
\(703\) 9.53855 0.359753
\(704\) 13.9682i 0.526445i
\(705\) −19.0501 13.9839i −0.717468 0.526665i
\(706\) 38.5033i 1.44909i
\(707\) 0 0
\(708\) 1.06301 + 0.304409i 0.0399503 + 0.0114404i
\(709\) 4.06780 0.152769 0.0763847 0.997078i \(-0.475662\pi\)
0.0763847 + 0.997078i \(0.475662\pi\)
\(710\) 33.0260 + 12.2174i 1.23944 + 0.458510i
\(711\) −4.79232 2.98990i −0.179726 0.112130i
\(712\) 4.59867 0.172342
\(713\) 4.81149i 0.180192i
\(714\) 0 0
\(715\) −15.6830 5.80164i −0.586511 0.216969i
\(716\) 4.77014i 0.178268i
\(717\) 1.37019 4.78477i 0.0511708 0.178691i
\(718\) 36.6235i 1.36678i
\(719\) −30.5405 −1.13897 −0.569484 0.822002i \(-0.692857\pi\)
−0.569484 + 0.822002i \(0.692857\pi\)
\(720\) −23.8824 + 18.4845i −0.890043 + 0.688877i
\(721\) 0 0
\(722\) −26.5159 −0.986821
\(723\) −12.4321 + 43.4133i −0.462354 + 1.61456i
\(724\) 5.71265i 0.212309i
\(725\) 19.3823 22.6121i 0.719841 0.839792i
\(726\) 16.1034 + 4.61145i 0.597652 + 0.171147i
\(727\) 23.4181 0.868528 0.434264 0.900786i \(-0.357008\pi\)
0.434264 + 0.900786i \(0.357008\pi\)
\(728\) 0 0
\(729\) −2.76568 + 26.8580i −0.102433 + 0.994740i
\(730\) −8.05604 + 21.7771i −0.298168 + 0.806007i
\(731\) −10.7063 −0.395986
\(732\) −0.476918 + 1.66542i −0.0176274 + 0.0615556i
\(733\) −16.8907 −0.623871 −0.311935 0.950103i \(-0.600977\pi\)
−0.311935 + 0.950103i \(0.600977\pi\)
\(734\) −13.7423 −0.507239
\(735\) 0 0
\(736\) 2.50196 0.0922235
\(737\) −22.1654 −0.816473
\(738\) −45.7563 28.5470i −1.68431 1.05083i
\(739\) 27.6642 1.01764 0.508822 0.860872i \(-0.330081\pi\)
0.508822 + 0.860872i \(0.330081\pi\)
\(740\) 4.81597 + 1.78158i 0.177039 + 0.0654922i
\(741\) 2.02890 7.08499i 0.0745333 0.260274i
\(742\) 0 0
\(743\) 40.1701 1.47370 0.736850 0.676056i \(-0.236312\pi\)
0.736850 + 0.676056i \(0.236312\pi\)
\(744\) −3.91340 + 13.6658i −0.143472 + 0.501011i
\(745\) 5.33465 + 1.97346i 0.195446 + 0.0723018i
\(746\) 23.5741i 0.863109i
\(747\) 14.4583 23.1742i 0.529000 0.847901i
\(748\) −2.26151 −0.0826888
\(749\) 0 0
\(750\) −28.5665 + 6.65659i −1.04310 + 0.243064i
\(751\) −49.6376 −1.81130 −0.905650 0.424026i \(-0.860617\pi\)
−0.905650 + 0.424026i \(0.860617\pi\)
\(752\) 27.4695i 1.00171i
\(753\) 0.268284 + 0.0768272i 0.00977680 + 0.00279974i
\(754\) 31.4059i 1.14373i
\(755\) −4.35936 + 11.7842i −0.158654 + 0.428873i
\(756\) 0 0
\(757\) 47.7116i 1.73411i 0.498214 + 0.867054i \(0.333989\pi\)
−0.498214 + 0.867054i \(0.666011\pi\)
\(758\) −51.6484 −1.87595
\(759\) 1.55162 5.41832i 0.0563202 0.196672i
\(760\) −6.62304 2.45007i −0.240243 0.0888734i
\(761\) 19.8342 0.718990 0.359495 0.933147i \(-0.382949\pi\)
0.359495 + 0.933147i \(0.382949\pi\)
\(762\) 6.91759 24.1565i 0.250598 0.875098i
\(763\) 0 0
\(764\) 3.73847i 0.135253i
\(765\) 14.6875 + 18.9765i 0.531027 + 0.686098i
\(766\) 16.0203i 0.578838i
\(767\) 7.55144 0.272667
\(768\) −11.5182 3.29841i −0.415626 0.119021i
\(769\) 10.6337i 0.383461i 0.981448 + 0.191731i \(0.0614100\pi\)
−0.981448 + 0.191731i \(0.938590\pi\)
\(770\) 0 0
\(771\) 6.26096 21.8635i 0.225483 0.787396i
\(772\) 6.12678i 0.220508i
\(773\) 14.3228i 0.515154i −0.966258 0.257577i \(-0.917076\pi\)
0.966258 0.257577i \(-0.0829240\pi\)
\(774\) 7.19886 11.5386i 0.258758 0.414747i
\(775\) −10.3365 + 12.0590i −0.371300 + 0.433171i
\(776\) 3.42548 0.122967
\(777\) 0 0
\(778\) 25.6508i 0.919626i
\(779\) 14.5074i 0.519780i
\(780\) 2.34769 3.19823i 0.0840609 0.114515i
\(781\) 22.3354 0.799225
\(782\) 8.20706i 0.293484i
\(783\) 22.9789 20.7342i 0.821200 0.740980i
\(784\) 0 0
\(785\) −10.8023 + 29.2007i −0.385550 + 1.04222i
\(786\) −23.8346 6.82541i −0.850153 0.243454i
\(787\) 36.9341 1.31656 0.658280 0.752773i \(-0.271284\pi\)
0.658280 + 0.752773i \(0.271284\pi\)
\(788\) −0.657614 −0.0234265
\(789\) −29.5235 8.45450i −1.05106 0.300988i
\(790\) 2.21254 5.98095i 0.0787188 0.212793i
\(791\) 0 0
\(792\) −8.81391 + 14.1273i −0.313189 + 0.501991i
\(793\) 11.8309i 0.420126i
\(794\) 0.617730 0.0219224
\(795\) −25.7280 + 35.0489i −0.912477 + 1.24306i
\(796\) 7.33405i 0.259949i
\(797\) 37.4862i 1.32783i 0.747809 + 0.663914i \(0.231106\pi\)
−0.747809 + 0.663914i \(0.768894\pi\)
\(798\) 0 0
\(799\) −21.8268 −0.772177
\(800\) −6.27062 5.37496i −0.221700 0.190034i
\(801\) 4.53037 + 2.82647i 0.160073 + 0.0998683i
\(802\) 42.3789i 1.49645i
\(803\) 14.7278i 0.519734i
\(804\) 1.44780 5.05578i 0.0510599 0.178303i
\(805\) 0 0
\(806\) 16.7487i 0.589947i
\(807\) −7.33633 2.10087i −0.258251 0.0739542i
\(808\) 34.6726 1.21978
\(809\) 25.5786i 0.899297i −0.893206 0.449649i \(-0.851549\pi\)
0.893206 0.449649i \(-0.148451\pi\)
\(810\) −30.3276 + 3.06958i −1.06560 + 0.107854i
\(811\) 7.28791i 0.255913i −0.991780 0.127957i \(-0.959158\pi\)
0.991780 0.127957i \(-0.0408418\pi\)
\(812\) 0 0
\(813\) 11.2480 39.2786i 0.394485 1.37756i
\(814\) 25.3926 0.890012
\(815\) −8.53694 3.15808i −0.299036 0.110623i
\(816\) −7.67908 + 26.8157i −0.268822 + 0.938736i
\(817\) 3.65840 0.127991
\(818\) 3.96956i 0.138792i
\(819\) 0 0
\(820\) 2.70964 7.32470i 0.0946247 0.255790i
\(821\) 0.00842044i 0.000293875i 1.00000 0.000146938i \(4.67717e-5\pi\)
−1.00000 0.000146938i \(0.999953\pi\)
\(822\) 27.0008 + 7.73210i 0.941761 + 0.269688i
\(823\) 31.2239i 1.08840i 0.838957 + 0.544198i \(0.183166\pi\)
−0.838957 + 0.544198i \(0.816834\pi\)
\(824\) 14.9511 0.520845
\(825\) −15.5290 + 10.2465i −0.540650 + 0.356737i
\(826\) 0 0
\(827\) 38.3189 1.33248 0.666239 0.745738i \(-0.267903\pi\)
0.666239 + 0.745738i \(0.267903\pi\)
\(828\) 1.13453 + 0.707827i 0.0394277 + 0.0245987i
\(829\) 2.24176i 0.0778595i 0.999242 + 0.0389298i \(0.0123949\pi\)
−0.999242 + 0.0389298i \(0.987605\pi\)
\(830\) 28.9221 + 10.6992i 1.00390 + 0.371375i
\(831\) 6.11862 21.3665i 0.212253 0.741195i
\(832\) −22.6331 −0.784663
\(833\) 0 0
\(834\) −2.96944 + 10.3694i −0.102823 + 0.359064i
\(835\) 29.3021 + 10.8398i 1.01404 + 0.375126i
\(836\) 0.772768 0.0267268
\(837\) −12.2546 + 11.0575i −0.423581 + 0.382203i
\(838\) −12.7181 −0.439338
\(839\) −20.6544 −0.713069 −0.356535 0.934282i \(-0.616042\pi\)
−0.356535 + 0.934282i \(0.616042\pi\)
\(840\) 0 0
\(841\) −6.47924 −0.223422
\(842\) 11.8896 0.409742
\(843\) 10.1278 35.3668i 0.348820 1.21810i
\(844\) −1.94672 −0.0670090
\(845\) −0.684916 + 1.85147i −0.0235618 + 0.0636924i
\(846\) 14.6762 23.5236i 0.504579 0.808759i
\(847\) 0 0
\(848\) −50.5391 −1.73552
\(849\) 10.9134 + 3.12522i 0.374547 + 0.107257i
\(850\) −17.6312 + 20.5692i −0.604747 + 0.705519i
\(851\) 11.8199i 0.405180i
\(852\) −1.45891 + 5.09456i −0.0499813 + 0.174537i
\(853\) 7.06831 0.242014 0.121007 0.992652i \(-0.461388\pi\)
0.121007 + 0.992652i \(0.461388\pi\)
\(854\) 0 0
\(855\) −5.01879 6.48438i −0.171639 0.221761i
\(856\) 10.0412 0.343200
\(857\) 16.8332i 0.575012i 0.957779 + 0.287506i \(0.0928261\pi\)
−0.957779 + 0.287506i \(0.907174\pi\)
\(858\) 5.40114 18.8610i 0.184392 0.643904i
\(859\) 35.1835i 1.20045i −0.799832 0.600223i \(-0.795078\pi\)
0.799832 0.600223i \(-0.204922\pi\)
\(860\) 1.84711 + 0.683304i 0.0629859 + 0.0233005i
\(861\) 0 0
\(862\) 18.5665i 0.632376i
\(863\) 37.9758 1.29271 0.646356 0.763036i \(-0.276292\pi\)
0.646356 + 0.763036i \(0.276292\pi\)
\(864\) −5.74986 6.37236i −0.195614 0.216792i
\(865\) 20.9773 + 7.76016i 0.713249 + 0.263853i
\(866\) 7.78484 0.264540
\(867\) −6.99977 2.00449i −0.237725 0.0680761i
\(868\) 0 0
\(869\) 4.04491i 0.137214i
\(870\) 28.1682 + 20.6771i 0.954991 + 0.701020i
\(871\) 35.9154i 1.21695i
\(872\) 13.4547 0.455635
\(873\) 3.37460 + 2.10539i 0.114213 + 0.0712566i
\(874\) 2.80440i 0.0948601i
\(875\) 0 0
\(876\) −3.35932 0.961992i −0.113501 0.0325027i
\(877\) 11.4496i 0.386626i −0.981137 0.193313i \(-0.938077\pi\)
0.981137 0.193313i \(-0.0619233\pi\)
\(878\) 25.2942i 0.853638i
\(879\) −1.77352 + 6.19321i −0.0598194 + 0.208892i
\(880\) −20.2829 7.50329i −0.683737 0.252936i
\(881\) 23.6698 0.797455 0.398728 0.917069i \(-0.369452\pi\)
0.398728 + 0.917069i \(0.369452\pi\)
\(882\) 0 0
\(883\) 16.8355i 0.566560i −0.959037 0.283280i \(-0.908577\pi\)
0.959037 0.283280i \(-0.0914226\pi\)
\(884\) 3.66440i 0.123247i
\(885\) 4.97175 6.77295i 0.167124 0.227670i
\(886\) 0.382035 0.0128347
\(887\) 52.5834i 1.76558i 0.469770 + 0.882789i \(0.344337\pi\)
−0.469770 + 0.882789i \(0.655663\pi\)
\(888\) 9.61362 33.5712i 0.322612 1.12657i
\(889\) 0 0
\(890\) −2.09160 + 5.65403i −0.0701107 + 0.189524i
\(891\) −17.3660 + 8.50018i −0.581783 + 0.284767i
\(892\) −1.26843 −0.0424701
\(893\) 7.45833 0.249584
\(894\) −1.83722 + 6.41566i −0.0614460 + 0.214572i
\(895\) 33.9941 + 12.5755i 1.13630 + 0.420352i
\(896\) 0 0
\(897\) 8.77950 + 2.51414i 0.293139 + 0.0839448i
\(898\) 43.7305i 1.45931i
\(899\) 18.9210 0.631050
\(900\) −1.32284 4.21133i −0.0440945 0.140378i
\(901\) 40.1575i 1.33784i
\(902\) 38.6201i 1.28591i
\(903\) 0 0
\(904\) 24.1889 0.804510
\(905\) 40.7108 + 15.0602i 1.35327 + 0.500619i
\(906\) −14.1722 4.05843i −0.470840 0.134832i
\(907\) 50.7715i 1.68584i −0.538038 0.842920i \(-0.680834\pi\)
0.538038 0.842920i \(-0.319166\pi\)
\(908\) 3.26981i 0.108513i
\(909\) 34.1577 + 21.3107i 1.13294 + 0.706832i
\(910\) 0 0
\(911\) 16.1165i 0.533963i −0.963702 0.266981i \(-0.913974\pi\)
0.963702 0.266981i \(-0.0860262\pi\)
\(912\) 2.62398 9.16306i 0.0868887 0.303419i
\(913\) 19.5600 0.647341
\(914\) 36.4639i 1.20612i
\(915\) 10.6112 + 7.78925i 0.350795 + 0.257505i
\(916\) 2.93515i 0.0969802i
\(917\) 0 0
\(918\) −20.9029 + 18.8610i −0.689900 + 0.622506i
\(919\) 39.7441 1.31104 0.655519 0.755179i \(-0.272450\pi\)
0.655519 + 0.755179i \(0.272450\pi\)
\(920\) 3.03605 8.20706i 0.100096 0.270579i
\(921\) −18.6663 5.34539i −0.615077 0.176137i
\(922\) 60.3920 1.98890
\(923\) 36.1909i 1.19124i
\(924\) 0 0
\(925\) 25.3926 29.6240i 0.834905 0.974030i
\(926\) 45.2008i 1.48539i
\(927\) 14.7290 + 9.18932i 0.483764 + 0.301817i
\(928\) 9.83885i 0.322976i
\(929\) 36.5187 1.19814 0.599069 0.800697i \(-0.295537\pi\)
0.599069 + 0.800697i \(0.295537\pi\)
\(930\) −15.0220 11.0271i −0.492591 0.361592i
\(931\) 0 0
\(932\) 6.07063 0.198850
\(933\) 31.5058 + 9.02216i 1.03145 + 0.295372i
\(934\) 6.33388i 0.207251i
\(935\) −5.96199 + 16.1165i −0.194978 + 0.527065i
\(936\) −22.8909 14.2815i −0.748214 0.466805i
\(937\) 7.60980 0.248601 0.124301 0.992245i \(-0.460331\pi\)
0.124301 + 0.992245i \(0.460331\pi\)
\(938\) 0 0
\(939\) 27.2755 + 7.81075i 0.890102 + 0.254894i
\(940\) 3.76568 + 1.39304i 0.122823 + 0.0454361i
\(941\) 22.0242 0.717969 0.358985 0.933343i \(-0.383123\pi\)
0.358985 + 0.933343i \(0.383123\pi\)
\(942\) −35.1180 10.0566i −1.14421 0.327661i
\(943\) 17.9771 0.585413
\(944\) 9.76632 0.317867
\(945\) 0 0
\(946\) 9.73904 0.316644
\(947\) −49.2583 −1.60068 −0.800339 0.599547i \(-0.795347\pi\)
−0.800339 + 0.599547i \(0.795347\pi\)
\(948\) 0.922616 + 0.264205i 0.0299652 + 0.00858099i
\(949\) −23.8640 −0.774660
\(950\) 6.02469 7.02861i 0.195467 0.228038i
\(951\) 16.8456 + 4.82399i 0.546255 + 0.156429i
\(952\) 0 0
\(953\) −10.2538 −0.332154 −0.166077 0.986113i \(-0.553110\pi\)
−0.166077 + 0.986113i \(0.553110\pi\)
\(954\) −43.2794 27.0017i −1.40122 0.874213i
\(955\) −26.6419 9.85570i −0.862113 0.318923i
\(956\) 0.845623i 0.0273494i
\(957\) 21.3073 + 6.10167i 0.688767 + 0.197239i
\(958\) 42.3131 1.36708
\(959\) 0 0
\(960\) −14.9013 + 20.2998i −0.480937 + 0.655174i
\(961\) 20.9095 0.674499
\(962\) 41.1446i 1.32656i
\(963\) 9.89203 + 6.17157i 0.318766 + 0.198876i
\(964\) 7.67253i 0.247115i
\(965\) −43.6621 16.1520i −1.40553 0.519951i
\(966\) 0 0
\(967\) 4.62632i 0.148772i 0.997230 + 0.0743862i \(0.0236998\pi\)
−0.997230 + 0.0743862i \(0.976300\pi\)
\(968\) 16.4960 0.530201
\(969\) −7.28081 2.08497i −0.233893 0.0669790i
\(970\) −1.55800 + 4.21160i −0.0500245 + 0.135226i
\(971\) 25.2886 0.811549 0.405775 0.913973i \(-0.367002\pi\)
0.405775 + 0.913973i \(0.367002\pi\)
\(972\) −0.804521 4.51628i −0.0258050 0.144860i
\(973\) 0 0
\(974\) 56.4119i 1.80755i
\(975\) −16.6028 25.1622i −0.531715 0.805834i
\(976\) 15.3009i 0.489770i
\(977\) 24.1098 0.771340 0.385670 0.922637i \(-0.373970\pi\)
0.385670 + 0.922637i \(0.373970\pi\)
\(978\) 2.94008 10.2669i 0.0940133 0.328298i
\(979\) 3.82381i 0.122210i
\(980\) 0 0
\(981\) 13.2549 + 8.26964i 0.423196 + 0.264029i
\(982\) 8.94533i 0.285457i
\(983\) 48.0882i 1.53378i 0.641781 + 0.766888i \(0.278196\pi\)
−0.641781 + 0.766888i \(0.721804\pi\)
\(984\) −51.0590 14.6215i −1.62770 0.466117i
\(985\) −1.73366 + 4.68644i −0.0552391 + 0.149323i
\(986\) 32.2739 1.02781
\(987\) 0 0
\(988\) 1.25214i 0.0398360i
\(989\) 4.53337i 0.144153i
\(990\) −13.3606 17.2621i −0.424627 0.548626i
\(991\) 29.7175 0.944007 0.472003 0.881597i \(-0.343531\pi\)
0.472003 + 0.881597i \(0.343531\pi\)
\(992\) 5.24703i 0.166593i
\(993\) −32.0960 9.19119i −1.01854 0.291674i
\(994\) 0 0
\(995\) 52.2656 + 19.3347i 1.65693 + 0.612952i
\(996\) −1.27762 + 4.46150i −0.0404829 + 0.141368i
\(997\) −26.7483 −0.847128 −0.423564 0.905866i \(-0.639221\pi\)
−0.423564 + 0.905866i \(0.639221\pi\)
\(998\) 28.3856 0.898529
\(999\) 30.1046 27.1638i 0.952466 0.859423i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.g.b.734.5 24
3.2 odd 2 inner 735.2.g.b.734.18 24
5.4 even 2 inner 735.2.g.b.734.20 24
7.2 even 3 105.2.p.a.59.10 yes 24
7.3 odd 6 105.2.p.a.89.9 yes 24
7.4 even 3 735.2.p.f.509.10 24
7.5 odd 6 735.2.p.f.374.9 24
7.6 odd 2 inner 735.2.g.b.734.8 24
15.14 odd 2 inner 735.2.g.b.734.7 24
21.2 odd 6 105.2.p.a.59.4 yes 24
21.5 even 6 735.2.p.f.374.3 24
21.11 odd 6 735.2.p.f.509.4 24
21.17 even 6 105.2.p.a.89.3 yes 24
21.20 even 2 inner 735.2.g.b.734.19 24
35.2 odd 12 525.2.t.j.101.3 24
35.3 even 12 525.2.t.j.26.4 24
35.4 even 6 735.2.p.f.509.3 24
35.9 even 6 105.2.p.a.59.3 24
35.17 even 12 525.2.t.j.26.9 24
35.19 odd 6 735.2.p.f.374.4 24
35.23 odd 12 525.2.t.j.101.10 24
35.24 odd 6 105.2.p.a.89.4 yes 24
35.34 odd 2 inner 735.2.g.b.734.17 24
105.2 even 12 525.2.t.j.101.9 24
105.17 odd 12 525.2.t.j.26.3 24
105.23 even 12 525.2.t.j.101.4 24
105.38 odd 12 525.2.t.j.26.10 24
105.44 odd 6 105.2.p.a.59.9 yes 24
105.59 even 6 105.2.p.a.89.10 yes 24
105.74 odd 6 735.2.p.f.509.9 24
105.89 even 6 735.2.p.f.374.10 24
105.104 even 2 inner 735.2.g.b.734.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.3 24 35.9 even 6
105.2.p.a.59.4 yes 24 21.2 odd 6
105.2.p.a.59.9 yes 24 105.44 odd 6
105.2.p.a.59.10 yes 24 7.2 even 3
105.2.p.a.89.3 yes 24 21.17 even 6
105.2.p.a.89.4 yes 24 35.24 odd 6
105.2.p.a.89.9 yes 24 7.3 odd 6
105.2.p.a.89.10 yes 24 105.59 even 6
525.2.t.j.26.3 24 105.17 odd 12
525.2.t.j.26.4 24 35.3 even 12
525.2.t.j.26.9 24 35.17 even 12
525.2.t.j.26.10 24 105.38 odd 12
525.2.t.j.101.3 24 35.2 odd 12
525.2.t.j.101.4 24 105.23 even 12
525.2.t.j.101.9 24 105.2 even 12
525.2.t.j.101.10 24 35.23 odd 12
735.2.g.b.734.5 24 1.1 even 1 trivial
735.2.g.b.734.6 24 105.104 even 2 inner
735.2.g.b.734.7 24 15.14 odd 2 inner
735.2.g.b.734.8 24 7.6 odd 2 inner
735.2.g.b.734.17 24 35.34 odd 2 inner
735.2.g.b.734.18 24 3.2 odd 2 inner
735.2.g.b.734.19 24 21.20 even 2 inner
735.2.g.b.734.20 24 5.4 even 2 inner
735.2.p.f.374.3 24 21.5 even 6
735.2.p.f.374.4 24 35.19 odd 6
735.2.p.f.374.9 24 7.5 odd 6
735.2.p.f.374.10 24 105.89 even 6
735.2.p.f.509.3 24 35.4 even 6
735.2.p.f.509.4 24 21.11 odd 6
735.2.p.f.509.9 24 105.74 odd 6
735.2.p.f.509.10 24 7.4 even 3