Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [735,2,Mod(734,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.734");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 735.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.86900454856\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | no (minimal twist has level 105) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
734.1 | −2.50798 | −1.47954 | − | 0.900534i | 4.28995 | −1.94085 | − | 1.11045i | 3.71065 | + | 2.25852i | 0 | −5.74313 | 1.37808 | + | 2.66475i | 4.86760 | + | 2.78499i | ||||||||
734.2 | −2.50798 | −1.47954 | + | 0.900534i | 4.28995 | −1.94085 | + | 1.11045i | 3.71065 | − | 2.25852i | 0 | −5.74313 | 1.37808 | − | 2.66475i | 4.86760 | − | 2.78499i | ||||||||
734.3 | −2.50798 | 1.47954 | − | 0.900534i | 4.28995 | 1.94085 | − | 1.11045i | −3.71065 | + | 2.25852i | 0 | −5.74313 | 1.37808 | − | 2.66475i | −4.86760 | + | 2.78499i | ||||||||
734.4 | −2.50798 | 1.47954 | + | 0.900534i | 4.28995 | 1.94085 | + | 1.11045i | −3.71065 | − | 2.25852i | 0 | −5.74313 | 1.37808 | + | 2.66475i | −4.86760 | − | 2.78499i | ||||||||
734.5 | −1.51469 | −1.66512 | − | 0.476833i | 0.294280 | 0.775809 | − | 2.09717i | 2.52214 | + | 0.722254i | 0 | 2.58363 | 2.54526 | + | 1.58797i | −1.17511 | + | 3.17656i | ||||||||
734.6 | −1.51469 | −1.66512 | + | 0.476833i | 0.294280 | 0.775809 | + | 2.09717i | 2.52214 | − | 0.722254i | 0 | 2.58363 | 2.54526 | − | 1.58797i | −1.17511 | − | 3.17656i | ||||||||
734.7 | −1.51469 | 1.66512 | − | 0.476833i | 0.294280 | −0.775809 | − | 2.09717i | −2.52214 | + | 0.722254i | 0 | 2.58363 | 2.54526 | − | 1.58797i | 1.17511 | + | 3.17656i | ||||||||
734.8 | −1.51469 | 1.66512 | + | 0.476833i | 0.294280 | −0.775809 | + | 2.09717i | −2.52214 | − | 0.722254i | 0 | 2.58363 | 2.54526 | + | 1.58797i | 1.17511 | − | 3.17656i | ||||||||
734.9 | −0.644806 | −0.536966 | − | 1.64671i | −1.58423 | 2.15203 | − | 0.607270i | 0.346239 | + | 1.06181i | 0 | 2.31113 | −2.42334 | + | 1.76846i | −1.38764 | + | 0.391571i | ||||||||
734.10 | −0.644806 | −0.536966 | + | 1.64671i | −1.58423 | 2.15203 | + | 0.607270i | 0.346239 | − | 1.06181i | 0 | 2.31113 | −2.42334 | − | 1.76846i | −1.38764 | − | 0.391571i | ||||||||
734.11 | −0.644806 | 0.536966 | − | 1.64671i | −1.58423 | −2.15203 | − | 0.607270i | −0.346239 | + | 1.06181i | 0 | 2.31113 | −2.42334 | − | 1.76846i | 1.38764 | + | 0.391571i | ||||||||
734.12 | −0.644806 | 0.536966 | + | 1.64671i | −1.58423 | −2.15203 | + | 0.607270i | −0.346239 | − | 1.06181i | 0 | 2.31113 | −2.42334 | + | 1.76846i | 1.38764 | − | 0.391571i | ||||||||
734.13 | 0.644806 | −0.536966 | − | 1.64671i | −1.58423 | −2.15203 | − | 0.607270i | −0.346239 | − | 1.06181i | 0 | −2.31113 | −2.42334 | + | 1.76846i | −1.38764 | − | 0.391571i | ||||||||
734.14 | 0.644806 | −0.536966 | + | 1.64671i | −1.58423 | −2.15203 | + | 0.607270i | −0.346239 | + | 1.06181i | 0 | −2.31113 | −2.42334 | − | 1.76846i | −1.38764 | + | 0.391571i | ||||||||
734.15 | 0.644806 | 0.536966 | − | 1.64671i | −1.58423 | 2.15203 | − | 0.607270i | 0.346239 | − | 1.06181i | 0 | −2.31113 | −2.42334 | − | 1.76846i | 1.38764 | − | 0.391571i | ||||||||
734.16 | 0.644806 | 0.536966 | + | 1.64671i | −1.58423 | 2.15203 | + | 0.607270i | 0.346239 | + | 1.06181i | 0 | −2.31113 | −2.42334 | + | 1.76846i | 1.38764 | + | 0.391571i | ||||||||
734.17 | 1.51469 | −1.66512 | − | 0.476833i | 0.294280 | −0.775809 | − | 2.09717i | −2.52214 | − | 0.722254i | 0 | −2.58363 | 2.54526 | + | 1.58797i | −1.17511 | − | 3.17656i | ||||||||
734.18 | 1.51469 | −1.66512 | + | 0.476833i | 0.294280 | −0.775809 | + | 2.09717i | −2.52214 | + | 0.722254i | 0 | −2.58363 | 2.54526 | − | 1.58797i | −1.17511 | + | 3.17656i | ||||||||
734.19 | 1.51469 | 1.66512 | − | 0.476833i | 0.294280 | 0.775809 | − | 2.09717i | 2.52214 | − | 0.722254i | 0 | −2.58363 | 2.54526 | − | 1.58797i | 1.17511 | − | 3.17656i | ||||||||
734.20 | 1.51469 | 1.66512 | + | 0.476833i | 0.294280 | 0.775809 | + | 2.09717i | 2.52214 | + | 0.722254i | 0 | −2.58363 | 2.54526 | + | 1.58797i | 1.17511 | + | 3.17656i | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
35.c | odd | 2 | 1 | inner |
105.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.g.b | 24 | |
3.b | odd | 2 | 1 | inner | 735.2.g.b | 24 | |
5.b | even | 2 | 1 | inner | 735.2.g.b | 24 | |
7.b | odd | 2 | 1 | inner | 735.2.g.b | 24 | |
7.c | even | 3 | 1 | 105.2.p.a | ✓ | 24 | |
7.c | even | 3 | 1 | 735.2.p.f | 24 | ||
7.d | odd | 6 | 1 | 105.2.p.a | ✓ | 24 | |
7.d | odd | 6 | 1 | 735.2.p.f | 24 | ||
15.d | odd | 2 | 1 | inner | 735.2.g.b | 24 | |
21.c | even | 2 | 1 | inner | 735.2.g.b | 24 | |
21.g | even | 6 | 1 | 105.2.p.a | ✓ | 24 | |
21.g | even | 6 | 1 | 735.2.p.f | 24 | ||
21.h | odd | 6 | 1 | 105.2.p.a | ✓ | 24 | |
21.h | odd | 6 | 1 | 735.2.p.f | 24 | ||
35.c | odd | 2 | 1 | inner | 735.2.g.b | 24 | |
35.i | odd | 6 | 1 | 105.2.p.a | ✓ | 24 | |
35.i | odd | 6 | 1 | 735.2.p.f | 24 | ||
35.j | even | 6 | 1 | 105.2.p.a | ✓ | 24 | |
35.j | even | 6 | 1 | 735.2.p.f | 24 | ||
35.k | even | 12 | 2 | 525.2.t.j | 24 | ||
35.l | odd | 12 | 2 | 525.2.t.j | 24 | ||
105.g | even | 2 | 1 | inner | 735.2.g.b | 24 | |
105.o | odd | 6 | 1 | 105.2.p.a | ✓ | 24 | |
105.o | odd | 6 | 1 | 735.2.p.f | 24 | ||
105.p | even | 6 | 1 | 105.2.p.a | ✓ | 24 | |
105.p | even | 6 | 1 | 735.2.p.f | 24 | ||
105.w | odd | 12 | 2 | 525.2.t.j | 24 | ||
105.x | even | 12 | 2 | 525.2.t.j | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.p.a | ✓ | 24 | 7.c | even | 3 | 1 | |
105.2.p.a | ✓ | 24 | 7.d | odd | 6 | 1 | |
105.2.p.a | ✓ | 24 | 21.g | even | 6 | 1 | |
105.2.p.a | ✓ | 24 | 21.h | odd | 6 | 1 | |
105.2.p.a | ✓ | 24 | 35.i | odd | 6 | 1 | |
105.2.p.a | ✓ | 24 | 35.j | even | 6 | 1 | |
105.2.p.a | ✓ | 24 | 105.o | odd | 6 | 1 | |
105.2.p.a | ✓ | 24 | 105.p | even | 6 | 1 | |
525.2.t.j | 24 | 35.k | even | 12 | 2 | ||
525.2.t.j | 24 | 35.l | odd | 12 | 2 | ||
525.2.t.j | 24 | 105.w | odd | 12 | 2 | ||
525.2.t.j | 24 | 105.x | even | 12 | 2 | ||
735.2.g.b | 24 | 1.a | even | 1 | 1 | trivial | |
735.2.g.b | 24 | 3.b | odd | 2 | 1 | inner | |
735.2.g.b | 24 | 5.b | even | 2 | 1 | inner | |
735.2.g.b | 24 | 7.b | odd | 2 | 1 | inner | |
735.2.g.b | 24 | 15.d | odd | 2 | 1 | inner | |
735.2.g.b | 24 | 21.c | even | 2 | 1 | inner | |
735.2.g.b | 24 | 35.c | odd | 2 | 1 | inner | |
735.2.g.b | 24 | 105.g | even | 2 | 1 | inner | |
735.2.p.f | 24 | 7.c | even | 3 | 1 | ||
735.2.p.f | 24 | 7.d | odd | 6 | 1 | ||
735.2.p.f | 24 | 21.g | even | 6 | 1 | ||
735.2.p.f | 24 | 21.h | odd | 6 | 1 | ||
735.2.p.f | 24 | 35.i | odd | 6 | 1 | ||
735.2.p.f | 24 | 35.j | even | 6 | 1 | ||
735.2.p.f | 24 | 105.o | odd | 6 | 1 | ||
735.2.p.f | 24 | 105.p | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - 9T_{2}^{4} + 18T_{2}^{2} - 6 \) acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\).