Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [525,2,Mod(26,525)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(525, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("525.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 525.t (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.19214610612\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 105) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 | −2.17197 | − | 1.25399i | −1.73159 | − | 0.0401158i | 2.14497 | + | 3.71520i | 0 | 3.71065 | + | 2.25852i | 2.06025 | + | 1.65993i | − | 5.74313i | 2.99678 | + | 0.138928i | 0 | |||||
26.2 | −2.17197 | − | 1.25399i | 0.831052 | − | 1.51966i | 2.14497 | + | 3.71520i | 0 | −3.71065 | + | 2.25852i | −2.06025 | − | 1.65993i | − | 5.74313i | −1.61871 | − | 2.52582i | 0 | |||||
26.3 | −1.31176 | − | 0.757344i | −1.20362 | + | 1.24551i | 0.147140 | + | 0.254854i | 0 | 2.52214 | − | 0.722254i | −2.64468 | − | 0.0753638i | 2.58363i | −0.102593 | − | 2.99825i | 0 | ||||||
26.4 | −1.31176 | − | 0.757344i | 1.68045 | − | 0.419611i | 0.147140 | + | 0.254854i | 0 | −2.52214 | − | 0.722254i | 2.64468 | + | 0.0753638i | 2.58363i | 2.64785 | − | 1.41027i | 0 | ||||||
26.5 | −0.558418 | − | 0.322403i | −1.28838 | − | 1.15761i | −0.792113 | − | 1.37198i | 0 | 0.346239 | + | 1.06181i | 0.105130 | + | 2.64366i | 2.31113i | 0.319861 | + | 2.98290i | 0 | ||||||
26.6 | −0.558418 | − | 0.322403i | −0.358331 | − | 1.69458i | −0.792113 | − | 1.37198i | 0 | −0.346239 | + | 1.06181i | −0.105130 | − | 2.64366i | 2.31113i | −2.74320 | + | 1.21444i | 0 | ||||||
26.7 | 0.558418 | + | 0.322403i | 0.358331 | + | 1.69458i | −0.792113 | − | 1.37198i | 0 | −0.346239 | + | 1.06181i | 0.105130 | + | 2.64366i | − | 2.31113i | −2.74320 | + | 1.21444i | 0 | |||||
26.8 | 0.558418 | + | 0.322403i | 1.28838 | + | 1.15761i | −0.792113 | − | 1.37198i | 0 | 0.346239 | + | 1.06181i | −0.105130 | − | 2.64366i | − | 2.31113i | 0.319861 | + | 2.98290i | 0 | |||||
26.9 | 1.31176 | + | 0.757344i | −1.68045 | + | 0.419611i | 0.147140 | + | 0.254854i | 0 | −2.52214 | − | 0.722254i | −2.64468 | − | 0.0753638i | − | 2.58363i | 2.64785 | − | 1.41027i | 0 | |||||
26.10 | 1.31176 | + | 0.757344i | 1.20362 | − | 1.24551i | 0.147140 | + | 0.254854i | 0 | 2.52214 | − | 0.722254i | 2.64468 | + | 0.0753638i | − | 2.58363i | −0.102593 | − | 2.99825i | 0 | |||||
26.11 | 2.17197 | + | 1.25399i | −0.831052 | + | 1.51966i | 2.14497 | + | 3.71520i | 0 | −3.71065 | + | 2.25852i | 2.06025 | + | 1.65993i | 5.74313i | −1.61871 | − | 2.52582i | 0 | ||||||
26.12 | 2.17197 | + | 1.25399i | 1.73159 | + | 0.0401158i | 2.14497 | + | 3.71520i | 0 | 3.71065 | + | 2.25852i | −2.06025 | − | 1.65993i | 5.74313i | 2.99678 | + | 0.138928i | 0 | ||||||
101.1 | −2.17197 | + | 1.25399i | −1.73159 | + | 0.0401158i | 2.14497 | − | 3.71520i | 0 | 3.71065 | − | 2.25852i | 2.06025 | − | 1.65993i | 5.74313i | 2.99678 | − | 0.138928i | 0 | ||||||
101.2 | −2.17197 | + | 1.25399i | 0.831052 | + | 1.51966i | 2.14497 | − | 3.71520i | 0 | −3.71065 | − | 2.25852i | −2.06025 | + | 1.65993i | 5.74313i | −1.61871 | + | 2.52582i | 0 | ||||||
101.3 | −1.31176 | + | 0.757344i | −1.20362 | − | 1.24551i | 0.147140 | − | 0.254854i | 0 | 2.52214 | + | 0.722254i | −2.64468 | + | 0.0753638i | − | 2.58363i | −0.102593 | + | 2.99825i | 0 | |||||
101.4 | −1.31176 | + | 0.757344i | 1.68045 | + | 0.419611i | 0.147140 | − | 0.254854i | 0 | −2.52214 | + | 0.722254i | 2.64468 | − | 0.0753638i | − | 2.58363i | 2.64785 | + | 1.41027i | 0 | |||||
101.5 | −0.558418 | + | 0.322403i | −1.28838 | + | 1.15761i | −0.792113 | + | 1.37198i | 0 | 0.346239 | − | 1.06181i | 0.105130 | − | 2.64366i | − | 2.31113i | 0.319861 | − | 2.98290i | 0 | |||||
101.6 | −0.558418 | + | 0.322403i | −0.358331 | + | 1.69458i | −0.792113 | + | 1.37198i | 0 | −0.346239 | − | 1.06181i | −0.105130 | + | 2.64366i | − | 2.31113i | −2.74320 | − | 1.21444i | 0 | |||||
101.7 | 0.558418 | − | 0.322403i | 0.358331 | − | 1.69458i | −0.792113 | + | 1.37198i | 0 | −0.346239 | − | 1.06181i | 0.105130 | − | 2.64366i | 2.31113i | −2.74320 | − | 1.21444i | 0 | ||||||
101.8 | 0.558418 | − | 0.322403i | 1.28838 | − | 1.15761i | −0.792113 | + | 1.37198i | 0 | 0.346239 | − | 1.06181i | −0.105130 | + | 2.64366i | 2.31113i | 0.319861 | − | 2.98290i | 0 | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
105.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 525.2.t.j | 24 | |
3.b | odd | 2 | 1 | inner | 525.2.t.j | 24 | |
5.b | even | 2 | 1 | inner | 525.2.t.j | 24 | |
5.c | odd | 4 | 2 | 105.2.p.a | ✓ | 24 | |
7.d | odd | 6 | 1 | inner | 525.2.t.j | 24 | |
15.d | odd | 2 | 1 | inner | 525.2.t.j | 24 | |
15.e | even | 4 | 2 | 105.2.p.a | ✓ | 24 | |
21.g | even | 6 | 1 | inner | 525.2.t.j | 24 | |
35.f | even | 4 | 2 | 735.2.p.f | 24 | ||
35.i | odd | 6 | 1 | inner | 525.2.t.j | 24 | |
35.k | even | 12 | 2 | 105.2.p.a | ✓ | 24 | |
35.k | even | 12 | 2 | 735.2.g.b | 24 | ||
35.l | odd | 12 | 2 | 735.2.g.b | 24 | ||
35.l | odd | 12 | 2 | 735.2.p.f | 24 | ||
105.k | odd | 4 | 2 | 735.2.p.f | 24 | ||
105.p | even | 6 | 1 | inner | 525.2.t.j | 24 | |
105.w | odd | 12 | 2 | 105.2.p.a | ✓ | 24 | |
105.w | odd | 12 | 2 | 735.2.g.b | 24 | ||
105.x | even | 12 | 2 | 735.2.g.b | 24 | ||
105.x | even | 12 | 2 | 735.2.p.f | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.p.a | ✓ | 24 | 5.c | odd | 4 | 2 | |
105.2.p.a | ✓ | 24 | 15.e | even | 4 | 2 | |
105.2.p.a | ✓ | 24 | 35.k | even | 12 | 2 | |
105.2.p.a | ✓ | 24 | 105.w | odd | 12 | 2 | |
525.2.t.j | 24 | 1.a | even | 1 | 1 | trivial | |
525.2.t.j | 24 | 3.b | odd | 2 | 1 | inner | |
525.2.t.j | 24 | 5.b | even | 2 | 1 | inner | |
525.2.t.j | 24 | 7.d | odd | 6 | 1 | inner | |
525.2.t.j | 24 | 15.d | odd | 2 | 1 | inner | |
525.2.t.j | 24 | 21.g | even | 6 | 1 | inner | |
525.2.t.j | 24 | 35.i | odd | 6 | 1 | inner | |
525.2.t.j | 24 | 105.p | even | 6 | 1 | inner | |
735.2.g.b | 24 | 35.k | even | 12 | 2 | ||
735.2.g.b | 24 | 35.l | odd | 12 | 2 | ||
735.2.g.b | 24 | 105.w | odd | 12 | 2 | ||
735.2.g.b | 24 | 105.x | even | 12 | 2 | ||
735.2.p.f | 24 | 35.f | even | 4 | 2 | ||
735.2.p.f | 24 | 35.l | odd | 12 | 2 | ||
735.2.p.f | 24 | 105.k | odd | 4 | 2 | ||
735.2.p.f | 24 | 105.x | even | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(525, [\chi])\):
\( T_{2}^{12} - 9T_{2}^{10} + 63T_{2}^{8} - 150T_{2}^{6} + 270T_{2}^{4} - 108T_{2}^{2} + 36 \) |
\( T_{13}^{6} + 30T_{13}^{4} + 219T_{13}^{2} + 28 \) |
\( T_{37}^{12} + 90T_{37}^{10} + 6129T_{37}^{8} + 153198T_{37}^{6} + 2796201T_{37}^{4} + 23841216T_{37}^{2} + 146313216 \) |