Properties

Label 735.2.p.f.509.10
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.10
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.f.374.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.757344 - 1.31176i) q^{2} +(0.419611 + 1.68045i) q^{3} +(-0.147140 - 0.254854i) q^{4} +(1.42830 + 1.72046i) q^{5} +(2.52214 + 0.722254i) q^{6} +2.58363 q^{8} +(-2.64785 + 1.41027i) q^{9} +(3.33853 - 0.570605i) q^{10} +(1.86048 - 1.07415i) q^{11} +(0.366529 - 0.354202i) q^{12} -3.48097 q^{13} +(-2.29182 + 3.12211i) q^{15} +(2.25098 - 3.89881i) q^{16} +(3.09793 - 1.78859i) q^{17} +(-0.155396 + 4.54141i) q^{18} +(1.05858 + 0.611171i) q^{19} +(0.228305 - 0.617156i) q^{20} -3.25401i q^{22} +(-0.757344 + 1.31176i) q^{23} +(1.08412 + 4.34168i) q^{24} +(-0.919933 + 4.91464i) q^{25} +(-2.63629 + 4.56619i) q^{26} +(-3.48097 - 3.85783i) q^{27} +5.95645i q^{29} +(2.35976 + 5.37082i) q^{30} +(-2.75098 + 1.58828i) q^{31} +(-0.825899 - 1.43050i) q^{32} +(2.58574 + 2.67573i) q^{33} -5.41832i q^{34} +(0.749020 + 0.467309i) q^{36} +(-6.75803 - 3.90175i) q^{37} +(1.60342 - 0.925734i) q^{38} +(-1.46065 - 5.84961i) q^{39} +(3.69020 + 4.44503i) q^{40} +11.8685 q^{41} +2.99294i q^{43} +(-0.547504 - 0.316101i) q^{44} +(-6.20824 - 2.54122i) q^{45} +(1.14714 + 1.98691i) q^{46} +(-5.28420 - 3.05084i) q^{47} +(7.49631 + 2.14668i) q^{48} +(5.75012 + 4.92881i) q^{50} +(4.30557 + 4.45542i) q^{51} +(0.512191 + 0.887140i) q^{52} +(-5.61301 - 9.72202i) q^{53} +(-7.69683 + 1.64449i) q^{54} +(4.50535 + 1.66667i) q^{55} +(-0.582853 + 2.03535i) q^{57} +(7.81342 + 4.51108i) q^{58} +(1.08467 + 1.87871i) q^{59} +(1.13290 + 0.124691i) q^{60} +(2.94338 + 1.69936i) q^{61} +4.81149i q^{62} +6.50196 q^{64} +(-4.97186 - 5.98885i) q^{65} +(5.46821 - 1.36542i) q^{66} +(8.93534 - 5.15882i) q^{67} +(-0.911660 - 0.526347i) q^{68} +(-2.52214 - 0.722254i) q^{69} -10.3968i q^{71} +(-6.84108 + 3.64363i) q^{72} +(-3.42779 - 5.93710i) q^{73} +(-10.2363 + 5.90993i) q^{74} +(-8.64485 + 0.516335i) q^{75} -0.359711i q^{76} +(-8.77950 - 2.51414i) q^{78} +(0.941421 - 1.63059i) q^{79} +(9.92280 - 1.69595i) q^{80} +(5.02225 - 7.46840i) q^{81} +(8.98853 - 15.5686i) q^{82} -9.10486i q^{83} +(7.50196 + 2.77521i) q^{85} +(3.92601 + 2.26668i) q^{86} +(-10.0095 + 2.49939i) q^{87} +(4.80681 - 2.77521i) q^{88} +(-0.889962 + 1.54146i) q^{89} +(-8.03524 + 6.21913i) q^{90} +0.445743 q^{92} +(-3.82337 - 3.95644i) q^{93} +(-8.00392 + 4.62107i) q^{94} +(0.460474 + 2.69417i) q^{95} +(2.05733 - 1.98814i) q^{96} +1.32584 q^{97} +(-3.41144 + 5.46799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{9} - 24 q^{15} - 12 q^{16} - 18 q^{24} - 12 q^{25} + 18 q^{30} + 84 q^{36} - 12 q^{39} + 72 q^{40} + 18 q^{45} + 36 q^{46} - 12 q^{51} + 36 q^{54} + 12 q^{60} - 36 q^{61} + 24 q^{64}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.757344 1.31176i 0.535523 0.927553i −0.463615 0.886037i \(-0.653448\pi\)
0.999138 0.0415164i \(-0.0132189\pi\)
\(3\) 0.419611 + 1.68045i 0.242263 + 0.970211i
\(4\) −0.147140 0.254854i −0.0735701 0.127427i
\(5\) 1.42830 + 1.72046i 0.638754 + 0.769411i
\(6\) 2.52214 + 0.722254i 1.02966 + 0.294859i
\(7\) 0 0
\(8\) 2.58363 0.913452
\(9\) −2.64785 + 1.41027i −0.882618 + 0.470092i
\(10\) 3.33853 0.570605i 1.05574 0.180441i
\(11\) 1.86048 1.07415i 0.560957 0.323869i −0.192573 0.981283i \(-0.561683\pi\)
0.753529 + 0.657414i \(0.228350\pi\)
\(12\) 0.366529 0.354202i 0.105808 0.102249i
\(13\) −3.48097 −0.965448 −0.482724 0.875773i \(-0.660353\pi\)
−0.482724 + 0.875773i \(0.660353\pi\)
\(14\) 0 0
\(15\) −2.29182 + 3.12211i −0.591745 + 0.806126i
\(16\) 2.25098 3.89881i 0.562745 0.974703i
\(17\) 3.09793 1.78859i 0.751359 0.433797i −0.0748259 0.997197i \(-0.523840\pi\)
0.826185 + 0.563399i \(0.190507\pi\)
\(18\) −0.155396 + 4.54141i −0.0366272 + 1.07042i
\(19\) 1.05858 + 0.611171i 0.242855 + 0.140212i 0.616488 0.787364i \(-0.288555\pi\)
−0.373633 + 0.927576i \(0.621888\pi\)
\(20\) 0.228305 0.617156i 0.0510506 0.138000i
\(21\) 0 0
\(22\) 3.25401i 0.693757i
\(23\) −0.757344 + 1.31176i −0.157917 + 0.273521i −0.934117 0.356966i \(-0.883811\pi\)
0.776200 + 0.630486i \(0.217145\pi\)
\(24\) 1.08412 + 4.34168i 0.221295 + 0.886241i
\(25\) −0.919933 + 4.91464i −0.183987 + 0.982929i
\(26\) −2.63629 + 4.56619i −0.517020 + 0.895504i
\(27\) −3.48097 3.85783i −0.669913 0.742439i
\(28\) 0 0
\(29\) 5.95645i 1.10608i 0.833153 + 0.553042i \(0.186533\pi\)
−0.833153 + 0.553042i \(0.813467\pi\)
\(30\) 2.35976 + 5.37082i 0.430832 + 0.980573i
\(31\) −2.75098 + 1.58828i −0.494091 + 0.285263i −0.726270 0.687410i \(-0.758748\pi\)
0.232179 + 0.972673i \(0.425414\pi\)
\(32\) −0.825899 1.43050i −0.146000 0.252879i
\(33\) 2.58574 + 2.67573i 0.450120 + 0.465785i
\(34\) 5.41832i 0.929234i
\(35\) 0 0
\(36\) 0.749020 + 0.467309i 0.124837 + 0.0778848i
\(37\) −6.75803 3.90175i −1.11101 0.641444i −0.171921 0.985111i \(-0.554998\pi\)
−0.939092 + 0.343667i \(0.888331\pi\)
\(38\) 1.60342 0.925734i 0.260109 0.150174i
\(39\) −1.46065 5.84961i −0.233892 0.936688i
\(40\) 3.69020 + 4.44503i 0.583471 + 0.702820i
\(41\) 11.8685 1.85355 0.926773 0.375622i \(-0.122571\pi\)
0.926773 + 0.375622i \(0.122571\pi\)
\(42\) 0 0
\(43\) 2.99294i 0.456419i 0.973612 + 0.228209i \(0.0732871\pi\)
−0.973612 + 0.228209i \(0.926713\pi\)
\(44\) −0.547504 0.316101i −0.0825393 0.0476541i
\(45\) −6.20824 2.54122i −0.925469 0.378823i
\(46\) 1.14714 + 1.98691i 0.169137 + 0.292953i
\(47\) −5.28420 3.05084i −0.770780 0.445010i 0.0623727 0.998053i \(-0.480133\pi\)
−0.833153 + 0.553043i \(0.813467\pi\)
\(48\) 7.49631 + 2.14668i 1.08200 + 0.309847i
\(49\) 0 0
\(50\) 5.75012 + 4.92881i 0.813190 + 0.697038i
\(51\) 4.30557 + 4.45542i 0.602901 + 0.623883i
\(52\) 0.512191 + 0.887140i 0.0710281 + 0.123024i
\(53\) −5.61301 9.72202i −0.771006 1.33542i −0.937012 0.349297i \(-0.886420\pi\)
0.166006 0.986125i \(-0.446913\pi\)
\(54\) −7.69683 + 1.64449i −1.04741 + 0.223787i
\(55\) 4.50535 + 1.66667i 0.607502 + 0.224734i
\(56\) 0 0
\(57\) −0.582853 + 2.03535i −0.0772008 + 0.269589i
\(58\) 7.81342 + 4.51108i 1.02595 + 0.592334i
\(59\) 1.08467 + 1.87871i 0.141213 + 0.244587i 0.927954 0.372696i \(-0.121567\pi\)
−0.786741 + 0.617283i \(0.788233\pi\)
\(60\) 1.13290 + 0.124691i 0.146257 + 0.0160976i
\(61\) 2.94338 + 1.69936i 0.376861 + 0.217581i 0.676452 0.736487i \(-0.263517\pi\)
−0.299591 + 0.954068i \(0.596850\pi\)
\(62\) 4.81149i 0.611060i
\(63\) 0 0
\(64\) 6.50196 0.812745
\(65\) −4.97186 5.98885i −0.616684 0.742826i
\(66\) 5.46821 1.36542i 0.673090 0.168071i
\(67\) 8.93534 5.15882i 1.09163 0.630250i 0.157617 0.987500i \(-0.449619\pi\)
0.934009 + 0.357250i \(0.116286\pi\)
\(68\) −0.911660 0.526347i −0.110555 0.0638290i
\(69\) −2.52214 0.722254i −0.303630 0.0869491i
\(70\) 0 0
\(71\) 10.3968i 1.23387i −0.787013 0.616936i \(-0.788374\pi\)
0.787013 0.616936i \(-0.211626\pi\)
\(72\) −6.84108 + 3.64363i −0.806229 + 0.429406i
\(73\) −3.42779 5.93710i −0.401192 0.694885i 0.592678 0.805439i \(-0.298071\pi\)
−0.993870 + 0.110555i \(0.964737\pi\)
\(74\) −10.2363 + 5.90993i −1.18995 + 0.687016i
\(75\) −8.64485 + 0.516335i −0.998221 + 0.0596212i
\(76\) 0.359711i 0.0412617i
\(77\) 0 0
\(78\) −8.77950 2.51414i −0.994082 0.284671i
\(79\) 0.941421 1.63059i 0.105918 0.183456i −0.808195 0.588915i \(-0.799555\pi\)
0.914113 + 0.405460i \(0.132889\pi\)
\(80\) 9.92280 1.69595i 1.10940 0.189613i
\(81\) 5.02225 7.46840i 0.558028 0.829822i
\(82\) 8.98853 15.5686i 0.992617 1.71926i
\(83\) 9.10486i 0.999388i −0.866202 0.499694i \(-0.833446\pi\)
0.866202 0.499694i \(-0.166554\pi\)
\(84\) 0 0
\(85\) 7.50196 + 2.77521i 0.813702 + 0.301014i
\(86\) 3.92601 + 2.26668i 0.423353 + 0.244423i
\(87\) −10.0095 + 2.49939i −1.07313 + 0.267963i
\(88\) 4.80681 2.77521i 0.512407 0.295839i
\(89\) −0.889962 + 1.54146i −0.0943358 + 0.163394i −0.909331 0.416073i \(-0.863406\pi\)
0.814995 + 0.579467i \(0.196739\pi\)
\(90\) −8.03524 + 6.21913i −0.846989 + 0.655554i
\(91\) 0 0
\(92\) 0.445743 0.0464719
\(93\) −3.82337 3.95644i −0.396465 0.410263i
\(94\) −8.00392 + 4.62107i −0.825541 + 0.476626i
\(95\) 0.460474 + 2.69417i 0.0472436 + 0.276416i
\(96\) 2.05733 1.98814i 0.209976 0.202914i
\(97\) 1.32584 0.134618 0.0673092 0.997732i \(-0.478559\pi\)
0.0673092 + 0.997732i \(0.478559\pi\)
\(98\) 0 0
\(99\) −3.41144 + 5.46799i −0.342863 + 0.549553i
\(100\) 1.38788 0.488693i 0.138788 0.0488693i
\(101\) −6.71005 11.6221i −0.667675 1.15645i −0.978553 0.205997i \(-0.933956\pi\)
0.310878 0.950450i \(-0.399377\pi\)
\(102\) 9.10523 2.27359i 0.901553 0.225119i
\(103\) −2.89342 + 5.01154i −0.285097 + 0.493802i −0.972633 0.232348i \(-0.925359\pi\)
0.687536 + 0.726150i \(0.258692\pi\)
\(104\) −8.99355 −0.881890
\(105\) 0 0
\(106\) −17.0039 −1.65157
\(107\) −1.94323 + 3.36576i −0.187859 + 0.325381i −0.944536 0.328408i \(-0.893488\pi\)
0.756677 + 0.653788i \(0.226821\pi\)
\(108\) −0.470993 + 1.45478i −0.0453214 + 0.139986i
\(109\) −2.60384 4.50998i −0.249403 0.431978i 0.713958 0.700189i \(-0.246901\pi\)
−0.963360 + 0.268211i \(0.913568\pi\)
\(110\) 5.59837 4.64769i 0.533784 0.443140i
\(111\) 3.72097 12.9938i 0.353179 1.23331i
\(112\) 0 0
\(113\) 9.36235 0.880736 0.440368 0.897817i \(-0.354848\pi\)
0.440368 + 0.897817i \(0.354848\pi\)
\(114\) 2.22847 + 2.30602i 0.208715 + 0.215979i
\(115\) −3.33853 + 0.570605i −0.311320 + 0.0532092i
\(116\) 1.51803 0.876432i 0.140945 0.0813747i
\(117\) 9.21710 4.90913i 0.852121 0.453849i
\(118\) 3.28589 0.302490
\(119\) 0 0
\(120\) −5.92121 + 8.06639i −0.540530 + 0.736357i
\(121\) −3.19240 + 5.52940i −0.290218 + 0.502673i
\(122\) 4.45830 2.57400i 0.403636 0.233039i
\(123\) 4.98015 + 19.9444i 0.449045 + 1.79833i
\(124\) 0.809559 + 0.467399i 0.0727006 + 0.0419737i
\(125\) −9.76936 + 5.43687i −0.873798 + 0.486289i
\(126\) 0 0
\(127\) 9.57778i 0.849891i −0.905219 0.424945i \(-0.860293\pi\)
0.905219 0.424945i \(-0.139707\pi\)
\(128\) 6.57602 11.3900i 0.581243 1.00674i
\(129\) −5.02950 + 1.25587i −0.442823 + 0.110573i
\(130\) −11.6213 + 1.98626i −1.01926 + 0.174206i
\(131\) 4.72508 8.18408i 0.412832 0.715047i −0.582366 0.812927i \(-0.697873\pi\)
0.995198 + 0.0978802i \(0.0312062\pi\)
\(132\) 0.301455 1.05269i 0.0262383 0.0916253i
\(133\) 0 0
\(134\) 15.6280i 1.35005i
\(135\) 1.66536 11.4990i 0.143331 0.989675i
\(136\) 8.00392 4.62107i 0.686330 0.396253i
\(137\) −5.35276 9.27125i −0.457317 0.792096i 0.541501 0.840700i \(-0.317856\pi\)
−0.998818 + 0.0486038i \(0.984523\pi\)
\(138\) −2.85755 + 2.76144i −0.243251 + 0.235070i
\(139\) 4.11136i 0.348721i 0.984682 + 0.174360i \(0.0557858\pi\)
−0.984682 + 0.174360i \(0.944214\pi\)
\(140\) 0 0
\(141\) 2.90948 10.1600i 0.245022 0.855629i
\(142\) −13.6381 7.87395i −1.14448 0.660767i
\(143\) −6.47629 + 3.73909i −0.541575 + 0.312678i
\(144\) −0.461868 + 13.4980i −0.0384890 + 1.12483i
\(145\) −10.2478 + 8.50758i −0.851033 + 0.706516i
\(146\) −10.3841 −0.859390
\(147\) 0 0
\(148\) 2.29642i 0.188764i
\(149\) −2.20294 1.27187i −0.180472 0.104196i 0.407042 0.913409i \(-0.366560\pi\)
−0.587514 + 0.809214i \(0.699893\pi\)
\(150\) −5.86982 + 11.7310i −0.479269 + 0.957832i
\(151\) 2.80956 + 4.86630i 0.228639 + 0.396014i 0.957405 0.288749i \(-0.0932392\pi\)
−0.728766 + 0.684763i \(0.759906\pi\)
\(152\) 2.73498 + 1.57904i 0.221836 + 0.128077i
\(153\) −5.68046 + 9.10486i −0.459238 + 0.736084i
\(154\) 0 0
\(155\) −6.66178 2.46440i −0.535087 0.197946i
\(156\) −1.27588 + 1.23297i −0.102152 + 0.0987164i
\(157\) 6.96194 + 12.0584i 0.555623 + 0.962368i 0.997855 + 0.0654670i \(0.0208537\pi\)
−0.442231 + 0.896901i \(0.645813\pi\)
\(158\) −1.42596 2.46983i −0.113443 0.196489i
\(159\) 13.9821 13.5119i 1.10885 1.07156i
\(160\) 1.28148 3.46410i 0.101310 0.273861i
\(161\) 0 0
\(162\) −5.99317 12.2441i −0.470868 0.961990i
\(163\) 3.52533 + 2.03535i 0.276125 + 0.159421i 0.631668 0.775239i \(-0.282371\pi\)
−0.355543 + 0.934660i \(0.615704\pi\)
\(164\) −1.74633 3.02473i −0.136366 0.236192i
\(165\) −0.910270 + 8.27039i −0.0708644 + 0.643849i
\(166\) −11.9434 6.89551i −0.926986 0.535196i
\(167\) 13.9722i 1.08120i 0.841279 + 0.540602i \(0.181803\pi\)
−0.841279 + 0.540602i \(0.818197\pi\)
\(168\) 0 0
\(169\) −0.882841 −0.0679109
\(170\) 9.32197 7.73897i 0.714963 0.593552i
\(171\) −3.66488 0.125403i −0.280261 0.00958983i
\(172\) 0.762763 0.440382i 0.0581602 0.0335788i
\(173\) −8.66256 5.00133i −0.658602 0.380244i 0.133142 0.991097i \(-0.457493\pi\)
−0.791744 + 0.610853i \(0.790827\pi\)
\(174\) −4.30206 + 15.0230i −0.326139 + 1.13889i
\(175\) 0 0
\(176\) 9.67157i 0.729022i
\(177\) −2.70195 + 2.61107i −0.203091 + 0.196260i
\(178\) 1.34801 + 2.33483i 0.101038 + 0.175003i
\(179\) 14.0378 8.10475i 1.04924 0.605777i 0.126801 0.991928i \(-0.459529\pi\)
0.922436 + 0.386151i \(0.126196\pi\)
\(180\) 0.265840 + 1.95611i 0.0198146 + 0.145800i
\(181\) 19.4123i 1.44290i 0.692465 + 0.721451i \(0.256525\pi\)
−0.692465 + 0.721451i \(0.743475\pi\)
\(182\) 0 0
\(183\) −1.62062 + 5.65929i −0.119800 + 0.418347i
\(184\) −1.95670 + 3.38910i −0.144250 + 0.249848i
\(185\) −2.93969 17.1997i −0.216130 1.26455i
\(186\) −8.08550 + 2.01896i −0.592857 + 0.148037i
\(187\) 3.84243 6.65529i 0.280987 0.486683i
\(188\) 1.79560i 0.130958i
\(189\) 0 0
\(190\) 3.88284 + 1.43639i 0.281691 + 0.104206i
\(191\) 11.0018 + 6.35188i 0.796061 + 0.459606i 0.842092 0.539334i \(-0.181324\pi\)
−0.0460309 + 0.998940i \(0.514657\pi\)
\(192\) 2.72830 + 10.9262i 0.196898 + 0.788534i
\(193\) −18.0302 + 10.4098i −1.29785 + 0.749311i −0.980032 0.198842i \(-0.936282\pi\)
−0.317813 + 0.948153i \(0.602949\pi\)
\(194\) 1.00411 1.73918i 0.0720912 0.124866i
\(195\) 7.97775 10.8680i 0.571298 0.778272i
\(196\) 0 0
\(197\) −2.23465 −0.159212 −0.0796062 0.996826i \(-0.525366\pi\)
−0.0796062 + 0.996826i \(0.525366\pi\)
\(198\) 4.58904 + 8.61613i 0.326129 + 0.612322i
\(199\) 21.5831 12.4610i 1.52998 0.883337i 0.530622 0.847608i \(-0.321958\pi\)
0.999362 0.0357284i \(-0.0113751\pi\)
\(200\) −2.37677 + 12.6976i −0.168063 + 0.897859i
\(201\) 12.4185 + 12.8507i 0.875936 + 0.906421i
\(202\) −20.3273 −1.43022
\(203\) 0 0
\(204\) 0.501960 1.75286i 0.0351442 0.122725i
\(205\) 16.9517 + 20.4192i 1.18396 + 1.42614i
\(206\) 4.38262 + 7.59093i 0.305352 + 0.528885i
\(207\) 0.155396 4.54141i 0.0108008 0.315650i
\(208\) −7.83560 + 13.5716i −0.543301 + 0.941025i
\(209\) 2.62596 0.181641
\(210\) 0 0
\(211\) −6.61520 −0.455409 −0.227705 0.973730i \(-0.573122\pi\)
−0.227705 + 0.973730i \(0.573122\pi\)
\(212\) −1.65180 + 2.86100i −0.113446 + 0.196494i
\(213\) 17.4713 4.36261i 1.19712 0.298921i
\(214\) 2.94338 + 5.09808i 0.201205 + 0.348498i
\(215\) −5.14922 + 4.27481i −0.351174 + 0.291539i
\(216\) −8.99355 9.96721i −0.611934 0.678183i
\(217\) 0 0
\(218\) −7.88801 −0.534243
\(219\) 8.53868 8.25151i 0.576991 0.557585i
\(220\) −0.238160 1.39344i −0.0160567 0.0939459i
\(221\) −10.7838 + 6.22604i −0.725398 + 0.418808i
\(222\) −14.2266 14.7218i −0.954830 0.988060i
\(223\) −4.31027 −0.288637 −0.144318 0.989531i \(-0.546099\pi\)
−0.144318 + 0.989531i \(0.546099\pi\)
\(224\) 0 0
\(225\) −4.49515 14.3106i −0.299677 0.954041i
\(226\) 7.09052 12.2811i 0.471654 0.816929i
\(227\) 9.62260 5.55561i 0.638675 0.368739i −0.145429 0.989369i \(-0.546456\pi\)
0.784104 + 0.620630i \(0.213123\pi\)
\(228\) 0.604478 0.150939i 0.0400326 0.00999617i
\(229\) −8.63774 4.98700i −0.570798 0.329550i 0.186670 0.982423i \(-0.440230\pi\)
−0.757468 + 0.652872i \(0.773564\pi\)
\(230\) −1.77992 + 4.81149i −0.117365 + 0.317261i
\(231\) 0 0
\(232\) 15.3893i 1.01036i
\(233\) −10.3144 + 17.8650i −0.675716 + 1.17037i 0.300543 + 0.953768i \(0.402832\pi\)
−0.976259 + 0.216606i \(0.930501\pi\)
\(234\) 0.540929 15.8085i 0.0353616 1.03343i
\(235\) −2.29859 13.4487i −0.149943 0.877299i
\(236\) 0.319198 0.552868i 0.0207780 0.0359886i
\(237\) 3.13516 + 0.897801i 0.203650 + 0.0583184i
\(238\) 0 0
\(239\) 2.87353i 0.185873i 0.995672 + 0.0929365i \(0.0296254\pi\)
−0.995672 + 0.0929365i \(0.970375\pi\)
\(240\) 7.01369 + 15.9632i 0.452732 + 1.03042i
\(241\) −22.5792 + 13.0361i −1.45445 + 0.839728i −0.998729 0.0503940i \(-0.983952\pi\)
−0.455722 + 0.890122i \(0.650619\pi\)
\(242\) 4.83549 + 8.37532i 0.310837 + 0.538386i
\(243\) 14.6577 + 5.30584i 0.940292 + 0.340370i
\(244\) 1.00018i 0.0640298i
\(245\) 0 0
\(246\) 29.9340 + 8.57206i 1.90852 + 0.546534i
\(247\) −3.68488 2.12747i −0.234464 0.135368i
\(248\) −7.10752 + 4.10353i −0.451328 + 0.260574i
\(249\) 15.3003 3.82050i 0.969617 0.242114i
\(250\) −0.266908 + 16.9326i −0.0168807 + 1.07091i
\(251\) −0.161120 −0.0101698 −0.00508489 0.999987i \(-0.501619\pi\)
−0.00508489 + 0.999987i \(0.501619\pi\)
\(252\) 0 0
\(253\) 3.25401i 0.204578i
\(254\) −12.5637 7.25368i −0.788319 0.455136i
\(255\) −1.51571 + 13.7712i −0.0949174 + 0.862387i
\(256\) −3.45866 5.99057i −0.216166 0.374411i
\(257\) −11.3712 6.56514i −0.709314 0.409522i 0.101493 0.994836i \(-0.467638\pi\)
−0.810807 + 0.585314i \(0.800971\pi\)
\(258\) −2.16166 + 7.54861i −0.134579 + 0.469956i
\(259\) 0 0
\(260\) −0.794725 + 2.14830i −0.0492867 + 0.133232i
\(261\) −8.40022 15.7718i −0.519961 0.976249i
\(262\) −7.15703 12.3963i −0.442163 0.765848i
\(263\) −8.86526 15.3551i −0.546655 0.946835i −0.998501 0.0547384i \(-0.982568\pi\)
0.451846 0.892096i \(-0.350766\pi\)
\(264\) 6.68061 + 6.91311i 0.411163 + 0.425473i
\(265\) 8.70925 23.5429i 0.535005 1.44623i
\(266\) 0 0
\(267\) −2.96379 0.848727i −0.181381 0.0519412i
\(268\) −2.62950 1.51814i −0.160622 0.0927352i
\(269\) −2.20294 3.81561i −0.134316 0.232642i 0.791020 0.611790i \(-0.209550\pi\)
−0.925336 + 0.379148i \(0.876217\pi\)
\(270\) −13.8226 10.8932i −0.841219 0.662941i
\(271\) −20.4287 11.7945i −1.24095 0.716465i −0.271665 0.962392i \(-0.587574\pi\)
−0.969288 + 0.245927i \(0.920908\pi\)
\(272\) 16.1043i 0.976469i
\(273\) 0 0
\(274\) −16.2155 −0.979615
\(275\) 3.56755 + 10.1318i 0.215131 + 0.610968i
\(276\) 0.187039 + 0.749051i 0.0112584 + 0.0450876i
\(277\) 11.1127 6.41589i 0.667695 0.385494i −0.127508 0.991838i \(-0.540698\pi\)
0.795203 + 0.606344i \(0.207364\pi\)
\(278\) 5.39311 + 3.11371i 0.323457 + 0.186748i
\(279\) 5.04428 8.08517i 0.301993 0.484046i
\(280\) 0 0
\(281\) 21.2397i 1.26706i 0.773719 + 0.633528i \(0.218394\pi\)
−0.773719 + 0.633528i \(0.781606\pi\)
\(282\) −11.1240 11.5112i −0.662426 0.685480i
\(283\) 3.27706 + 5.67603i 0.194801 + 0.337405i 0.946835 0.321719i \(-0.104261\pi\)
−0.752034 + 0.659124i \(0.770927\pi\)
\(284\) −2.64967 + 1.52979i −0.157229 + 0.0907761i
\(285\) −4.33421 + 1.90431i −0.256737 + 0.112802i
\(286\) 11.3271i 0.669786i
\(287\) 0 0
\(288\) 4.20426 + 2.62301i 0.247738 + 0.154562i
\(289\) −2.10188 + 3.64056i −0.123640 + 0.214151i
\(290\) 3.39878 + 19.8858i 0.199583 + 1.16773i
\(291\) 0.556336 + 2.22801i 0.0326130 + 0.130608i
\(292\) −1.00873 + 1.74717i −0.0590315 + 0.102245i
\(293\) 3.71937i 0.217288i −0.994081 0.108644i \(-0.965349\pi\)
0.994081 0.108644i \(-0.0346509\pi\)
\(294\) 0 0
\(295\) −1.68300 + 4.54949i −0.0979881 + 0.264882i
\(296\) −17.4603 10.0807i −1.01486 0.585928i
\(297\) −10.6202 3.43834i −0.616245 0.199513i
\(298\) −3.33677 + 1.92648i −0.193294 + 0.111598i
\(299\) 2.63629 4.56619i 0.152461 0.264070i
\(300\) 1.40359 + 2.12720i 0.0810366 + 0.122814i
\(301\) 0 0
\(302\) 8.51121 0.489765
\(303\) 16.7149 16.1527i 0.960245 0.927949i
\(304\) 4.76568 2.75147i 0.273331 0.157808i
\(305\) 1.28035 + 7.49115i 0.0733125 + 0.428942i
\(306\) 7.64132 + 14.3469i 0.436825 + 0.820158i
\(307\) 11.2102 0.639800 0.319900 0.947451i \(-0.396351\pi\)
0.319900 + 0.947451i \(0.396351\pi\)
\(308\) 0 0
\(309\) −9.63578 2.75935i −0.548160 0.156974i
\(310\) −8.27796 + 6.87225i −0.470157 + 0.390317i
\(311\) 9.46050 + 16.3861i 0.536456 + 0.929168i 0.999091 + 0.0426199i \(0.0135704\pi\)
−0.462636 + 0.886548i \(0.653096\pi\)
\(312\) −3.77380 15.1133i −0.213649 0.855620i
\(313\) 8.19024 14.1859i 0.462940 0.801835i −0.536166 0.844112i \(-0.680128\pi\)
0.999106 + 0.0422775i \(0.0134614\pi\)
\(314\) 21.0903 1.19020
\(315\) 0 0
\(316\) −0.554083 −0.0311696
\(317\) 5.05836 8.76134i 0.284106 0.492086i −0.688286 0.725439i \(-0.741637\pi\)
0.972392 + 0.233353i \(0.0749699\pi\)
\(318\) −7.13503 28.5743i −0.400113 1.60237i
\(319\) 6.39812 + 11.0819i 0.358226 + 0.620466i
\(320\) 9.28673 + 11.1863i 0.519144 + 0.625335i
\(321\) −6.47141 1.85319i −0.361199 0.103435i
\(322\) 0 0
\(323\) 4.37254 0.243295
\(324\) −2.64233 0.181040i −0.146796 0.0100578i
\(325\) 3.20226 17.1077i 0.177629 0.948966i
\(326\) 5.33977 3.08292i 0.295743 0.170747i
\(327\) 6.48622 6.26807i 0.358689 0.346625i
\(328\) 30.6638 1.69313
\(329\) 0 0
\(330\) 10.1594 + 7.45759i 0.559255 + 0.410527i
\(331\) −9.63774 + 16.6931i −0.529738 + 0.917533i 0.469660 + 0.882847i \(0.344376\pi\)
−0.999398 + 0.0346861i \(0.988957\pi\)
\(332\) −2.32041 + 1.33969i −0.127349 + 0.0735251i
\(333\) 23.3968 + 0.800582i 1.28214 + 0.0438716i
\(334\) 18.3282 + 10.5818i 1.00287 + 0.579009i
\(335\) 21.6378 + 8.00452i 1.18220 + 0.437334i
\(336\) 0 0
\(337\) 23.6381i 1.28765i −0.765174 0.643824i \(-0.777347\pi\)
0.765174 0.643824i \(-0.222653\pi\)
\(338\) −0.668614 + 1.15807i −0.0363678 + 0.0629909i
\(339\) 3.92855 + 15.7330i 0.213369 + 0.854499i
\(340\) −0.396565 2.32025i −0.0215068 0.125833i
\(341\) −3.41210 + 5.90993i −0.184776 + 0.320041i
\(342\) −2.94008 + 4.71247i −0.158981 + 0.254821i
\(343\) 0 0
\(344\) 7.73266i 0.416917i
\(345\) −2.35976 5.37082i −0.127045 0.289155i
\(346\) −13.1211 + 7.57546i −0.705394 + 0.407259i
\(347\) 7.95360 + 13.7760i 0.426971 + 0.739536i 0.996602 0.0823644i \(-0.0262471\pi\)
−0.569631 + 0.821901i \(0.692914\pi\)
\(348\) 2.10979 + 2.18321i 0.113096 + 0.117032i
\(349\) 0.0192397i 0.00102988i 1.00000 0.000514938i \(0.000163910\pi\)
−1.00000 0.000514938i \(0.999836\pi\)
\(350\) 0 0
\(351\) 12.1172 + 13.4290i 0.646766 + 0.716786i
\(352\) −3.07314 1.77428i −0.163799 0.0945695i
\(353\) −22.0143 + 12.7100i −1.17170 + 0.676484i −0.954081 0.299549i \(-0.903164\pi\)
−0.217624 + 0.976033i \(0.569830\pi\)
\(354\) 1.37880 + 5.52178i 0.0732821 + 0.293479i
\(355\) 17.8872 14.8497i 0.949355 0.788141i
\(356\) 0.523797 0.0277612
\(357\) 0 0
\(358\) 24.5523i 1.29763i
\(359\) 20.9396 + 12.0895i 1.10515 + 0.638057i 0.937568 0.347801i \(-0.113072\pi\)
0.167579 + 0.985859i \(0.446405\pi\)
\(360\) −16.0398 6.56558i −0.845372 0.346037i
\(361\) −8.75294 15.1605i −0.460681 0.797923i
\(362\) 25.4642 + 14.7018i 1.33837 + 0.772708i
\(363\) −10.6315 3.04448i −0.558007 0.159794i
\(364\) 0 0
\(365\) 5.31861 14.3773i 0.278389 0.752542i
\(366\) 6.19625 + 6.41189i 0.323883 + 0.335155i
\(367\) −4.53636 7.85721i −0.236796 0.410143i 0.722997 0.690851i \(-0.242764\pi\)
−0.959793 + 0.280708i \(0.909431\pi\)
\(368\) 3.40953 + 5.90548i 0.177734 + 0.307845i
\(369\) −31.4260 + 16.7378i −1.63597 + 0.871336i
\(370\) −24.7883 9.16996i −1.28868 0.476724i
\(371\) 0 0
\(372\) −0.445743 + 1.55655i −0.0231107 + 0.0807035i
\(373\) −13.4785 7.78183i −0.697891 0.402928i 0.108670 0.994078i \(-0.465341\pi\)
−0.806562 + 0.591150i \(0.798674\pi\)
\(374\) −5.82009 10.0807i −0.300950 0.521260i
\(375\) −13.2357 14.1356i −0.683491 0.729959i
\(376\) −13.6524 7.88224i −0.704071 0.406496i
\(377\) 20.7342i 1.06787i
\(378\) 0 0
\(379\) 34.0984 1.75152 0.875758 0.482751i \(-0.160362\pi\)
0.875758 + 0.482751i \(0.160362\pi\)
\(380\) 0.618867 0.513775i 0.0317472 0.0263561i
\(381\) 16.0950 4.01894i 0.824573 0.205897i
\(382\) 16.6643 9.62112i 0.852618 0.492259i
\(383\) −9.15965 5.28833i −0.468036 0.270221i 0.247381 0.968918i \(-0.420430\pi\)
−0.715417 + 0.698697i \(0.753763\pi\)
\(384\) 21.8997 + 6.27133i 1.11757 + 0.320032i
\(385\) 0 0
\(386\) 31.5351i 1.60509i
\(387\) −4.22087 7.92486i −0.214559 0.402843i
\(388\) −0.195084 0.337895i −0.00990388 0.0171540i
\(389\) 14.6659 8.46736i 0.743590 0.429312i −0.0797828 0.996812i \(-0.525423\pi\)
0.823373 + 0.567500i \(0.192089\pi\)
\(390\) −8.21426 18.6957i −0.415945 0.946692i
\(391\) 5.41832i 0.274016i
\(392\) 0 0
\(393\) 15.7357 + 4.50615i 0.793760 + 0.227305i
\(394\) −1.69240 + 2.93132i −0.0852619 + 0.147678i
\(395\) 4.14998 0.709293i 0.208808 0.0356884i
\(396\) 1.89550 + 0.0648594i 0.0952524 + 0.00325931i
\(397\) 0.203913 0.353188i 0.0102341 0.0177260i −0.860863 0.508837i \(-0.830076\pi\)
0.871097 + 0.491111i \(0.163409\pi\)
\(398\) 37.7491i 1.89219i
\(399\) 0 0
\(400\) 17.0905 + 14.6494i 0.854526 + 0.732470i
\(401\) −24.2302 13.9893i −1.21000 0.698593i −0.247240 0.968954i \(-0.579524\pi\)
−0.962759 + 0.270361i \(0.912857\pi\)
\(402\) 26.2622 6.55769i 1.30984 0.327068i
\(403\) 9.57608 5.52875i 0.477019 0.275407i
\(404\) −1.97464 + 3.42017i −0.0982418 + 0.170160i
\(405\) 20.0223 2.02654i 0.994917 0.100700i
\(406\) 0 0
\(407\) −16.7643 −0.830974
\(408\) 11.1240 + 11.5112i 0.550721 + 0.569888i
\(409\) −2.26960 + 1.31036i −0.112225 + 0.0647929i −0.555062 0.831809i \(-0.687305\pi\)
0.442837 + 0.896602i \(0.353972\pi\)
\(410\) 39.6233 6.77221i 1.95686 0.334456i
\(411\) 13.3338 12.8854i 0.657709 0.635589i
\(412\) 1.70295 0.0838984
\(413\) 0 0
\(414\) −5.83954 3.64325i −0.286998 0.179056i
\(415\) 15.6645 13.0045i 0.768940 0.638363i
\(416\) 2.87493 + 4.97953i 0.140955 + 0.244141i
\(417\) −6.90895 + 1.72517i −0.338333 + 0.0844820i
\(418\) 1.98876 3.44462i 0.0972732 0.168482i
\(419\) 8.39649 0.410195 0.205098 0.978742i \(-0.434249\pi\)
0.205098 + 0.978742i \(0.434249\pi\)
\(420\) 0 0
\(421\) −7.84952 −0.382562 −0.191281 0.981535i \(-0.561264\pi\)
−0.191281 + 0.981535i \(0.561264\pi\)
\(422\) −5.00998 + 8.67754i −0.243882 + 0.422416i
\(423\) 18.2943 + 0.625987i 0.889500 + 0.0304365i
\(424\) −14.5020 25.1181i −0.704277 1.21984i
\(425\) 5.94040 + 16.8706i 0.288152 + 0.818345i
\(426\) 7.50912 26.2222i 0.363818 1.27047i
\(427\) 0 0
\(428\) 1.14371 0.0552831
\(429\) −9.00089 9.31415i −0.434567 0.449691i
\(430\) 1.70778 + 9.99203i 0.0823567 + 0.481858i
\(431\) −10.6154 + 6.12880i −0.511326 + 0.295214i −0.733378 0.679821i \(-0.762058\pi\)
0.222053 + 0.975035i \(0.428724\pi\)
\(432\) −22.8765 + 4.88776i −1.10065 + 0.235162i
\(433\) −5.13957 −0.246992 −0.123496 0.992345i \(-0.539411\pi\)
−0.123496 + 0.992345i \(0.539411\pi\)
\(434\) 0 0
\(435\) −18.5967 13.6511i −0.891643 0.654519i
\(436\) −0.766259 + 1.32720i −0.0366971 + 0.0635613i
\(437\) −1.60342 + 0.925734i −0.0767019 + 0.0442838i
\(438\) −4.35726 17.4499i −0.208198 0.833790i
\(439\) 14.4620 + 8.34964i 0.690234 + 0.398507i 0.803700 0.595035i \(-0.202862\pi\)
−0.113466 + 0.993542i \(0.536195\pi\)
\(440\) 11.6402 + 4.30607i 0.554924 + 0.205284i
\(441\) 0 0
\(442\) 18.8610i 0.897127i
\(443\) 0.126110 0.218429i 0.00599167 0.0103779i −0.863014 0.505180i \(-0.831426\pi\)
0.869006 + 0.494802i \(0.164759\pi\)
\(444\) −3.85902 + 0.963602i −0.183141 + 0.0457305i
\(445\) −3.92314 + 0.670523i −0.185975 + 0.0317858i
\(446\) −3.26436 + 5.65403i −0.154572 + 0.267726i
\(447\) 1.21294 4.23563i 0.0573700 0.200339i
\(448\) 0 0
\(449\) 28.8710i 1.36250i 0.732049 + 0.681252i \(0.238564\pi\)
−0.732049 + 0.681252i \(0.761436\pi\)
\(450\) −22.1764 4.94150i −1.04541 0.232945i
\(451\) 22.0811 12.7485i 1.03976 0.600305i
\(452\) −1.37758 2.38603i −0.0647958 0.112230i
\(453\) −6.99867 + 6.76329i −0.328826 + 0.317767i
\(454\) 16.8300i 0.789873i
\(455\) 0 0
\(456\) −1.50588 + 5.25859i −0.0705193 + 0.246256i
\(457\) 20.8483 + 12.0368i 0.975242 + 0.563056i 0.900830 0.434171i \(-0.142959\pi\)
0.0744117 + 0.997228i \(0.476292\pi\)
\(458\) −13.0835 + 7.55375i −0.611351 + 0.352964i
\(459\) −17.6839 5.72525i −0.825413 0.267232i
\(460\) 0.636654 + 0.766881i 0.0296841 + 0.0357560i
\(461\) −39.8709 −1.85697 −0.928486 0.371367i \(-0.878889\pi\)
−0.928486 + 0.371367i \(0.878889\pi\)
\(462\) 0 0
\(463\) 29.8417i 1.38686i 0.720524 + 0.693430i \(0.243901\pi\)
−0.720524 + 0.693430i \(0.756099\pi\)
\(464\) 23.2231 + 13.4078i 1.07810 + 0.622443i
\(465\) 1.34596 12.2289i 0.0624173 0.567102i
\(466\) 15.6230 + 27.0599i 0.723723 + 1.25353i
\(467\) −3.62140 2.09082i −0.167579 0.0967515i 0.413865 0.910338i \(-0.364179\pi\)
−0.581444 + 0.813587i \(0.697512\pi\)
\(468\) −2.60732 1.62669i −0.120523 0.0751937i
\(469\) 0 0
\(470\) −19.3823 7.17013i −0.894039 0.330733i
\(471\) −17.3423 + 16.7591i −0.799093 + 0.772218i
\(472\) 2.80240 + 4.85390i 0.128991 + 0.223419i
\(473\) 3.21487 + 5.56831i 0.147820 + 0.256031i
\(474\) 3.55209 3.43263i 0.163153 0.157666i
\(475\) −3.97751 + 4.64030i −0.182501 + 0.212912i
\(476\) 0 0
\(477\) 28.5731 + 17.8266i 1.30827 + 0.816223i
\(478\) 3.76937 + 2.17625i 0.172407 + 0.0995393i
\(479\) 13.9676 + 24.1926i 0.638196 + 1.10539i 0.985828 + 0.167757i \(0.0536525\pi\)
−0.347632 + 0.937631i \(0.613014\pi\)
\(480\) 6.35899 + 0.699894i 0.290247 + 0.0319456i
\(481\) 23.5245 + 13.5819i 1.07262 + 0.619280i
\(482\) 39.4912i 1.79878i
\(483\) 0 0
\(484\) 1.87892 0.0854055
\(485\) 1.89369 + 2.28104i 0.0859880 + 0.103577i
\(486\) 18.0609 15.2090i 0.819259 0.689895i
\(487\) −32.2536 + 18.6216i −1.46155 + 0.843826i −0.999083 0.0428116i \(-0.986368\pi\)
−0.462466 + 0.886637i \(0.653035\pi\)
\(488\) 7.60462 + 4.39053i 0.344245 + 0.198750i
\(489\) −1.94104 + 6.77821i −0.0877770 + 0.306521i
\(490\) 0 0
\(491\) 5.90572i 0.266522i 0.991081 + 0.133261i \(0.0425448\pi\)
−0.991081 + 0.133261i \(0.957455\pi\)
\(492\) 4.35015 4.20384i 0.196120 0.189524i
\(493\) 10.6536 + 18.4527i 0.479816 + 0.831066i
\(494\) −5.58145 + 3.22245i −0.251121 + 0.144985i
\(495\) −14.2800 + 1.94068i −0.641837 + 0.0872272i
\(496\) 14.3007i 0.642122i
\(497\) 0 0
\(498\) 6.57602 22.9637i 0.294678 1.02903i
\(499\) 9.37010 16.2295i 0.419463 0.726532i −0.576422 0.817152i \(-0.695552\pi\)
0.995886 + 0.0906204i \(0.0288850\pi\)
\(500\) 2.82308 + 1.68978i 0.126252 + 0.0755693i
\(501\) −23.4797 + 5.86290i −1.04899 + 0.261935i
\(502\) −0.122023 + 0.211350i −0.00544615 + 0.00943301i
\(503\) 32.0398i 1.42858i 0.699849 + 0.714291i \(0.253251\pi\)
−0.699849 + 0.714291i \(0.746749\pi\)
\(504\) 0 0
\(505\) 10.4114 28.1442i 0.463303 1.25240i
\(506\) 4.26847 + 2.46440i 0.189757 + 0.109556i
\(507\) −0.370450 1.48357i −0.0164523 0.0658878i
\(508\) −2.44094 + 1.40928i −0.108299 + 0.0625265i
\(509\) −9.57465 + 16.5838i −0.424389 + 0.735063i −0.996363 0.0852085i \(-0.972844\pi\)
0.571974 + 0.820272i \(0.306178\pi\)
\(510\) 16.9166 + 12.4178i 0.749079 + 0.549869i
\(511\) 0 0
\(512\) 15.8265 0.699439
\(513\) −1.32709 6.21129i −0.0585925 0.274235i
\(514\) −17.2238 + 9.94415i −0.759708 + 0.438617i
\(515\) −12.7548 + 2.17998i −0.562044 + 0.0960615i
\(516\) 1.06011 + 1.09700i 0.0466685 + 0.0482927i
\(517\) −13.1082 −0.576499
\(518\) 0 0
\(519\) 4.76960 16.6557i 0.209362 0.731102i
\(520\) −12.8455 15.4730i −0.563311 0.678536i
\(521\) −1.94104 3.36199i −0.0850387 0.147291i 0.820369 0.571834i \(-0.193768\pi\)
−0.905408 + 0.424543i \(0.860435\pi\)
\(522\) −27.0506 0.925607i −1.18397 0.0405127i
\(523\) −1.06192 + 1.83929i −0.0464343 + 0.0804266i −0.888308 0.459247i \(-0.848119\pi\)
0.841874 + 0.539674i \(0.181452\pi\)
\(524\) −2.78100 −0.121488
\(525\) 0 0
\(526\) −26.8562 −1.17099
\(527\) −5.68157 + 9.84076i −0.247493 + 0.428670i
\(528\) 16.2526 4.05830i 0.707305 0.176615i
\(529\) 10.3529 + 17.9317i 0.450124 + 0.779638i
\(530\) −24.2867 29.2545i −1.05494 1.27073i
\(531\) −5.52156 3.44486i −0.239615 0.149494i
\(532\) 0 0
\(533\) −41.3138 −1.78950
\(534\) −3.35793 + 3.24500i −0.145312 + 0.140425i
\(535\) −8.56615 + 1.46408i −0.370347 + 0.0632978i
\(536\) 23.0856 13.3285i 0.997148 0.575704i
\(537\) 19.5101 + 20.1891i 0.841922 + 0.871224i
\(538\) −6.67354 −0.287717
\(539\) 0 0
\(540\) −3.17561 + 1.26754i −0.136656 + 0.0545462i
\(541\) 7.59052 13.1472i 0.326342 0.565241i −0.655441 0.755246i \(-0.727517\pi\)
0.981783 + 0.190005i \(0.0608506\pi\)
\(542\) −30.9431 + 17.8650i −1.32912 + 0.767367i
\(543\) −32.6214 + 8.14561i −1.39992 + 0.349561i
\(544\) −5.11716 2.95439i −0.219396 0.126669i
\(545\) 4.04017 10.9214i 0.173062 0.467821i
\(546\) 0 0
\(547\) 11.7540i 0.502566i −0.967914 0.251283i \(-0.919148\pi\)
0.967914 0.251283i \(-0.0808525\pi\)
\(548\) −1.57521 + 2.72835i −0.0672897 + 0.116549i
\(549\) −10.1902 0.348684i −0.434907 0.0148815i
\(550\) 15.9923 + 2.99347i 0.681913 + 0.127642i
\(551\) −3.64041 + 6.30537i −0.155087 + 0.268618i
\(552\) −6.51629 1.86604i −0.277352 0.0794239i
\(553\) 0 0
\(554\) 19.4362i 0.825763i
\(555\) 27.6699 12.1572i 1.17452 0.516045i
\(556\) 1.04780 0.604946i 0.0444365 0.0256554i
\(557\) 4.70135 + 8.14298i 0.199203 + 0.345029i 0.948270 0.317465i \(-0.102831\pi\)
−0.749068 + 0.662494i \(0.769498\pi\)
\(558\) −6.78553 12.7401i −0.287254 0.539333i
\(559\) 10.4183i 0.440649i
\(560\) 0 0
\(561\) 12.7962 + 3.66440i 0.540258 + 0.154711i
\(562\) 27.8614 + 16.0858i 1.17526 + 0.678538i
\(563\) 16.9106 9.76331i 0.712695 0.411475i −0.0993632 0.995051i \(-0.531681\pi\)
0.812058 + 0.583577i \(0.198347\pi\)
\(564\) −3.01743 + 0.753455i −0.127057 + 0.0317262i
\(565\) 13.3722 + 16.1075i 0.562574 + 0.677648i
\(566\) 9.92744 0.417281
\(567\) 0 0
\(568\) 26.8615i 1.12708i
\(569\) −11.1702 6.44911i −0.468279 0.270361i 0.247240 0.968954i \(-0.420476\pi\)
−0.715519 + 0.698593i \(0.753810\pi\)
\(570\) −0.784496 + 7.12766i −0.0328589 + 0.298545i
\(571\) 20.8321 + 36.0823i 0.871796 + 1.51000i 0.860137 + 0.510063i \(0.170378\pi\)
0.0116595 + 0.999932i \(0.496289\pi\)
\(572\) 1.90584 + 1.10034i 0.0796874 + 0.0460075i
\(573\) −6.05758 + 21.1533i −0.253059 + 0.883692i
\(574\) 0 0
\(575\) −5.75012 4.92881i −0.239797 0.205545i
\(576\) −17.2162 + 9.16955i −0.717343 + 0.382065i
\(577\) 3.74489 + 6.48634i 0.155902 + 0.270030i 0.933387 0.358871i \(-0.116838\pi\)
−0.777485 + 0.628901i \(0.783505\pi\)
\(578\) 3.18369 + 5.51432i 0.132424 + 0.229365i
\(579\) −25.0588 25.9309i −1.04141 1.07765i
\(580\) 3.67605 + 1.35989i 0.152640 + 0.0564663i
\(581\) 0 0
\(582\) 3.34395 + 0.957590i 0.138611 + 0.0396934i
\(583\) −20.8858 12.0584i −0.865003 0.499409i
\(584\) −8.85614 15.3393i −0.366470 0.634744i
\(585\) 21.6107 + 8.84591i 0.893492 + 0.365734i
\(586\) −4.87892 2.81685i −0.201546 0.116363i
\(587\) 22.1920i 0.915961i −0.888962 0.457981i \(-0.848573\pi\)
0.888962 0.457981i \(-0.151427\pi\)
\(588\) 0 0
\(589\) −3.88284 −0.159990
\(590\) 4.69322 + 5.65322i 0.193217 + 0.232739i
\(591\) −0.937685 3.75523i −0.0385712 0.154470i
\(592\) −30.4244 + 17.5655i −1.25043 + 0.721938i
\(593\) 5.46787 + 3.15687i 0.224538 + 0.129637i 0.608050 0.793899i \(-0.291952\pi\)
−0.383512 + 0.923536i \(0.625285\pi\)
\(594\) −12.5534 + 11.3271i −0.515072 + 0.464757i
\(595\) 0 0
\(596\) 0.748572i 0.0306627i
\(597\) 29.9966 + 31.0406i 1.22768 + 1.27041i
\(598\) −3.99316 6.91636i −0.163293 0.282831i
\(599\) −17.8962 + 10.3324i −0.731219 + 0.422170i −0.818868 0.573982i \(-0.805398\pi\)
0.0876487 + 0.996151i \(0.472065\pi\)
\(600\) −22.3351 + 1.33402i −0.911827 + 0.0544612i
\(601\) 12.5956i 0.513785i 0.966440 + 0.256892i \(0.0826986\pi\)
−0.966440 + 0.256892i \(0.917301\pi\)
\(602\) 0 0
\(603\) −16.3841 + 26.2611i −0.667213 + 1.06943i
\(604\) 0.826798 1.43206i 0.0336419 0.0582695i
\(605\) −14.0728 + 2.40525i −0.572140 + 0.0977871i
\(606\) −8.52955 34.1590i −0.346489 1.38762i
\(607\) −21.3383 + 36.9590i −0.866095 + 1.50012i −0.000139312 1.00000i \(0.500044\pi\)
−0.865956 + 0.500121i \(0.833289\pi\)
\(608\) 2.01906i 0.0818838i
\(609\) 0 0
\(610\) 10.7962 + 3.99387i 0.437127 + 0.161707i
\(611\) 18.3942 + 10.6199i 0.744148 + 0.429634i
\(612\) 3.15624 + 0.107999i 0.127583 + 0.00436559i
\(613\) −4.60972 + 2.66142i −0.186185 + 0.107494i −0.590195 0.807261i \(-0.700949\pi\)
0.404011 + 0.914754i \(0.367616\pi\)
\(614\) 8.48998 14.7051i 0.342628 0.593448i
\(615\) −27.2004 + 37.0547i −1.09683 + 1.49419i
\(616\) 0 0
\(617\) −30.1002 −1.21179 −0.605895 0.795545i \(-0.707185\pi\)
−0.605895 + 0.795545i \(0.707185\pi\)
\(618\) −10.9172 + 10.5500i −0.439154 + 0.424385i
\(619\) −11.0265 + 6.36613i −0.443191 + 0.255876i −0.704950 0.709257i \(-0.749031\pi\)
0.261759 + 0.965133i \(0.415697\pi\)
\(620\) 0.352152 + 2.06040i 0.0141428 + 0.0827475i
\(621\) 7.69683 1.64449i 0.308863 0.0659911i
\(622\) 28.6594 1.14914
\(623\) 0 0
\(624\) −26.0944 7.47254i −1.04461 0.299141i
\(625\) −23.3074 9.04228i −0.932298 0.361691i
\(626\) −12.4057 21.4872i −0.495830 0.858802i
\(627\) 1.10188 + 4.41281i 0.0440049 + 0.176230i
\(628\) 2.04876 3.54856i 0.0817545 0.141603i
\(629\) −27.9145 −1.11303
\(630\) 0 0
\(631\) −17.4114 −0.693138 −0.346569 0.938024i \(-0.612653\pi\)
−0.346569 + 0.938024i \(0.612653\pi\)
\(632\) 2.43229 4.21284i 0.0967511 0.167578i
\(633\) −2.77581 11.1165i −0.110329 0.441843i
\(634\) −7.66184 13.2707i −0.304291 0.527047i
\(635\) 16.4781 13.6799i 0.653915 0.542871i
\(636\) −5.50089 1.57526i −0.218125 0.0624633i
\(637\) 0 0
\(638\) 19.3823 0.767353
\(639\) 14.6623 + 27.5292i 0.580033 + 1.08904i
\(640\) 28.9885 4.95456i 1.14587 0.195846i
\(641\) −1.13893 + 0.657564i −0.0449852 + 0.0259722i −0.522324 0.852747i \(-0.674935\pi\)
0.477339 + 0.878719i \(0.341601\pi\)
\(642\) −7.33202 + 7.08543i −0.289372 + 0.279640i
\(643\) −39.2223 −1.54678 −0.773389 0.633932i \(-0.781440\pi\)
−0.773389 + 0.633932i \(0.781440\pi\)
\(644\) 0 0
\(645\) −9.34429 6.85927i −0.367931 0.270083i
\(646\) 3.31152 5.73572i 0.130290 0.225669i
\(647\) 5.39634 3.11558i 0.212152 0.122486i −0.390159 0.920747i \(-0.627580\pi\)
0.602311 + 0.798261i \(0.294247\pi\)
\(648\) 12.9757 19.2956i 0.509732 0.758003i
\(649\) 4.03604 + 2.33021i 0.158428 + 0.0914687i
\(650\) −20.0160 17.1570i −0.785092 0.672954i
\(651\) 0 0
\(652\) 1.19793i 0.0469144i
\(653\) −9.43091 + 16.3348i −0.369060 + 0.639230i −0.989419 0.145088i \(-0.953654\pi\)
0.620359 + 0.784318i \(0.286987\pi\)
\(654\) −3.30990 13.2554i −0.129427 0.518329i
\(655\) 20.8292 3.56001i 0.813863 0.139101i
\(656\) 26.7157 46.2730i 1.04307 1.80666i
\(657\) 17.4492 + 10.8864i 0.680759 + 0.424721i
\(658\) 0 0
\(659\) 41.6170i 1.62117i −0.585622 0.810584i \(-0.699150\pi\)
0.585622 0.810584i \(-0.300850\pi\)
\(660\) 2.24168 0.984921i 0.0872574 0.0383380i
\(661\) −3.27232 + 1.88927i −0.127278 + 0.0734842i −0.562287 0.826942i \(-0.690079\pi\)
0.435009 + 0.900426i \(0.356745\pi\)
\(662\) 14.5982 + 25.2848i 0.567374 + 0.982721i
\(663\) −14.9876 15.5092i −0.582069 0.602327i
\(664\) 23.5236i 0.912894i
\(665\) 0 0
\(666\) 18.7696 30.0846i 0.727307 1.16576i
\(667\) −7.81342 4.51108i −0.302537 0.174670i
\(668\) 3.56088 2.05588i 0.137775 0.0795442i
\(669\) −1.80864 7.24321i −0.0699259 0.280039i
\(670\) 26.8873 22.3215i 1.03875 0.862353i
\(671\) 7.30148 0.281871
\(672\) 0 0
\(673\) 31.2573i 1.20488i 0.798163 + 0.602441i \(0.205805\pi\)
−0.798163 + 0.602441i \(0.794195\pi\)
\(674\) −31.0075 17.9022i −1.19436 0.689565i
\(675\) 22.1621 13.5588i 0.853020 0.521878i
\(676\) 0.129901 + 0.224996i 0.00499621 + 0.00865369i
\(677\) 7.56724 + 4.36895i 0.290832 + 0.167912i 0.638317 0.769773i \(-0.279631\pi\)
−0.347485 + 0.937686i \(0.612964\pi\)
\(678\) 23.6132 + 6.76199i 0.906858 + 0.259693i
\(679\) 0 0
\(680\) 19.3823 + 7.17013i 0.743278 + 0.274962i
\(681\) 13.3737 + 13.8391i 0.512481 + 0.530317i
\(682\) 5.16827 + 8.95171i 0.197903 + 0.342779i
\(683\) 10.9346 + 18.9393i 0.418401 + 0.724691i 0.995779 0.0917858i \(-0.0292575\pi\)
−0.577378 + 0.816477i \(0.695924\pi\)
\(684\) 0.507292 + 0.952463i 0.0193968 + 0.0364183i
\(685\) 8.30544 22.4513i 0.317334 0.857819i
\(686\) 0 0
\(687\) 4.75594 16.6079i 0.181450 0.633632i
\(688\) 11.6689 + 6.73705i 0.444873 + 0.256847i
\(689\) 19.5387 + 33.8421i 0.744366 + 1.28928i
\(690\) −8.83237 0.972123i −0.336243 0.0370081i
\(691\) −19.5167 11.2680i −0.742449 0.428653i 0.0805102 0.996754i \(-0.474345\pi\)
−0.822959 + 0.568101i \(0.807678\pi\)
\(692\) 2.94359i 0.111898i
\(693\) 0 0
\(694\) 24.0944 0.914612
\(695\) −7.07341 + 5.87224i −0.268310 + 0.222747i
\(696\) −25.8610 + 6.45751i −0.980257 + 0.244771i
\(697\) 36.7678 21.2279i 1.39268 0.804063i
\(698\) 0.0252378 + 0.0145711i 0.000955266 + 0.000551523i
\(699\) −34.3493 9.83646i −1.29921 0.372049i
\(700\) 0 0
\(701\) 35.5019i 1.34089i −0.741960 0.670444i \(-0.766104\pi\)
0.741960 0.670444i \(-0.233896\pi\)
\(702\) 26.7924 5.72442i 1.01122 0.216054i
\(703\) −4.76927 8.26062i −0.179877 0.311555i
\(704\) 12.0968 6.98408i 0.455915 0.263223i
\(705\) 21.6355 9.50591i 0.814839 0.358013i
\(706\) 38.5033i 1.44909i
\(707\) 0 0
\(708\) 1.06301 + 0.304409i 0.0399503 + 0.0114404i
\(709\) −2.03390 + 3.52282i −0.0763847 + 0.132302i −0.901688 0.432388i \(-0.857671\pi\)
0.825303 + 0.564690i \(0.191004\pi\)
\(710\) −5.93246 34.7100i −0.222641 1.30264i
\(711\) −0.193166 + 5.64522i −0.00724428 + 0.211712i
\(712\) −2.29934 + 3.98257i −0.0861712 + 0.149253i
\(713\) 4.81149i 0.180192i
\(714\) 0 0
\(715\) −15.6830 5.80164i −0.586511 0.216969i
\(716\) −4.13106 2.38507i −0.154385 0.0891342i
\(717\) −4.82883 + 1.20576i −0.180336 + 0.0450301i
\(718\) 31.7169 18.3118i 1.18366 0.683389i
\(719\) 15.2703 26.4489i 0.569484 0.986376i −0.427133 0.904189i \(-0.640476\pi\)
0.996617 0.0821868i \(-0.0261904\pi\)
\(720\) −23.8824 + 18.4845i −0.890043 + 0.688877i
\(721\) 0 0
\(722\) −26.5159 −0.986821
\(723\) −31.3810 32.4732i −1.16707 1.20769i
\(724\) 4.94730 2.85632i 0.183865 0.106154i
\(725\) −29.2738 5.47953i −1.08720 0.203505i
\(726\) −12.0453 + 11.6402i −0.447043 + 0.432008i
\(727\) 23.4181 0.868528 0.434264 0.900786i \(-0.357008\pi\)
0.434264 + 0.900786i \(0.357008\pi\)
\(728\) 0 0
\(729\) −2.76568 + 26.8580i −0.102433 + 0.994740i
\(730\) −14.8315 17.8653i −0.548939 0.661224i
\(731\) 5.35315 + 9.27192i 0.197993 + 0.342934i
\(732\) 1.68075 0.419686i 0.0621224 0.0155120i
\(733\) 8.44533 14.6277i 0.311935 0.540288i −0.666846 0.745196i \(-0.732356\pi\)
0.978781 + 0.204908i \(0.0656894\pi\)
\(734\) −13.7423 −0.507239
\(735\) 0 0
\(736\) 2.50196 0.0922235
\(737\) 11.0827 19.1958i 0.408237 0.707087i
\(738\) −1.84431 + 53.8996i −0.0678901 + 1.98407i
\(739\) −13.8321 23.9579i −0.508822 0.881306i −0.999948 0.0102170i \(-0.996748\pi\)
0.491126 0.871089i \(-0.336586\pi\)
\(740\) −3.95088 + 3.27997i −0.145237 + 0.120574i
\(741\) 2.02890 7.08499i 0.0745333 0.260274i
\(742\) 0 0
\(743\) 40.1701 1.47370 0.736850 0.676056i \(-0.236312\pi\)
0.736850 + 0.676056i \(0.236312\pi\)
\(744\) −9.87819 10.2220i −0.362152 0.374756i
\(745\) −0.958262 5.60667i −0.0351080 0.205412i
\(746\) −20.4158 + 11.7870i −0.747474 + 0.431554i
\(747\) 12.8404 + 24.1083i 0.469804 + 0.882078i
\(748\) −2.26151 −0.0826888
\(749\) 0 0
\(750\) −28.5665 + 6.65659i −1.04310 + 0.243064i
\(751\) 24.8188 42.9874i 0.905650 1.56863i 0.0856082 0.996329i \(-0.472717\pi\)
0.820042 0.572303i \(-0.193950\pi\)
\(752\) −23.7893 + 13.7347i −0.867505 + 0.500854i
\(753\) −0.0676076 0.270754i −0.00246376 0.00986683i
\(754\) −27.1983 15.7029i −0.990503 0.571867i
\(755\) −4.35936 + 11.7842i −0.158654 + 0.428873i
\(756\) 0 0
\(757\) 47.7116i 1.73411i 0.498214 + 0.867054i \(0.333989\pi\)
−0.498214 + 0.867054i \(0.666011\pi\)
\(758\) 25.8242 44.7288i 0.937977 1.62462i
\(759\) −5.46821 + 1.36542i −0.198483 + 0.0495615i
\(760\) 1.18970 + 6.96075i 0.0431548 + 0.252493i
\(761\) −9.91711 + 17.1769i −0.359495 + 0.622663i −0.987876 0.155242i \(-0.950384\pi\)
0.628382 + 0.777905i \(0.283718\pi\)
\(762\) 6.91759 24.1565i 0.250598 0.875098i
\(763\) 0 0
\(764\) 3.73847i 0.135253i
\(765\) −23.7779 + 3.23147i −0.859692 + 0.116834i
\(766\) −13.8740 + 8.01017i −0.501289 + 0.289419i
\(767\) −3.77572 6.53974i −0.136333 0.236136i
\(768\) 8.61559 8.32583i 0.310888 0.300433i
\(769\) 10.6337i 0.383461i 0.981448 + 0.191731i \(0.0614100\pi\)
−0.981448 + 0.191731i \(0.938590\pi\)
\(770\) 0 0
\(771\) 6.26096 21.8635i 0.225483 0.787396i
\(772\) 5.30595 + 3.06339i 0.190965 + 0.110254i
\(773\) −12.4039 + 7.16138i −0.446136 + 0.257577i −0.706197 0.708015i \(-0.749591\pi\)
0.260061 + 0.965592i \(0.416257\pi\)
\(774\) −13.5922 0.465090i −0.488560 0.0167173i
\(775\) −5.27511 14.9812i −0.189488 0.538140i
\(776\) 3.42548 0.122967
\(777\) 0 0
\(778\) 25.6508i 0.919626i
\(779\) 12.5637 + 7.25368i 0.450142 + 0.259890i
\(780\) −3.94360 0.434047i −0.141203 0.0155414i
\(781\) −11.1677 19.3431i −0.399613 0.692149i
\(782\) 7.10752 + 4.10353i 0.254165 + 0.146742i
\(783\) 22.9789 20.7342i 0.821200 0.740980i
\(784\) 0 0
\(785\) −10.8023 + 29.2007i −0.385550 + 1.04222i
\(786\) 17.8283 17.2287i 0.635914 0.614527i
\(787\) −18.4671 31.9859i −0.658280 1.14017i −0.981061 0.193700i \(-0.937951\pi\)
0.322781 0.946474i \(-0.395382\pi\)
\(788\) 0.328807 + 0.569511i 0.0117133 + 0.0202880i
\(789\) 22.0835 21.3408i 0.786195 0.759753i
\(790\) 2.21254 5.98095i 0.0787188 0.212793i
\(791\) 0 0
\(792\) −8.81391 + 14.1273i −0.313189 + 0.501991i
\(793\) −10.2458 5.91543i −0.363840 0.210063i
\(794\) −0.308865 0.534970i −0.0109612 0.0189854i
\(795\) 43.2172 + 4.75664i 1.53276 + 0.168701i
\(796\) −6.35148 3.66703i −0.225122 0.129974i
\(797\) 37.4862i 1.32783i 0.747809 + 0.663914i \(0.231106\pi\)
−0.747809 + 0.663914i \(0.768894\pi\)
\(798\) 0 0
\(799\) −21.8268 −0.772177
\(800\) 7.79017 2.74304i 0.275424 0.0969810i
\(801\) 0.182607 5.33665i 0.00645210 0.188561i
\(802\) −36.7012 + 21.1895i −1.29597 + 0.748226i
\(803\) −12.7547 7.36392i −0.450103 0.259867i
\(804\) 1.44780 5.05578i 0.0510599 0.178303i
\(805\) 0 0
\(806\) 16.7487i 0.589947i
\(807\) 5.48757 5.30301i 0.193172 0.186675i
\(808\) −17.3363 30.0274i −0.609889 1.05636i
\(809\) −22.1518 + 12.7893i −0.778814 + 0.449649i −0.836010 0.548714i \(-0.815117\pi\)
0.0571956 + 0.998363i \(0.481784\pi\)
\(810\) 12.5055 27.7992i 0.439397 0.976765i
\(811\) 7.28791i 0.255913i −0.991780 0.127957i \(-0.959158\pi\)
0.991780 0.127957i \(-0.0408418\pi\)
\(812\) 0 0
\(813\) 11.2480 39.2786i 0.394485 1.37756i
\(814\) −12.6963 + 21.9907i −0.445006 + 0.770773i
\(815\) 1.53349 + 8.97225i 0.0537158 + 0.314284i
\(816\) 27.0626 6.75756i 0.947380 0.236562i
\(817\) −1.82920 + 3.16826i −0.0639955 + 0.110844i
\(818\) 3.96956i 0.138792i
\(819\) 0 0
\(820\) 2.70964 7.32470i 0.0946247 0.255790i
\(821\) −0.00729231 0.00421022i −0.000254504 0.000146938i 0.499873 0.866099i \(-0.333380\pi\)
−0.500127 + 0.865952i \(0.666713\pi\)
\(822\) −6.80421 27.2494i −0.237324 0.950433i
\(823\) 27.0406 15.6119i 0.942578 0.544198i 0.0518103 0.998657i \(-0.483501\pi\)
0.890767 + 0.454459i \(0.150168\pi\)
\(824\) −7.47553 + 12.9480i −0.260422 + 0.451065i
\(825\) −15.5290 + 10.2465i −0.540650 + 0.356737i
\(826\) 0 0
\(827\) 38.3189 1.33248 0.666239 0.745738i \(-0.267903\pi\)
0.666239 + 0.745738i \(0.267903\pi\)
\(828\) −1.18026 + 0.628620i −0.0410169 + 0.0218461i
\(829\) 1.94142 1.12088i 0.0674283 0.0389298i −0.465907 0.884834i \(-0.654272\pi\)
0.533335 + 0.845904i \(0.320938\pi\)
\(830\) −5.19528 30.3969i −0.180331 1.05509i
\(831\) 15.4446 + 15.9821i 0.535768 + 0.554414i
\(832\) −22.6331 −0.784663
\(833\) 0 0
\(834\) −2.96944 + 10.3694i −0.102823 + 0.359064i
\(835\) −24.0386 + 19.9565i −0.831889 + 0.690623i
\(836\) −0.386384 0.669237i −0.0133634 0.0231460i
\(837\) 15.7034 + 5.08406i 0.542789 + 0.175731i
\(838\) 6.35903 11.0142i 0.219669 0.380478i
\(839\) −20.6544 −0.713069 −0.356535 0.934282i \(-0.616042\pi\)
−0.356535 + 0.934282i \(0.616042\pi\)
\(840\) 0 0
\(841\) −6.47924 −0.223422
\(842\) −5.94479 + 10.2967i −0.204871 + 0.354847i
\(843\) −35.6924 + 8.91243i −1.22931 + 0.306961i
\(844\) 0.973362 + 1.68591i 0.0335045 + 0.0580315i
\(845\) −1.26096 1.51889i −0.0433783 0.0522514i
\(846\) 14.6762 23.5236i 0.504579 0.808759i
\(847\) 0 0
\(848\) −50.5391 −1.73552
\(849\) −8.16322 + 7.88867i −0.280161 + 0.270738i
\(850\) 26.6291 + 4.98449i 0.913371 + 0.170966i
\(851\) 10.2363 5.90993i 0.350896 0.202590i
\(852\) −3.68257 3.81073i −0.126163 0.130553i
\(853\) 7.06831 0.242014 0.121007 0.992652i \(-0.461388\pi\)
0.121007 + 0.992652i \(0.461388\pi\)
\(854\) 0 0
\(855\) −5.01879 6.48438i −0.171639 0.221761i
\(856\) −5.02058 + 8.69590i −0.171600 + 0.297220i
\(857\) 14.5780 8.41661i 0.497975 0.287506i −0.229902 0.973214i \(-0.573841\pi\)
0.727877 + 0.685708i \(0.240507\pi\)
\(858\) −19.0347 + 4.75298i −0.649833 + 0.162264i
\(859\) 30.4698 + 17.5918i 1.03962 + 0.600223i 0.919725 0.392563i \(-0.128412\pi\)
0.119893 + 0.992787i \(0.461745\pi\)
\(860\) 1.84711 + 0.683304i 0.0629859 + 0.0233005i
\(861\) 0 0
\(862\) 18.5665i 0.632376i
\(863\) −18.9879 + 32.8880i −0.646356 + 1.11952i 0.337630 + 0.941279i \(0.390375\pi\)
−0.983986 + 0.178243i \(0.942959\pi\)
\(864\) −2.64369 + 8.16571i −0.0899402 + 0.277803i
\(865\) −3.76815 22.0469i −0.128121 0.749618i
\(866\) −3.89242 + 6.74187i −0.132270 + 0.229098i
\(867\) −6.99977 2.00449i −0.237725 0.0680761i
\(868\) 0 0
\(869\) 4.04491i 0.137214i
\(870\) −31.9910 + 14.0558i −1.08460 + 0.476536i
\(871\) −31.1037 + 17.9577i −1.05391 + 0.608474i
\(872\) −6.72737 11.6521i −0.227817 0.394591i
\(873\) −3.51062 + 1.86979i −0.118817 + 0.0632829i
\(874\) 2.80440i 0.0948601i
\(875\) 0 0
\(876\) −3.35932 0.961992i −0.113501 0.0325027i
\(877\) 9.91566 + 5.72481i 0.334828 + 0.193313i 0.657983 0.753033i \(-0.271410\pi\)
−0.323155 + 0.946346i \(0.604743\pi\)
\(878\) 21.9054 12.6471i 0.739272 0.426819i
\(879\) 6.25024 1.56069i 0.210815 0.0526408i
\(880\) 16.6395 13.8139i 0.560917 0.465666i
\(881\) 23.6698 0.797455 0.398728 0.917069i \(-0.369452\pi\)
0.398728 + 0.917069i \(0.369452\pi\)
\(882\) 0 0
\(883\) 16.8355i 0.566560i −0.959037 0.283280i \(-0.908577\pi\)
0.959037 0.283280i \(-0.0914226\pi\)
\(884\) 3.17346 + 1.83220i 0.106735 + 0.0616236i
\(885\) −8.35142 0.919188i −0.280730 0.0308982i
\(886\) −0.191017 0.330852i −0.00641735 0.0111152i
\(887\) −45.5385 26.2917i −1.52903 0.882789i −0.999403 0.0345613i \(-0.988997\pi\)
−0.529632 0.848227i \(-0.677670\pi\)
\(888\) 9.61362 33.5712i 0.322612 1.12657i
\(889\) 0 0
\(890\) −2.09160 + 5.65403i −0.0701107 + 0.189524i
\(891\) 1.32163 19.2895i 0.0442761 0.646222i
\(892\) 0.634214 + 1.09849i 0.0212350 + 0.0367802i
\(893\) −3.72917 6.45910i −0.124792 0.216146i
\(894\) −4.63752 4.79891i −0.155102 0.160500i
\(895\) 33.9941 + 12.5755i 1.13630 + 0.420352i
\(896\) 0 0
\(897\) 8.77950 + 2.51414i 0.293139 + 0.0839448i
\(898\) 37.8717 + 21.8652i 1.26380 + 0.729653i
\(899\) −9.46050 16.3861i −0.315525 0.546506i
\(900\) −2.98570 + 3.25127i −0.0995234 + 0.108376i
\(901\) −34.7774 20.0788i −1.15860 0.668921i
\(902\) 38.6201i 1.28591i
\(903\) 0 0
\(904\) 24.1889 0.804510
\(905\) −33.3979 + 27.7265i −1.11019 + 0.921660i
\(906\) 3.57140 + 14.3027i 0.118652 + 0.475176i
\(907\) −43.9694 + 25.3858i −1.45998 + 0.842920i −0.999010 0.0444946i \(-0.985832\pi\)
−0.460971 + 0.887415i \(0.652499\pi\)
\(908\) −2.83174 1.63491i −0.0939747 0.0542563i
\(909\) 34.1577 + 21.3107i 1.13294 + 0.706832i
\(910\) 0 0
\(911\) 16.1165i 0.533963i −0.963702 0.266981i \(-0.913974\pi\)
0.963702 0.266981i \(-0.0860262\pi\)
\(912\) 6.62345 + 6.85396i 0.219324 + 0.226957i
\(913\) −9.77999 16.9394i −0.323671 0.560614i
\(914\) 31.5787 18.2319i 1.04453 0.603059i
\(915\) −12.0513 + 5.29493i −0.398403 + 0.175045i
\(916\) 2.93515i 0.0969802i
\(917\) 0 0
\(918\) −20.9029 + 18.8610i −0.689900 + 0.622506i
\(919\) −19.8721 + 34.4194i −0.655519 + 1.13539i 0.326245 + 0.945285i \(0.394217\pi\)
−0.981763 + 0.190106i \(0.939117\pi\)
\(920\) −8.62555 + 1.47423i −0.284376 + 0.0486040i
\(921\) 4.70392 + 18.8382i 0.155000 + 0.620740i
\(922\) −30.1960 + 52.3010i −0.994452 + 1.72244i
\(923\) 36.1909i 1.19124i
\(924\) 0 0
\(925\) 25.3926 29.6240i 0.834905 0.974030i
\(926\) 39.1451 + 22.6004i 1.28639 + 0.742696i
\(927\) 0.593686 17.3503i 0.0194992 0.569860i
\(928\) 8.52069 4.91942i 0.279705 0.161488i
\(929\) −18.2593 + 31.6261i −0.599069 + 1.03762i 0.393889 + 0.919158i \(0.371129\pi\)
−0.992959 + 0.118461i \(0.962204\pi\)
\(930\) −15.0220 11.0271i −0.492591 0.361592i
\(931\) 0 0
\(932\) 6.07063 0.198850
\(933\) −23.5663 + 22.7737i −0.771526 + 0.745578i
\(934\) −5.48530 + 3.16694i −0.179484 + 0.103625i
\(935\) 16.9383 2.89500i 0.553941 0.0946766i
\(936\) 23.8136 12.6834i 0.778372 0.414569i
\(937\) 7.60980 0.248601 0.124301 0.992245i \(-0.460331\pi\)
0.124301 + 0.992245i \(0.460331\pi\)
\(938\) 0 0
\(939\) 27.2755 + 7.81075i 0.890102 + 0.254894i
\(940\) −3.08925 + 2.56465i −0.100760 + 0.0836498i
\(941\) −11.0121 19.0735i −0.358985 0.621780i 0.628807 0.777562i \(-0.283544\pi\)
−0.987791 + 0.155782i \(0.950210\pi\)
\(942\) 8.84974 + 35.4414i 0.288340 + 1.15474i
\(943\) −8.98853 + 15.5686i −0.292707 + 0.506983i
\(944\) 9.76632 0.317867
\(945\) 0 0
\(946\) 9.73904 0.316644
\(947\) 24.6291 42.6589i 0.800339 1.38623i −0.119053 0.992888i \(-0.537986\pi\)
0.919393 0.393341i \(-0.128681\pi\)
\(948\) −0.232499 0.931111i −0.00755123 0.0302411i
\(949\) 11.9320 + 20.6669i 0.387330 + 0.670875i
\(950\) 3.07462 + 8.73184i 0.0997537 + 0.283298i
\(951\) 16.8456 + 4.82399i 0.546255 + 0.156429i
\(952\) 0 0
\(953\) −10.2538 −0.332154 −0.166077 0.986113i \(-0.553110\pi\)
−0.166077 + 0.986113i \(0.553110\pi\)
\(954\) 45.0239 23.9802i 1.45770 0.776388i
\(955\) 4.78569 + 28.0005i 0.154861 + 0.906073i
\(956\) 0.732331 0.422811i 0.0236853 0.0136747i
\(957\) −15.9379 + 15.4018i −0.515198 + 0.497870i
\(958\) 42.3131 1.36708
\(959\) 0 0
\(960\) −14.9013 + 20.2998i −0.480937 + 0.655174i
\(961\) −10.4547 + 18.1081i −0.337250 + 0.584134i
\(962\) 35.6323 20.5723i 1.14883 0.663278i
\(963\) 0.398721 11.6525i 0.0128486 0.375498i
\(964\) 6.64460 + 3.83626i 0.214008 + 0.123558i
\(965\) −43.6621 16.1520i −1.40553 0.519951i
\(966\) 0 0
\(967\) 4.62632i 0.148772i 0.997230 + 0.0743862i \(0.0236998\pi\)
−0.997230 + 0.0743862i \(0.976300\pi\)
\(968\) −8.24799 + 14.2859i −0.265101 + 0.459168i
\(969\) 1.83477 + 7.34786i 0.0589412 + 0.236047i
\(970\) 4.42635 0.756529i 0.142122 0.0242907i
\(971\) −12.6443 + 21.9006i −0.405775 + 0.702822i −0.994411 0.105575i \(-0.966332\pi\)
0.588637 + 0.808398i \(0.299665\pi\)
\(972\) −0.804521 4.51628i −0.0258050 0.144860i
\(973\) 0 0
\(974\) 56.4119i 1.80755i
\(975\) 30.0925 1.79735i 0.963730 0.0575612i
\(976\) 13.2510 7.65046i 0.424154 0.244885i
\(977\) −12.0549 20.8797i −0.385670 0.668000i 0.606192 0.795318i \(-0.292696\pi\)
−0.991862 + 0.127318i \(0.959363\pi\)
\(978\) 7.42133 + 7.67961i 0.237308 + 0.245567i
\(979\) 3.82381i 0.122210i
\(980\) 0 0
\(981\) 13.2549 + 8.26964i 0.423196 + 0.264029i
\(982\) 7.74688 + 4.47267i 0.247213 + 0.142728i
\(983\) 41.6456 24.0441i 1.32829 0.766888i 0.343254 0.939243i \(-0.388471\pi\)
0.985035 + 0.172354i \(0.0551374\pi\)
\(984\) 12.8669 + 51.5291i 0.410181 + 1.64269i
\(985\) −3.19175 3.84462i −0.101698 0.122500i
\(986\) 32.2739 1.02781
\(987\) 0 0
\(988\) 1.25214i 0.0398360i
\(989\) −3.92601 2.26668i −0.124840 0.0720764i
\(990\) −8.26915 + 20.2016i −0.262811 + 0.642050i
\(991\) −14.8587 25.7361i −0.472003 0.817534i 0.527483 0.849565i \(-0.323136\pi\)
−0.999487 + 0.0320314i \(0.989802\pi\)
\(992\) 4.54406 + 2.62352i 0.144274 + 0.0832967i
\(993\) −32.0960 9.19119i −1.01854 0.291674i
\(994\) 0 0
\(995\) 52.2656 + 19.3347i 1.65693 + 0.612952i
\(996\) −3.22496 3.33720i −0.102187 0.105743i
\(997\) 13.3742 + 23.1647i 0.423564 + 0.733634i 0.996285 0.0861161i \(-0.0274456\pi\)
−0.572721 + 0.819750i \(0.694112\pi\)
\(998\) −14.1928 24.5826i −0.449265 0.778149i
\(999\) 8.47222 + 39.6532i 0.268049 + 1.25457i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.f.509.10 24
3.2 odd 2 inner 735.2.p.f.509.4 24
5.4 even 2 inner 735.2.p.f.509.3 24
7.2 even 3 735.2.g.b.734.5 24
7.3 odd 6 inner 735.2.p.f.374.9 24
7.4 even 3 105.2.p.a.59.10 yes 24
7.5 odd 6 735.2.g.b.734.8 24
7.6 odd 2 105.2.p.a.89.9 yes 24
15.14 odd 2 inner 735.2.p.f.509.9 24
21.2 odd 6 735.2.g.b.734.18 24
21.5 even 6 735.2.g.b.734.19 24
21.11 odd 6 105.2.p.a.59.4 yes 24
21.17 even 6 inner 735.2.p.f.374.3 24
21.20 even 2 105.2.p.a.89.3 yes 24
35.4 even 6 105.2.p.a.59.3 24
35.9 even 6 735.2.g.b.734.20 24
35.13 even 4 525.2.t.j.26.4 24
35.18 odd 12 525.2.t.j.101.10 24
35.19 odd 6 735.2.g.b.734.17 24
35.24 odd 6 inner 735.2.p.f.374.4 24
35.27 even 4 525.2.t.j.26.9 24
35.32 odd 12 525.2.t.j.101.3 24
35.34 odd 2 105.2.p.a.89.4 yes 24
105.32 even 12 525.2.t.j.101.9 24
105.44 odd 6 735.2.g.b.734.7 24
105.53 even 12 525.2.t.j.101.4 24
105.59 even 6 inner 735.2.p.f.374.10 24
105.62 odd 4 525.2.t.j.26.3 24
105.74 odd 6 105.2.p.a.59.9 yes 24
105.83 odd 4 525.2.t.j.26.10 24
105.89 even 6 735.2.g.b.734.6 24
105.104 even 2 105.2.p.a.89.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.3 24 35.4 even 6
105.2.p.a.59.4 yes 24 21.11 odd 6
105.2.p.a.59.9 yes 24 105.74 odd 6
105.2.p.a.59.10 yes 24 7.4 even 3
105.2.p.a.89.3 yes 24 21.20 even 2
105.2.p.a.89.4 yes 24 35.34 odd 2
105.2.p.a.89.9 yes 24 7.6 odd 2
105.2.p.a.89.10 yes 24 105.104 even 2
525.2.t.j.26.3 24 105.62 odd 4
525.2.t.j.26.4 24 35.13 even 4
525.2.t.j.26.9 24 35.27 even 4
525.2.t.j.26.10 24 105.83 odd 4
525.2.t.j.101.3 24 35.32 odd 12
525.2.t.j.101.4 24 105.53 even 12
525.2.t.j.101.9 24 105.32 even 12
525.2.t.j.101.10 24 35.18 odd 12
735.2.g.b.734.5 24 7.2 even 3
735.2.g.b.734.6 24 105.89 even 6
735.2.g.b.734.7 24 105.44 odd 6
735.2.g.b.734.8 24 7.5 odd 6
735.2.g.b.734.17 24 35.19 odd 6
735.2.g.b.734.18 24 21.2 odd 6
735.2.g.b.734.19 24 21.5 even 6
735.2.g.b.734.20 24 35.9 even 6
735.2.p.f.374.3 24 21.17 even 6 inner
735.2.p.f.374.4 24 35.24 odd 6 inner
735.2.p.f.374.9 24 7.3 odd 6 inner
735.2.p.f.374.10 24 105.59 even 6 inner
735.2.p.f.509.3 24 5.4 even 2 inner
735.2.p.f.509.4 24 3.2 odd 2 inner
735.2.p.f.509.9 24 15.14 odd 2 inner
735.2.p.f.509.10 24 1.1 even 1 trivial