Properties

Label 735.2.p.f.509.3
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.3
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.f.374.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.757344 + 1.31176i) q^{2} +(-0.419611 - 1.68045i) q^{3} +(-0.147140 - 0.254854i) q^{4} +(-2.20411 - 0.376714i) q^{5} +(2.52214 + 0.722254i) q^{6} -2.58363 q^{8} +(-2.64785 + 1.41027i) q^{9} +(2.16343 - 2.60595i) q^{10} +(1.86048 - 1.07415i) q^{11} +(-0.366529 + 0.354202i) q^{12} +3.48097 q^{13} +(0.291817 + 3.86197i) q^{15} +(2.25098 - 3.89881i) q^{16} +(-3.09793 + 1.78859i) q^{17} +(0.155396 - 4.54141i) q^{18} +(1.05858 + 0.611171i) q^{19} +(0.228305 + 0.617156i) q^{20} +3.25401i q^{22} +(0.757344 - 1.31176i) q^{23} +(1.08412 + 4.34168i) q^{24} +(4.71617 + 1.66064i) q^{25} +(-2.63629 + 4.56619i) q^{26} +(3.48097 + 3.85783i) q^{27} +5.95645i q^{29} +(-5.28698 - 2.54205i) q^{30} +(-2.75098 + 1.58828i) q^{31} +(0.825899 + 1.43050i) q^{32} +(-2.58574 - 2.67573i) q^{33} -5.41832i q^{34} +(0.749020 + 0.467309i) q^{36} +(6.75803 + 3.90175i) q^{37} +(-1.60342 + 0.925734i) q^{38} +(-1.46065 - 5.84961i) q^{39} +(5.69460 + 0.973292i) q^{40} +11.8685 q^{41} -2.99294i q^{43} +(-0.547504 - 0.316101i) q^{44} +(6.36742 - 2.11091i) q^{45} +(1.14714 + 1.98691i) q^{46} +(5.28420 + 3.05084i) q^{47} +(-7.49631 - 2.14668i) q^{48} +(-5.75012 + 4.92881i) q^{50} +(4.30557 + 4.45542i) q^{51} +(-0.512191 - 0.887140i) q^{52} +(5.61301 + 9.72202i) q^{53} +(-7.69683 + 1.64449i) q^{54} +(-4.50535 + 1.66667i) q^{55} +(0.582853 - 2.03535i) q^{57} +(-7.81342 - 4.51108i) q^{58} +(1.08467 + 1.87871i) q^{59} +(0.941303 - 0.642622i) q^{60} +(2.94338 + 1.69936i) q^{61} -4.81149i q^{62} +6.50196 q^{64} +(-7.67243 - 1.31133i) q^{65} +(5.46821 - 1.36542i) q^{66} +(-8.93534 + 5.15882i) q^{67} +(0.911660 + 0.526347i) q^{68} +(-2.52214 - 0.722254i) q^{69} -10.3968i q^{71} +(6.84108 - 3.64363i) q^{72} +(3.42779 + 5.93710i) q^{73} +(-10.2363 + 5.90993i) q^{74} +(0.811666 - 8.62213i) q^{75} -0.359711i q^{76} +(8.77950 + 2.51414i) q^{78} +(0.941421 - 1.63059i) q^{79} +(-6.43014 + 7.74542i) q^{80} +(5.02225 - 7.46840i) q^{81} +(-8.98853 + 15.5686i) q^{82} +9.10486i q^{83} +(7.50196 - 2.77521i) q^{85} +(3.92601 + 2.26668i) q^{86} +(10.0095 - 2.49939i) q^{87} +(-4.80681 + 2.77521i) q^{88} +(-0.889962 + 1.54146i) q^{89} +(-2.05332 + 9.95121i) q^{90} -0.445743 q^{92} +(3.82337 + 3.95644i) q^{93} +(-8.00392 + 4.62107i) q^{94} +(-2.10299 - 1.74587i) q^{95} +(2.05733 - 1.98814i) q^{96} -1.32584 q^{97} +(-3.41144 + 5.46799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{9} - 24 q^{15} - 12 q^{16} - 18 q^{24} - 12 q^{25} + 18 q^{30} + 84 q^{36} - 12 q^{39} + 72 q^{40} + 18 q^{45} + 36 q^{46} - 12 q^{51} + 36 q^{54} + 12 q^{60} - 36 q^{61} + 24 q^{64}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.757344 + 1.31176i −0.535523 + 0.927553i 0.463615 + 0.886037i \(0.346552\pi\)
−0.999138 + 0.0415164i \(0.986781\pi\)
\(3\) −0.419611 1.68045i −0.242263 0.970211i
\(4\) −0.147140 0.254854i −0.0735701 0.127427i
\(5\) −2.20411 0.376714i −0.985706 0.168472i
\(6\) 2.52214 + 0.722254i 1.02966 + 0.294859i
\(7\) 0 0
\(8\) −2.58363 −0.913452
\(9\) −2.64785 + 1.41027i −0.882618 + 0.470092i
\(10\) 2.16343 2.60595i 0.684135 0.824075i
\(11\) 1.86048 1.07415i 0.560957 0.323869i −0.192573 0.981283i \(-0.561683\pi\)
0.753529 + 0.657414i \(0.228350\pi\)
\(12\) −0.366529 + 0.354202i −0.105808 + 0.102249i
\(13\) 3.48097 0.965448 0.482724 0.875773i \(-0.339647\pi\)
0.482724 + 0.875773i \(0.339647\pi\)
\(14\) 0 0
\(15\) 0.291817 + 3.86197i 0.0753468 + 0.997157i
\(16\) 2.25098 3.89881i 0.562745 0.974703i
\(17\) −3.09793 + 1.78859i −0.751359 + 0.433797i −0.826185 0.563399i \(-0.809493\pi\)
0.0748259 + 0.997197i \(0.476160\pi\)
\(18\) 0.155396 4.54141i 0.0366272 1.07042i
\(19\) 1.05858 + 0.611171i 0.242855 + 0.140212i 0.616488 0.787364i \(-0.288555\pi\)
−0.373633 + 0.927576i \(0.621888\pi\)
\(20\) 0.228305 + 0.617156i 0.0510506 + 0.138000i
\(21\) 0 0
\(22\) 3.25401i 0.693757i
\(23\) 0.757344 1.31176i 0.157917 0.273521i −0.776200 0.630486i \(-0.782855\pi\)
0.934117 + 0.356966i \(0.116189\pi\)
\(24\) 1.08412 + 4.34168i 0.221295 + 0.886241i
\(25\) 4.71617 + 1.66064i 0.943235 + 0.332127i
\(26\) −2.63629 + 4.56619i −0.517020 + 0.895504i
\(27\) 3.48097 + 3.85783i 0.669913 + 0.742439i
\(28\) 0 0
\(29\) 5.95645i 1.10608i 0.833153 + 0.553042i \(0.186533\pi\)
−0.833153 + 0.553042i \(0.813467\pi\)
\(30\) −5.28698 2.54205i −0.965267 0.464113i
\(31\) −2.75098 + 1.58828i −0.494091 + 0.285263i −0.726270 0.687410i \(-0.758748\pi\)
0.232179 + 0.972673i \(0.425414\pi\)
\(32\) 0.825899 + 1.43050i 0.146000 + 0.252879i
\(33\) −2.58574 2.67573i −0.450120 0.465785i
\(34\) 5.41832i 0.929234i
\(35\) 0 0
\(36\) 0.749020 + 0.467309i 0.124837 + 0.0778848i
\(37\) 6.75803 + 3.90175i 1.11101 + 0.641444i 0.939092 0.343667i \(-0.111669\pi\)
0.171921 + 0.985111i \(0.445002\pi\)
\(38\) −1.60342 + 0.925734i −0.260109 + 0.150174i
\(39\) −1.46065 5.84961i −0.233892 0.936688i
\(40\) 5.69460 + 0.973292i 0.900396 + 0.153891i
\(41\) 11.8685 1.85355 0.926773 0.375622i \(-0.122571\pi\)
0.926773 + 0.375622i \(0.122571\pi\)
\(42\) 0 0
\(43\) 2.99294i 0.456419i −0.973612 0.228209i \(-0.926713\pi\)
0.973612 0.228209i \(-0.0732871\pi\)
\(44\) −0.547504 0.316101i −0.0825393 0.0476541i
\(45\) 6.36742 2.11091i 0.949199 0.314676i
\(46\) 1.14714 + 1.98691i 0.169137 + 0.292953i
\(47\) 5.28420 + 3.05084i 0.770780 + 0.445010i 0.833153 0.553043i \(-0.186533\pi\)
−0.0623727 + 0.998053i \(0.519867\pi\)
\(48\) −7.49631 2.14668i −1.08200 0.309847i
\(49\) 0 0
\(50\) −5.75012 + 4.92881i −0.813190 + 0.697038i
\(51\) 4.30557 + 4.45542i 0.602901 + 0.623883i
\(52\) −0.512191 0.887140i −0.0710281 0.123024i
\(53\) 5.61301 + 9.72202i 0.771006 + 1.33542i 0.937012 + 0.349297i \(0.113580\pi\)
−0.166006 + 0.986125i \(0.553087\pi\)
\(54\) −7.69683 + 1.64449i −1.04741 + 0.223787i
\(55\) −4.50535 + 1.66667i −0.607502 + 0.224734i
\(56\) 0 0
\(57\) 0.582853 2.03535i 0.0772008 0.269589i
\(58\) −7.81342 4.51108i −1.02595 0.592334i
\(59\) 1.08467 + 1.87871i 0.141213 + 0.244587i 0.927954 0.372696i \(-0.121567\pi\)
−0.786741 + 0.617283i \(0.788233\pi\)
\(60\) 0.941303 0.642622i 0.121522 0.0829622i
\(61\) 2.94338 + 1.69936i 0.376861 + 0.217581i 0.676452 0.736487i \(-0.263517\pi\)
−0.299591 + 0.954068i \(0.596850\pi\)
\(62\) 4.81149i 0.611060i
\(63\) 0 0
\(64\) 6.50196 0.812745
\(65\) −7.67243 1.31133i −0.951648 0.162651i
\(66\) 5.46821 1.36542i 0.673090 0.168071i
\(67\) −8.93534 + 5.15882i −1.09163 + 0.630250i −0.934009 0.357250i \(-0.883714\pi\)
−0.157617 + 0.987500i \(0.550381\pi\)
\(68\) 0.911660 + 0.526347i 0.110555 + 0.0638290i
\(69\) −2.52214 0.722254i −0.303630 0.0869491i
\(70\) 0 0
\(71\) 10.3968i 1.23387i −0.787013 0.616936i \(-0.788374\pi\)
0.787013 0.616936i \(-0.211626\pi\)
\(72\) 6.84108 3.64363i 0.806229 0.429406i
\(73\) 3.42779 + 5.93710i 0.401192 + 0.694885i 0.993870 0.110555i \(-0.0352627\pi\)
−0.592678 + 0.805439i \(0.701929\pi\)
\(74\) −10.2363 + 5.90993i −1.18995 + 0.687016i
\(75\) 0.811666 8.62213i 0.0937231 0.995598i
\(76\) 0.359711i 0.0412617i
\(77\) 0 0
\(78\) 8.77950 + 2.51414i 0.994082 + 0.284671i
\(79\) 0.941421 1.63059i 0.105918 0.183456i −0.808195 0.588915i \(-0.799555\pi\)
0.914113 + 0.405460i \(0.132889\pi\)
\(80\) −6.43014 + 7.74542i −0.718911 + 0.865964i
\(81\) 5.02225 7.46840i 0.558028 0.829822i
\(82\) −8.98853 + 15.5686i −0.992617 + 1.71926i
\(83\) 9.10486i 0.999388i 0.866202 + 0.499694i \(0.166554\pi\)
−0.866202 + 0.499694i \(0.833446\pi\)
\(84\) 0 0
\(85\) 7.50196 2.77521i 0.813702 0.301014i
\(86\) 3.92601 + 2.26668i 0.423353 + 0.244423i
\(87\) 10.0095 2.49939i 1.07313 0.267963i
\(88\) −4.80681 + 2.77521i −0.512407 + 0.295839i
\(89\) −0.889962 + 1.54146i −0.0943358 + 0.163394i −0.909331 0.416073i \(-0.863406\pi\)
0.814995 + 0.579467i \(0.196739\pi\)
\(90\) −2.05332 + 9.95121i −0.216439 + 1.04895i
\(91\) 0 0
\(92\) −0.445743 −0.0464719
\(93\) 3.82337 + 3.95644i 0.396465 + 0.410263i
\(94\) −8.00392 + 4.62107i −0.825541 + 0.476626i
\(95\) −2.10299 1.74587i −0.215762 0.179122i
\(96\) 2.05733 1.98814i 0.209976 0.202914i
\(97\) −1.32584 −0.134618 −0.0673092 0.997732i \(-0.521441\pi\)
−0.0673092 + 0.997732i \(0.521441\pi\)
\(98\) 0 0
\(99\) −3.41144 + 5.46799i −0.342863 + 0.549553i
\(100\) −0.270718 1.44628i −0.0270718 0.144628i
\(101\) −6.71005 11.6221i −0.667675 1.15645i −0.978553 0.205997i \(-0.933956\pi\)
0.310878 0.950450i \(-0.399377\pi\)
\(102\) −9.10523 + 2.27359i −0.901553 + 0.225119i
\(103\) 2.89342 5.01154i 0.285097 0.493802i −0.687536 0.726150i \(-0.741308\pi\)
0.972633 + 0.232348i \(0.0746409\pi\)
\(104\) −8.99355 −0.881890
\(105\) 0 0
\(106\) −17.0039 −1.65157
\(107\) 1.94323 3.36576i 0.187859 0.325381i −0.756677 0.653788i \(-0.773179\pi\)
0.944536 + 0.328408i \(0.106512\pi\)
\(108\) 0.470993 1.45478i 0.0453214 0.139986i
\(109\) −2.60384 4.50998i −0.249403 0.431978i 0.713958 0.700189i \(-0.246901\pi\)
−0.963360 + 0.268211i \(0.913568\pi\)
\(110\) 1.22583 7.17218i 0.116878 0.683840i
\(111\) 3.72097 12.9938i 0.353179 1.23331i
\(112\) 0 0
\(113\) −9.36235 −0.880736 −0.440368 0.897817i \(-0.645152\pi\)
−0.440368 + 0.897817i \(0.645152\pi\)
\(114\) 2.22847 + 2.30602i 0.208715 + 0.215979i
\(115\) −2.16343 + 2.60595i −0.201740 + 0.243006i
\(116\) 1.51803 0.876432i 0.140945 0.0813747i
\(117\) −9.21710 + 4.90913i −0.852121 + 0.453849i
\(118\) −3.28589 −0.302490
\(119\) 0 0
\(120\) −0.753947 9.97793i −0.0688257 0.910856i
\(121\) −3.19240 + 5.52940i −0.290218 + 0.502673i
\(122\) −4.45830 + 2.57400i −0.403636 + 0.233039i
\(123\) −4.98015 19.9444i −0.449045 1.79833i
\(124\) 0.809559 + 0.467399i 0.0727006 + 0.0419737i
\(125\) −9.76936 5.43687i −0.873798 0.486289i
\(126\) 0 0
\(127\) 9.57778i 0.849891i 0.905219 + 0.424945i \(0.139707\pi\)
−0.905219 + 0.424945i \(0.860293\pi\)
\(128\) −6.57602 + 11.3900i −0.581243 + 1.00674i
\(129\) −5.02950 + 1.25587i −0.442823 + 0.110573i
\(130\) 7.53082 9.07125i 0.660497 0.795601i
\(131\) 4.72508 8.18408i 0.412832 0.715047i −0.582366 0.812927i \(-0.697873\pi\)
0.995198 + 0.0978802i \(0.0312062\pi\)
\(132\) −0.301455 + 1.05269i −0.0262383 + 0.0916253i
\(133\) 0 0
\(134\) 15.6280i 1.35005i
\(135\) −6.21913 9.81440i −0.535258 0.844689i
\(136\) 8.00392 4.62107i 0.686330 0.396253i
\(137\) 5.35276 + 9.27125i 0.457317 + 0.792096i 0.998818 0.0486038i \(-0.0154772\pi\)
−0.541501 + 0.840700i \(0.682144\pi\)
\(138\) 2.85755 2.76144i 0.243251 0.235070i
\(139\) 4.11136i 0.348721i 0.984682 + 0.174360i \(0.0557858\pi\)
−0.984682 + 0.174360i \(0.944214\pi\)
\(140\) 0 0
\(141\) 2.90948 10.1600i 0.245022 0.855629i
\(142\) 13.6381 + 7.87395i 1.14448 + 0.660767i
\(143\) 6.47629 3.73909i 0.541575 0.312678i
\(144\) −0.461868 + 13.4980i −0.0384890 + 1.12483i
\(145\) 2.24388 13.1286i 0.186344 1.09027i
\(146\) −10.3841 −0.859390
\(147\) 0 0
\(148\) 2.29642i 0.188764i
\(149\) −2.20294 1.27187i −0.180472 0.104196i 0.407042 0.913409i \(-0.366560\pi\)
−0.587514 + 0.809214i \(0.699893\pi\)
\(150\) 10.6954 + 7.59463i 0.873280 + 0.620099i
\(151\) 2.80956 + 4.86630i 0.228639 + 0.396014i 0.957405 0.288749i \(-0.0932392\pi\)
−0.728766 + 0.684763i \(0.759906\pi\)
\(152\) −2.73498 1.57904i −0.221836 0.128077i
\(153\) 5.68046 9.10486i 0.459238 0.736084i
\(154\) 0 0
\(155\) 6.66178 2.46440i 0.535087 0.197946i
\(156\) −1.27588 + 1.23297i −0.102152 + 0.0987164i
\(157\) −6.96194 12.0584i −0.555623 0.962368i −0.997855 0.0654670i \(-0.979146\pi\)
0.442231 0.896901i \(-0.354187\pi\)
\(158\) 1.42596 + 2.46983i 0.113443 + 0.196489i
\(159\) 13.9821 13.5119i 1.10885 1.07156i
\(160\) −1.28148 3.46410i −0.101310 0.273861i
\(161\) 0 0
\(162\) 5.99317 + 12.2441i 0.470868 + 0.961990i
\(163\) −3.52533 2.03535i −0.276125 0.159421i 0.355543 0.934660i \(-0.384296\pi\)
−0.631668 + 0.775239i \(0.717629\pi\)
\(164\) −1.74633 3.02473i −0.136366 0.236192i
\(165\) 4.69126 + 6.87168i 0.365214 + 0.534960i
\(166\) −11.9434 6.89551i −0.926986 0.535196i
\(167\) 13.9722i 1.08120i −0.841279 0.540602i \(-0.818197\pi\)
0.841279 0.540602i \(-0.181803\pi\)
\(168\) 0 0
\(169\) −0.882841 −0.0679109
\(170\) −2.04116 + 11.9425i −0.156550 + 0.915952i
\(171\) −3.66488 0.125403i −0.280261 0.00958983i
\(172\) −0.762763 + 0.440382i −0.0581602 + 0.0335788i
\(173\) 8.66256 + 5.00133i 0.658602 + 0.380244i 0.791744 0.610853i \(-0.209173\pi\)
−0.133142 + 0.991097i \(0.542507\pi\)
\(174\) −4.30206 + 15.0230i −0.326139 + 1.13889i
\(175\) 0 0
\(176\) 9.67157i 0.729022i
\(177\) 2.70195 2.61107i 0.203091 0.196260i
\(178\) −1.34801 2.33483i −0.101038 0.175003i
\(179\) 14.0378 8.10475i 1.04924 0.605777i 0.126801 0.991928i \(-0.459529\pi\)
0.922436 + 0.386151i \(0.126196\pi\)
\(180\) −1.47488 1.31216i −0.109931 0.0978030i
\(181\) 19.4123i 1.44290i 0.692465 + 0.721451i \(0.256525\pi\)
−0.692465 + 0.721451i \(0.743475\pi\)
\(182\) 0 0
\(183\) 1.62062 5.65929i 0.119800 0.418347i
\(184\) −1.95670 + 3.38910i −0.144250 + 0.249848i
\(185\) −13.4256 11.1457i −0.987068 0.819450i
\(186\) −8.08550 + 2.01896i −0.592857 + 0.148037i
\(187\) −3.84243 + 6.65529i −0.280987 + 0.486683i
\(188\) 1.79560i 0.130958i
\(189\) 0 0
\(190\) 3.88284 1.43639i 0.281691 0.104206i
\(191\) 11.0018 + 6.35188i 0.796061 + 0.459606i 0.842092 0.539334i \(-0.181324\pi\)
−0.0460309 + 0.998940i \(0.514657\pi\)
\(192\) −2.72830 10.9262i −0.196898 0.788534i
\(193\) 18.0302 10.4098i 1.29785 0.749311i 0.317813 0.948153i \(-0.397051\pi\)
0.980032 + 0.198842i \(0.0637181\pi\)
\(194\) 1.00411 1.73918i 0.0720912 0.124866i
\(195\) 1.01581 + 13.4434i 0.0727433 + 0.962703i
\(196\) 0 0
\(197\) 2.23465 0.159212 0.0796062 0.996826i \(-0.474634\pi\)
0.0796062 + 0.996826i \(0.474634\pi\)
\(198\) −4.58904 8.61613i −0.326129 0.612322i
\(199\) 21.5831 12.4610i 1.52998 0.883337i 0.530622 0.847608i \(-0.321958\pi\)
0.999362 0.0357284i \(-0.0113751\pi\)
\(200\) −12.1849 4.29048i −0.861600 0.303383i
\(201\) 12.4185 + 12.8507i 0.875936 + 0.906421i
\(202\) 20.3273 1.43022
\(203\) 0 0
\(204\) 0.501960 1.75286i 0.0351442 0.122725i
\(205\) −26.1594 4.47103i −1.82705 0.312270i
\(206\) 4.38262 + 7.59093i 0.305352 + 0.528885i
\(207\) −0.155396 + 4.54141i −0.0108008 + 0.315650i
\(208\) 7.83560 13.5716i 0.543301 0.941025i
\(209\) 2.62596 0.181641
\(210\) 0 0
\(211\) −6.61520 −0.455409 −0.227705 0.973730i \(-0.573122\pi\)
−0.227705 + 0.973730i \(0.573122\pi\)
\(212\) 1.65180 2.86100i 0.113446 0.196494i
\(213\) −17.4713 + 4.36261i −1.19712 + 0.298921i
\(214\) 2.94338 + 5.09808i 0.201205 + 0.348498i
\(215\) −1.12748 + 6.59676i −0.0768937 + 0.449895i
\(216\) −8.99355 9.96721i −0.611934 0.678183i
\(217\) 0 0
\(218\) 7.88801 0.534243
\(219\) 8.53868 8.25151i 0.576991 0.557585i
\(220\) 1.08768 + 0.902974i 0.0733312 + 0.0608785i
\(221\) −10.7838 + 6.22604i −0.725398 + 0.418808i
\(222\) 14.2266 + 14.7218i 0.954830 + 0.988060i
\(223\) 4.31027 0.288637 0.144318 0.989531i \(-0.453901\pi\)
0.144318 + 0.989531i \(0.453901\pi\)
\(224\) 0 0
\(225\) −14.8297 + 2.25398i −0.988646 + 0.150265i
\(226\) 7.09052 12.2811i 0.471654 0.816929i
\(227\) −9.62260 + 5.55561i −0.638675 + 0.368739i −0.784104 0.620630i \(-0.786877\pi\)
0.145429 + 0.989369i \(0.453544\pi\)
\(228\) −0.604478 + 0.150939i −0.0400326 + 0.00999617i
\(229\) −8.63774 4.98700i −0.570798 0.329550i 0.186670 0.982423i \(-0.440230\pi\)
−0.757468 + 0.652872i \(0.773564\pi\)
\(230\) −1.77992 4.81149i −0.117365 0.317261i
\(231\) 0 0
\(232\) 15.3893i 1.01036i
\(233\) 10.3144 17.8650i 0.675716 1.17037i −0.300543 0.953768i \(-0.597168\pi\)
0.976259 0.216606i \(-0.0694988\pi\)
\(234\) 0.540929 15.8085i 0.0353616 1.03343i
\(235\) −10.4977 8.71500i −0.684791 0.568504i
\(236\) 0.319198 0.552868i 0.0207780 0.0359886i
\(237\) −3.13516 0.897801i −0.203650 0.0583184i
\(238\) 0 0
\(239\) 2.87353i 0.185873i 0.995672 + 0.0929365i \(0.0296254\pi\)
−0.995672 + 0.0929365i \(0.970375\pi\)
\(240\) 15.7140 + 7.55549i 1.01433 + 0.487705i
\(241\) −22.5792 + 13.0361i −1.45445 + 0.839728i −0.998729 0.0503940i \(-0.983952\pi\)
−0.455722 + 0.890122i \(0.650619\pi\)
\(242\) −4.83549 8.37532i −0.310837 0.538386i
\(243\) −14.6577 5.30584i −0.940292 0.340370i
\(244\) 1.00018i 0.0640298i
\(245\) 0 0
\(246\) 29.9340 + 8.57206i 1.90852 + 0.546534i
\(247\) 3.68488 + 2.12747i 0.234464 + 0.135368i
\(248\) 7.10752 4.10353i 0.451328 0.260574i
\(249\) 15.3003 3.82050i 0.969617 0.242114i
\(250\) 14.5306 8.69746i 0.918998 0.550076i
\(251\) −0.161120 −0.0101698 −0.00508489 0.999987i \(-0.501619\pi\)
−0.00508489 + 0.999987i \(0.501619\pi\)
\(252\) 0 0
\(253\) 3.25401i 0.204578i
\(254\) −12.5637 7.25368i −0.788319 0.455136i
\(255\) −7.81152 11.4422i −0.489177 0.716538i
\(256\) −3.45866 5.99057i −0.216166 0.374411i
\(257\) 11.3712 + 6.56514i 0.709314 + 0.409522i 0.810807 0.585314i \(-0.199029\pi\)
−0.101493 + 0.994836i \(0.532362\pi\)
\(258\) 2.16166 7.54861i 0.134579 0.469956i
\(259\) 0 0
\(260\) 0.794725 + 2.14830i 0.0492867 + 0.133232i
\(261\) −8.40022 15.7718i −0.519961 0.976249i
\(262\) 7.15703 + 12.3963i 0.442163 + 0.765848i
\(263\) 8.86526 + 15.3551i 0.546655 + 0.946835i 0.998501 + 0.0547384i \(0.0174325\pi\)
−0.451846 + 0.892096i \(0.649234\pi\)
\(264\) 6.68061 + 6.91311i 0.411163 + 0.425473i
\(265\) −8.70925 23.5429i −0.535005 1.44623i
\(266\) 0 0
\(267\) 2.96379 + 0.848727i 0.181381 + 0.0519412i
\(268\) 2.62950 + 1.51814i 0.160622 + 0.0927352i
\(269\) −2.20294 3.81561i −0.134316 0.232642i 0.791020 0.611790i \(-0.209550\pi\)
−0.925336 + 0.379148i \(0.876217\pi\)
\(270\) 17.5841 0.725124i 1.07014 0.0441296i
\(271\) −20.4287 11.7945i −1.24095 0.716465i −0.271665 0.962392i \(-0.587574\pi\)
−0.969288 + 0.245927i \(0.920908\pi\)
\(272\) 16.1043i 0.976469i
\(273\) 0 0
\(274\) −16.2155 −0.979615
\(275\) 10.5581 1.97629i 0.636680 0.119175i
\(276\) 0.187039 + 0.749051i 0.0112584 + 0.0450876i
\(277\) −11.1127 + 6.41589i −0.667695 + 0.385494i −0.795203 0.606344i \(-0.792636\pi\)
0.127508 + 0.991838i \(0.459302\pi\)
\(278\) −5.39311 3.11371i −0.323457 0.186748i
\(279\) 5.04428 8.08517i 0.301993 0.484046i
\(280\) 0 0
\(281\) 21.2397i 1.26706i 0.773719 + 0.633528i \(0.218394\pi\)
−0.773719 + 0.633528i \(0.781606\pi\)
\(282\) 11.1240 + 11.5112i 0.662426 + 0.685480i
\(283\) −3.27706 5.67603i −0.194801 0.337405i 0.752034 0.659124i \(-0.229073\pi\)
−0.946835 + 0.321719i \(0.895739\pi\)
\(284\) −2.64967 + 1.52979i −0.157229 + 0.0907761i
\(285\) −2.05142 + 4.26656i −0.121515 + 0.252729i
\(286\) 11.3271i 0.669786i
\(287\) 0 0
\(288\) −4.20426 2.62301i −0.247738 0.154562i
\(289\) −2.10188 + 3.64056i −0.123640 + 0.214151i
\(290\) 15.5222 + 12.8863i 0.911496 + 0.756711i
\(291\) 0.556336 + 2.22801i 0.0326130 + 0.130608i
\(292\) 1.00873 1.74717i 0.0590315 0.102245i
\(293\) 3.71937i 0.217288i 0.994081 + 0.108644i \(0.0346509\pi\)
−0.994081 + 0.108644i \(0.965349\pi\)
\(294\) 0 0
\(295\) −1.68300 4.54949i −0.0979881 0.264882i
\(296\) −17.4603 10.0807i −1.01486 0.585928i
\(297\) 10.6202 + 3.43834i 0.616245 + 0.199513i
\(298\) 3.33677 1.92648i 0.193294 0.111598i
\(299\) 2.63629 4.56619i 0.152461 0.264070i
\(300\) −2.31682 + 1.06181i −0.133761 + 0.0613034i
\(301\) 0 0
\(302\) −8.51121 −0.489765
\(303\) −16.7149 + 16.1527i −0.960245 + 0.927949i
\(304\) 4.76568 2.75147i 0.273331 0.157808i
\(305\) −5.84735 4.85439i −0.334818 0.277961i
\(306\) 7.64132 + 14.3469i 0.436825 + 0.820158i
\(307\) −11.2102 −0.639800 −0.319900 0.947451i \(-0.603649\pi\)
−0.319900 + 0.947451i \(0.603649\pi\)
\(308\) 0 0
\(309\) −9.63578 2.75935i −0.548160 0.156974i
\(310\) −1.81256 + 10.6050i −0.102946 + 0.602326i
\(311\) 9.46050 + 16.3861i 0.536456 + 0.929168i 0.999091 + 0.0426199i \(0.0135704\pi\)
−0.462636 + 0.886548i \(0.653096\pi\)
\(312\) 3.77380 + 15.1133i 0.213649 + 0.855620i
\(313\) −8.19024 + 14.1859i −0.462940 + 0.801835i −0.999106 0.0422775i \(-0.986539\pi\)
0.536166 + 0.844112i \(0.319872\pi\)
\(314\) 21.0903 1.19020
\(315\) 0 0
\(316\) −0.554083 −0.0311696
\(317\) −5.05836 + 8.76134i −0.284106 + 0.492086i −0.972392 0.233353i \(-0.925030\pi\)
0.688286 + 0.725439i \(0.258363\pi\)
\(318\) 7.13503 + 28.5743i 0.400113 + 1.60237i
\(319\) 6.39812 + 11.0819i 0.358226 + 0.620466i
\(320\) −14.3310 2.44938i −0.801128 0.136925i
\(321\) −6.47141 1.85319i −0.361199 0.103435i
\(322\) 0 0
\(323\) −4.37254 −0.243295
\(324\) −2.64233 0.181040i −0.146796 0.0100578i
\(325\) 16.4169 + 5.78063i 0.910644 + 0.320652i
\(326\) 5.33977 3.08292i 0.295743 0.170747i
\(327\) −6.48622 + 6.26807i −0.358689 + 0.346625i
\(328\) −30.6638 −1.69313
\(329\) 0 0
\(330\) −12.5669 + 0.949574i −0.691785 + 0.0522723i
\(331\) −9.63774 + 16.6931i −0.529738 + 0.917533i 0.469660 + 0.882847i \(0.344376\pi\)
−0.999398 + 0.0346861i \(0.988957\pi\)
\(332\) 2.32041 1.33969i 0.127349 0.0735251i
\(333\) −23.3968 0.800582i −1.28214 0.0438716i
\(334\) 18.3282 + 10.5818i 1.00287 + 0.579009i
\(335\) 21.6378 8.00452i 1.18220 0.437334i
\(336\) 0 0
\(337\) 23.6381i 1.28765i 0.765174 + 0.643824i \(0.222653\pi\)
−0.765174 + 0.643824i \(0.777347\pi\)
\(338\) 0.668614 1.15807i 0.0363678 0.0629909i
\(339\) 3.92855 + 15.7330i 0.213369 + 0.854499i
\(340\) −1.81111 1.50356i −0.0982215 0.0815421i
\(341\) −3.41210 + 5.90993i −0.184776 + 0.320041i
\(342\) 2.94008 4.71247i 0.158981 0.254821i
\(343\) 0 0
\(344\) 7.73266i 0.416917i
\(345\) 5.28698 + 2.54205i 0.284642 + 0.136859i
\(346\) −13.1211 + 7.57546i −0.705394 + 0.407259i
\(347\) −7.95360 13.7760i −0.426971 0.739536i 0.569631 0.821901i \(-0.307086\pi\)
−0.996602 + 0.0823644i \(0.973753\pi\)
\(348\) −2.10979 2.18321i −0.113096 0.117032i
\(349\) 0.0192397i 0.00102988i 1.00000 0.000514938i \(0.000163910\pi\)
−1.00000 0.000514938i \(0.999836\pi\)
\(350\) 0 0
\(351\) 12.1172 + 13.4290i 0.646766 + 0.716786i
\(352\) 3.07314 + 1.77428i 0.163799 + 0.0945695i
\(353\) 22.0143 12.7100i 1.17170 0.676484i 0.217624 0.976033i \(-0.430170\pi\)
0.954081 + 0.299549i \(0.0968362\pi\)
\(354\) 1.37880 + 5.52178i 0.0732821 + 0.293479i
\(355\) −3.91662 + 22.9156i −0.207873 + 1.21624i
\(356\) 0.523797 0.0277612
\(357\) 0 0
\(358\) 24.5523i 1.29763i
\(359\) 20.9396 + 12.0895i 1.10515 + 0.638057i 0.937568 0.347801i \(-0.113072\pi\)
0.167579 + 0.985859i \(0.446405\pi\)
\(360\) −16.4511 + 5.45382i −0.867048 + 0.287442i
\(361\) −8.75294 15.1605i −0.460681 0.797923i
\(362\) −25.4642 14.7018i −1.33837 0.772708i
\(363\) 10.6315 + 3.04448i 0.558007 + 0.159794i
\(364\) 0 0
\(365\) −5.31861 14.3773i −0.278389 0.752542i
\(366\) 6.19625 + 6.41189i 0.323883 + 0.335155i
\(367\) 4.53636 + 7.85721i 0.236796 + 0.410143i 0.959793 0.280708i \(-0.0905693\pi\)
−0.722997 + 0.690851i \(0.757236\pi\)
\(368\) −3.40953 5.90548i −0.177734 0.307845i
\(369\) −31.4260 + 16.7378i −1.63597 + 0.871336i
\(370\) 24.7883 9.16996i 1.28868 0.476724i
\(371\) 0 0
\(372\) 0.445743 1.55655i 0.0231107 0.0807035i
\(373\) 13.4785 + 7.78183i 0.697891 + 0.402928i 0.806562 0.591150i \(-0.201326\pi\)
−0.108670 + 0.994078i \(0.534659\pi\)
\(374\) −5.82009 10.0807i −0.300950 0.521260i
\(375\) −5.03708 + 18.6983i −0.260114 + 0.965578i
\(376\) −13.6524 7.88224i −0.704071 0.406496i
\(377\) 20.7342i 1.06787i
\(378\) 0 0
\(379\) 34.0984 1.75152 0.875758 0.482751i \(-0.160362\pi\)
0.875758 + 0.482751i \(0.160362\pi\)
\(380\) −0.135508 + 0.792842i −0.00695143 + 0.0406719i
\(381\) 16.0950 4.01894i 0.824573 0.205897i
\(382\) −16.6643 + 9.62112i −0.852618 + 0.492259i
\(383\) 9.15965 + 5.28833i 0.468036 + 0.270221i 0.715417 0.698697i \(-0.246237\pi\)
−0.247381 + 0.968918i \(0.579570\pi\)
\(384\) 21.8997 + 6.27133i 1.11757 + 0.320032i
\(385\) 0 0
\(386\) 31.5351i 1.60509i
\(387\) 4.22087 + 7.92486i 0.214559 + 0.402843i
\(388\) 0.195084 + 0.337895i 0.00990388 + 0.0171540i
\(389\) 14.6659 8.46736i 0.743590 0.429312i −0.0797828 0.996812i \(-0.525423\pi\)
0.823373 + 0.567500i \(0.192089\pi\)
\(390\) −18.4038 8.84880i −0.931914 0.448077i
\(391\) 5.41832i 0.274016i
\(392\) 0 0
\(393\) −15.7357 4.50615i −0.793760 0.227305i
\(394\) −1.69240 + 2.93132i −0.0852619 + 0.147678i
\(395\) −2.68926 + 3.23934i −0.135311 + 0.162989i
\(396\) 1.89550 + 0.0648594i 0.0952524 + 0.00325931i
\(397\) −0.203913 + 0.353188i −0.0102341 + 0.0177260i −0.871097 0.491111i \(-0.836591\pi\)
0.860863 + 0.508837i \(0.169924\pi\)
\(398\) 37.7491i 1.89219i
\(399\) 0 0
\(400\) 17.0905 14.6494i 0.854526 0.732470i
\(401\) −24.2302 13.9893i −1.21000 0.698593i −0.247240 0.968954i \(-0.579524\pi\)
−0.962759 + 0.270361i \(0.912857\pi\)
\(402\) −26.2622 + 6.55769i −1.30984 + 0.327068i
\(403\) −9.57608 + 5.52875i −0.477019 + 0.275407i
\(404\) −1.97464 + 3.42017i −0.0982418 + 0.170160i
\(405\) −13.8830 + 14.5692i −0.689853 + 0.723949i
\(406\) 0 0
\(407\) 16.7643 0.830974
\(408\) −11.1240 11.5112i −0.550721 0.569888i
\(409\) −2.26960 + 1.31036i −0.112225 + 0.0647929i −0.555062 0.831809i \(-0.687305\pi\)
0.442837 + 0.896602i \(0.353972\pi\)
\(410\) 25.6766 30.9287i 1.26808 1.52746i
\(411\) 13.3338 12.8854i 0.657709 0.635589i
\(412\) −1.70295 −0.0838984
\(413\) 0 0
\(414\) −5.83954 3.64325i −0.286998 0.179056i
\(415\) 3.42993 20.0681i 0.168369 0.985104i
\(416\) 2.87493 + 4.97953i 0.140955 + 0.244141i
\(417\) 6.90895 1.72517i 0.338333 0.0844820i
\(418\) −1.98876 + 3.44462i −0.0972732 + 0.168482i
\(419\) 8.39649 0.410195 0.205098 0.978742i \(-0.434249\pi\)
0.205098 + 0.978742i \(0.434249\pi\)
\(420\) 0 0
\(421\) −7.84952 −0.382562 −0.191281 0.981535i \(-0.561264\pi\)
−0.191281 + 0.981535i \(0.561264\pi\)
\(422\) 5.00998 8.67754i 0.243882 0.422416i
\(423\) −18.2943 0.625987i −0.889500 0.0304365i
\(424\) −14.5020 25.1181i −0.704277 1.21984i
\(425\) −17.5806 + 3.29077i −0.852783 + 0.159626i
\(426\) 7.50912 26.2222i 0.363818 1.27047i
\(427\) 0 0
\(428\) −1.14371 −0.0552831
\(429\) −9.00089 9.31415i −0.434567 0.449691i
\(430\) −7.79946 6.47500i −0.376123 0.312252i
\(431\) −10.6154 + 6.12880i −0.511326 + 0.295214i −0.733378 0.679821i \(-0.762058\pi\)
0.222053 + 0.975035i \(0.428724\pi\)
\(432\) 22.8765 4.88776i 1.10065 0.235162i
\(433\) 5.13957 0.246992 0.123496 0.992345i \(-0.460589\pi\)
0.123496 + 0.992345i \(0.460589\pi\)
\(434\) 0 0
\(435\) −23.0036 + 1.73819i −1.10294 + 0.0833398i
\(436\) −0.766259 + 1.32720i −0.0366971 + 0.0635613i
\(437\) 1.60342 0.925734i 0.0767019 0.0442838i
\(438\) 4.35726 + 17.4499i 0.208198 + 0.833790i
\(439\) 14.4620 + 8.34964i 0.690234 + 0.398507i 0.803700 0.595035i \(-0.202862\pi\)
−0.113466 + 0.993542i \(0.536195\pi\)
\(440\) 11.6402 4.30607i 0.554924 0.205284i
\(441\) 0 0
\(442\) 18.8610i 0.897127i
\(443\) −0.126110 + 0.218429i −0.00599167 + 0.0103779i −0.869006 0.494802i \(-0.835241\pi\)
0.863014 + 0.505180i \(0.168574\pi\)
\(444\) −3.85902 + 0.963602i −0.183141 + 0.0457305i
\(445\) 2.54226 3.06228i 0.120515 0.145166i
\(446\) −3.26436 + 5.65403i −0.154572 + 0.267726i
\(447\) −1.21294 + 4.23563i −0.0573700 + 0.200339i
\(448\) 0 0
\(449\) 28.8710i 1.36250i 0.732049 + 0.681252i \(0.238564\pi\)
−0.732049 + 0.681252i \(0.761436\pi\)
\(450\) 8.27450 21.1600i 0.390064 0.997492i
\(451\) 22.0811 12.7485i 1.03976 0.600305i
\(452\) 1.37758 + 2.38603i 0.0647958 + 0.112230i
\(453\) 6.99867 6.76329i 0.328826 0.317767i
\(454\) 16.8300i 0.789873i
\(455\) 0 0
\(456\) −1.50588 + 5.25859i −0.0705193 + 0.246256i
\(457\) −20.8483 12.0368i −0.975242 0.563056i −0.0744117 0.997228i \(-0.523708\pi\)
−0.900830 + 0.434171i \(0.857041\pi\)
\(458\) 13.0835 7.55375i 0.611351 0.352964i
\(459\) −17.6839 5.72525i −0.825413 0.267232i
\(460\) 0.982465 + 0.167918i 0.0458077 + 0.00782921i
\(461\) −39.8709 −1.85697 −0.928486 0.371367i \(-0.878889\pi\)
−0.928486 + 0.371367i \(0.878889\pi\)
\(462\) 0 0
\(463\) 29.8417i 1.38686i −0.720524 0.693430i \(-0.756099\pi\)
0.720524 0.693430i \(-0.243901\pi\)
\(464\) 23.2231 + 13.4078i 1.07810 + 0.622443i
\(465\) −6.93667 10.1607i −0.321681 0.471192i
\(466\) 15.6230 + 27.0599i 0.723723 + 1.25353i
\(467\) 3.62140 + 2.09082i 0.167579 + 0.0967515i 0.581444 0.813587i \(-0.302488\pi\)
−0.413865 + 0.910338i \(0.635821\pi\)
\(468\) 2.60732 + 1.62669i 0.120523 + 0.0751937i
\(469\) 0 0
\(470\) 19.3823 7.17013i 0.894039 0.330733i
\(471\) −17.3423 + 16.7591i −0.799093 + 0.772218i
\(472\) −2.80240 4.85390i −0.128991 0.223419i
\(473\) −3.21487 5.56831i −0.147820 0.256031i
\(474\) 3.55209 3.43263i 0.163153 0.157666i
\(475\) 3.97751 + 4.64030i 0.182501 + 0.212912i
\(476\) 0 0
\(477\) −28.5731 17.8266i −1.30827 0.816223i
\(478\) −3.76937 2.17625i −0.172407 0.0995393i
\(479\) 13.9676 + 24.1926i 0.638196 + 1.10539i 0.985828 + 0.167757i \(0.0536525\pi\)
−0.347632 + 0.937631i \(0.613014\pi\)
\(480\) −5.28354 + 3.60705i −0.241160 + 0.164638i
\(481\) 23.5245 + 13.5819i 1.07262 + 0.619280i
\(482\) 39.4912i 1.79878i
\(483\) 0 0
\(484\) 1.87892 0.0854055
\(485\) 2.92229 + 0.499462i 0.132694 + 0.0226794i
\(486\) 18.0609 15.2090i 0.819259 0.689895i
\(487\) 32.2536 18.6216i 1.46155 0.843826i 0.462466 0.886637i \(-0.346965\pi\)
0.999083 + 0.0428116i \(0.0136315\pi\)
\(488\) −7.60462 4.39053i −0.344245 0.198750i
\(489\) −1.94104 + 6.77821i −0.0877770 + 0.306521i
\(490\) 0 0
\(491\) 5.90572i 0.266522i 0.991081 + 0.133261i \(0.0425448\pi\)
−0.991081 + 0.133261i \(0.957455\pi\)
\(492\) −4.35015 + 4.20384i −0.196120 + 0.189524i
\(493\) −10.6536 18.4527i −0.479816 0.831066i
\(494\) −5.58145 + 3.22245i −0.251121 + 0.144985i
\(495\) 9.57904 10.7669i 0.430546 0.483936i
\(496\) 14.3007i 0.642122i
\(497\) 0 0
\(498\) −6.57602 + 22.9637i −0.294678 + 1.02903i
\(499\) 9.37010 16.2295i 0.419463 0.726532i −0.576422 0.817152i \(-0.695552\pi\)
0.995886 + 0.0906204i \(0.0288850\pi\)
\(500\) 0.0518560 + 3.28975i 0.00231907 + 0.147122i
\(501\) −23.4797 + 5.86290i −1.04899 + 0.261935i
\(502\) 0.122023 0.211350i 0.00544615 0.00943301i
\(503\) 32.0398i 1.42858i −0.699849 0.714291i \(-0.746749\pi\)
0.699849 0.714291i \(-0.253251\pi\)
\(504\) 0 0
\(505\) 10.4114 + 28.1442i 0.463303 + 1.25240i
\(506\) 4.26847 + 2.46440i 0.189757 + 0.109556i
\(507\) 0.370450 + 1.48357i 0.0164523 + 0.0658878i
\(508\) 2.44094 1.40928i 0.108299 0.0625265i
\(509\) −9.57465 + 16.5838i −0.424389 + 0.735063i −0.996363 0.0852085i \(-0.972844\pi\)
0.571974 + 0.820272i \(0.306178\pi\)
\(510\) 20.9254 1.58116i 0.926592 0.0700147i
\(511\) 0 0
\(512\) −15.8265 −0.699439
\(513\) 1.32709 + 6.21129i 0.0585925 + 0.274235i
\(514\) −17.2238 + 9.94415i −0.759708 + 0.438617i
\(515\) −8.26532 + 9.95599i −0.364213 + 0.438713i
\(516\) 1.06011 + 1.09700i 0.0466685 + 0.0482927i
\(517\) 13.1082 0.576499
\(518\) 0 0
\(519\) 4.76960 16.6557i 0.209362 0.731102i
\(520\) 19.8228 + 3.38800i 0.869285 + 0.148574i
\(521\) −1.94104 3.36199i −0.0850387 0.147291i 0.820369 0.571834i \(-0.193768\pi\)
−0.905408 + 0.424543i \(0.860435\pi\)
\(522\) 27.0506 + 0.925607i 1.18397 + 0.0405127i
\(523\) 1.06192 1.83929i 0.0464343 0.0804266i −0.841874 0.539674i \(-0.818548\pi\)
0.888308 + 0.459247i \(0.151881\pi\)
\(524\) −2.78100 −0.121488
\(525\) 0 0
\(526\) −26.8562 −1.17099
\(527\) 5.68157 9.84076i 0.247493 0.428670i
\(528\) −16.2526 + 4.05830i −0.707305 + 0.176615i
\(529\) 10.3529 + 17.9317i 0.450124 + 0.779638i
\(530\) 37.4785 + 6.40562i 1.62796 + 0.278242i
\(531\) −5.52156 3.44486i −0.239615 0.149494i
\(532\) 0 0
\(533\) 41.3138 1.78950
\(534\) −3.35793 + 3.24500i −0.145312 + 0.140425i
\(535\) −5.55101 + 6.68646i −0.239991 + 0.289081i
\(536\) 23.0856 13.3285i 0.997148 0.575704i
\(537\) −19.5101 20.1891i −0.841922 0.871224i
\(538\) 6.67354 0.287717
\(539\) 0 0
\(540\) −1.58616 + 3.02906i −0.0682573 + 0.130350i
\(541\) 7.59052 13.1472i 0.326342 0.565241i −0.655441 0.755246i \(-0.727517\pi\)
0.981783 + 0.190005i \(0.0608506\pi\)
\(542\) 30.9431 17.8650i 1.32912 0.767367i
\(543\) 32.6214 8.14561i 1.39992 0.349561i
\(544\) −5.11716 2.95439i −0.219396 0.126669i
\(545\) 4.04017 + 10.9214i 0.173062 + 0.467821i
\(546\) 0 0
\(547\) 11.7540i 0.502566i 0.967914 + 0.251283i \(0.0808525\pi\)
−0.967914 + 0.251283i \(0.919148\pi\)
\(548\) 1.57521 2.72835i 0.0672897 0.116549i
\(549\) −10.1902 0.348684i −0.434907 0.0148815i
\(550\) −5.40372 + 15.3465i −0.230416 + 0.654375i
\(551\) −3.64041 + 6.30537i −0.155087 + 0.268618i
\(552\) 6.51629 + 1.86604i 0.277352 + 0.0794239i
\(553\) 0 0
\(554\) 19.4362i 0.825763i
\(555\) −13.0963 + 27.2379i −0.555909 + 1.15619i
\(556\) 1.04780 0.604946i 0.0444365 0.0256554i
\(557\) −4.70135 8.14298i −0.199203 0.345029i 0.749068 0.662494i \(-0.230502\pi\)
−0.948270 + 0.317465i \(0.897169\pi\)
\(558\) 6.78553 + 12.7401i 0.287254 + 0.539333i
\(559\) 10.4183i 0.440649i
\(560\) 0 0
\(561\) 12.7962 + 3.66440i 0.540258 + 0.154711i
\(562\) −27.8614 16.0858i −1.17526 0.678538i
\(563\) −16.9106 + 9.76331i −0.712695 + 0.411475i −0.812058 0.583577i \(-0.801653\pi\)
0.0993632 + 0.995051i \(0.468319\pi\)
\(564\) −3.01743 + 0.753455i −0.127057 + 0.0317262i
\(565\) 20.6356 + 3.52693i 0.868147 + 0.148379i
\(566\) 9.92744 0.417281
\(567\) 0 0
\(568\) 26.8615i 1.12708i
\(569\) −11.1702 6.44911i −0.468279 0.270361i 0.247240 0.968954i \(-0.420476\pi\)
−0.715519 + 0.698593i \(0.753810\pi\)
\(570\) −4.04306 5.92221i −0.169345 0.248054i
\(571\) 20.8321 + 36.0823i 0.871796 + 1.51000i 0.860137 + 0.510063i \(0.170378\pi\)
0.0116595 + 0.999932i \(0.496289\pi\)
\(572\) −1.90584 1.10034i −0.0796874 0.0460075i
\(573\) 6.05758 21.1533i 0.253059 0.883692i
\(574\) 0 0
\(575\) 5.75012 4.92881i 0.239797 0.205545i
\(576\) −17.2162 + 9.16955i −0.717343 + 0.382065i
\(577\) −3.74489 6.48634i −0.155902 0.270030i 0.777485 0.628901i \(-0.216495\pi\)
−0.933387 + 0.358871i \(0.883162\pi\)
\(578\) −3.18369 5.51432i −0.132424 0.229365i
\(579\) −25.0588 25.9309i −1.04141 1.07765i
\(580\) −3.67605 + 1.35989i −0.152640 + 0.0564663i
\(581\) 0 0
\(582\) −3.34395 0.957590i −0.138611 0.0396934i
\(583\) 20.8858 + 12.0584i 0.865003 + 0.499409i
\(584\) −8.85614 15.3393i −0.366470 0.634744i
\(585\) 22.1648 7.34802i 0.916402 0.303803i
\(586\) −4.87892 2.81685i −0.201546 0.116363i
\(587\) 22.1920i 0.915961i 0.888962 + 0.457981i \(0.151427\pi\)
−0.888962 + 0.457981i \(0.848573\pi\)
\(588\) 0 0
\(589\) −3.88284 −0.159990
\(590\) 7.24245 + 1.23784i 0.298167 + 0.0509611i
\(591\) −0.937685 3.75523i −0.0385712 0.154470i
\(592\) 30.4244 17.5655i 1.25043 0.721938i
\(593\) −5.46787 3.15687i −0.224538 0.129637i 0.383512 0.923536i \(-0.374715\pi\)
−0.608050 + 0.793899i \(0.708048\pi\)
\(594\) −12.5534 + 11.3271i −0.515072 + 0.464757i
\(595\) 0 0
\(596\) 0.748572i 0.0306627i
\(597\) −29.9966 31.0406i −1.22768 1.27041i
\(598\) 3.99316 + 6.91636i 0.163293 + 0.282831i
\(599\) −17.8962 + 10.3324i −0.731219 + 0.422170i −0.818868 0.573982i \(-0.805398\pi\)
0.0876487 + 0.996151i \(0.472065\pi\)
\(600\) −2.09705 + 22.2764i −0.0856116 + 0.909432i
\(601\) 12.5956i 0.513785i 0.966440 + 0.256892i \(0.0826986\pi\)
−0.966440 + 0.256892i \(0.917301\pi\)
\(602\) 0 0
\(603\) 16.3841 26.2611i 0.667213 1.06943i
\(604\) 0.826798 1.43206i 0.0336419 0.0582695i
\(605\) 9.11940 10.9848i 0.370756 0.446594i
\(606\) −8.52955 34.1590i −0.346489 1.38762i
\(607\) 21.3383 36.9590i 0.866095 1.50012i 0.000139312 1.00000i \(-0.499956\pi\)
0.865956 0.500121i \(-0.166711\pi\)
\(608\) 2.01906i 0.0818838i
\(609\) 0 0
\(610\) 10.7962 3.99387i 0.437127 0.161707i
\(611\) 18.3942 + 10.6199i 0.744148 + 0.429634i
\(612\) −3.15624 0.107999i −0.127583 0.00436559i
\(613\) 4.60972 2.66142i 0.186185 0.107494i −0.404011 0.914754i \(-0.632384\pi\)
0.590195 + 0.807261i \(0.299051\pi\)
\(614\) 8.48998 14.7051i 0.342628 0.593448i
\(615\) 3.46342 + 45.8358i 0.139659 + 1.84828i
\(616\) 0 0
\(617\) 30.1002 1.21179 0.605895 0.795545i \(-0.292815\pi\)
0.605895 + 0.795545i \(0.292815\pi\)
\(618\) 10.9172 10.5500i 0.439154 0.424385i
\(619\) −11.0265 + 6.36613i −0.443191 + 0.255876i −0.704950 0.709257i \(-0.749031\pi\)
0.261759 + 0.965133i \(0.415697\pi\)
\(620\) −1.60828 1.33517i −0.0645900 0.0536217i
\(621\) 7.69683 1.64449i 0.308863 0.0659911i
\(622\) −28.6594 −1.14914
\(623\) 0 0
\(624\) −26.0944 7.47254i −1.04461 0.299141i
\(625\) 19.4846 + 15.6637i 0.779383 + 0.626548i
\(626\) −12.4057 21.4872i −0.495830 0.858802i
\(627\) −1.10188 4.41281i −0.0440049 0.176230i
\(628\) −2.04876 + 3.54856i −0.0817545 + 0.141603i
\(629\) −27.9145 −1.11303
\(630\) 0 0
\(631\) −17.4114 −0.693138 −0.346569 0.938024i \(-0.612653\pi\)
−0.346569 + 0.938024i \(0.612653\pi\)
\(632\) −2.43229 + 4.21284i −0.0967511 + 0.167578i
\(633\) 2.77581 + 11.1165i 0.110329 + 0.441843i
\(634\) −7.66184 13.2707i −0.304291 0.527047i
\(635\) 3.60809 21.1104i 0.143183 0.837743i
\(636\) −5.50089 1.57526i −0.218125 0.0624633i
\(637\) 0 0
\(638\) −19.3823 −0.767353
\(639\) 14.6623 + 27.5292i 0.580033 + 1.08904i
\(640\) 18.7850 22.6275i 0.742543 0.894430i
\(641\) −1.13893 + 0.657564i −0.0449852 + 0.0259722i −0.522324 0.852747i \(-0.674935\pi\)
0.477339 + 0.878719i \(0.341601\pi\)
\(642\) 7.33202 7.08543i 0.289372 0.279640i
\(643\) 39.2223 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(644\) 0 0
\(645\) 11.5587 0.873390i 0.455121 0.0343897i
\(646\) 3.31152 5.73572i 0.130290 0.225669i
\(647\) −5.39634 + 3.11558i −0.212152 + 0.122486i −0.602311 0.798261i \(-0.705753\pi\)
0.390159 + 0.920747i \(0.372420\pi\)
\(648\) −12.9757 + 19.2956i −0.509732 + 0.758003i
\(649\) 4.03604 + 2.33021i 0.158428 + 0.0914687i
\(650\) −20.0160 + 17.1570i −0.785092 + 0.672954i
\(651\) 0 0
\(652\) 1.19793i 0.0469144i
\(653\) 9.43091 16.3348i 0.369060 0.639230i −0.620359 0.784318i \(-0.713013\pi\)
0.989419 + 0.145088i \(0.0463464\pi\)
\(654\) −3.30990 13.2554i −0.129427 0.518329i
\(655\) −13.4976 + 16.2586i −0.527397 + 0.635275i
\(656\) 26.7157 46.2730i 1.04307 1.80666i
\(657\) −17.4492 10.8864i −0.680759 0.424721i
\(658\) 0 0
\(659\) 41.6170i 1.62117i −0.585622 0.810584i \(-0.699150\pi\)
0.585622 0.810584i \(-0.300850\pi\)
\(660\) 1.06100 2.20669i 0.0412996 0.0858953i
\(661\) −3.27232 + 1.88927i −0.127278 + 0.0734842i −0.562287 0.826942i \(-0.690079\pi\)
0.435009 + 0.900426i \(0.356745\pi\)
\(662\) −14.5982 25.2848i −0.567374 0.982721i
\(663\) 14.9876 + 15.5092i 0.582069 + 0.602327i
\(664\) 23.5236i 0.912894i
\(665\) 0 0
\(666\) 18.7696 30.0846i 0.727307 1.16576i
\(667\) 7.81342 + 4.51108i 0.302537 + 0.174670i
\(668\) −3.56088 + 2.05588i −0.137775 + 0.0795442i
\(669\) −1.80864 7.24321i −0.0699259 0.280039i
\(670\) −5.88730 + 34.4458i −0.227446 + 1.33076i
\(671\) 7.30148 0.281871
\(672\) 0 0
\(673\) 31.2573i 1.20488i −0.798163 0.602441i \(-0.794195\pi\)
0.798163 0.602441i \(-0.205805\pi\)
\(674\) −31.0075 17.9022i −1.19436 0.689565i
\(675\) 10.0104 + 23.9748i 0.385301 + 0.922791i
\(676\) 0.129901 + 0.224996i 0.00499621 + 0.00865369i
\(677\) −7.56724 4.36895i −0.290832 0.167912i 0.347485 0.937686i \(-0.387036\pi\)
−0.638317 + 0.769773i \(0.720369\pi\)
\(678\) −23.6132 6.76199i −0.906858 0.259693i
\(679\) 0 0
\(680\) −19.3823 + 7.17013i −0.743278 + 0.274962i
\(681\) 13.3737 + 13.8391i 0.512481 + 0.530317i
\(682\) −5.16827 8.95171i −0.197903 0.342779i
\(683\) −10.9346 18.9393i −0.418401 0.724691i 0.577378 0.816477i \(-0.304076\pi\)
−0.995779 + 0.0917858i \(0.970743\pi\)
\(684\) 0.507292 + 0.952463i 0.0193968 + 0.0364183i
\(685\) −8.30544 22.4513i −0.317334 0.857819i
\(686\) 0 0
\(687\) −4.75594 + 16.6079i −0.181450 + 0.633632i
\(688\) −11.6689 6.73705i −0.444873 0.256847i
\(689\) 19.5387 + 33.8421i 0.744366 + 1.28928i
\(690\) −7.33862 + 5.01004i −0.279377 + 0.190729i
\(691\) −19.5167 11.2680i −0.742449 0.428653i 0.0805102 0.996754i \(-0.474345\pi\)
−0.822959 + 0.568101i \(0.807678\pi\)
\(692\) 2.94359i 0.111898i
\(693\) 0 0
\(694\) 24.0944 0.914612
\(695\) 1.54881 9.06187i 0.0587496 0.343736i
\(696\) −25.8610 + 6.45751i −0.980257 + 0.244771i
\(697\) −36.7678 + 21.2279i −1.39268 + 0.804063i
\(698\) −0.0252378 0.0145711i −0.000955266 0.000551523i
\(699\) −34.3493 9.83646i −1.29921 0.372049i
\(700\) 0 0
\(701\) 35.5019i 1.34089i −0.741960 0.670444i \(-0.766104\pi\)
0.741960 0.670444i \(-0.233896\pi\)
\(702\) −26.7924 + 5.72442i −1.01122 + 0.216054i
\(703\) 4.76927 + 8.26062i 0.179877 + 0.311555i
\(704\) 12.0968 6.98408i 0.455915 0.263223i
\(705\) −10.2402 + 21.2977i −0.385669 + 0.802119i
\(706\) 38.5033i 1.44909i
\(707\) 0 0
\(708\) −1.06301 0.304409i −0.0399503 0.0114404i
\(709\) −2.03390 + 3.52282i −0.0763847 + 0.132302i −0.901688 0.432388i \(-0.857671\pi\)
0.825303 + 0.564690i \(0.191004\pi\)
\(710\) −27.0936 22.4927i −1.01680 0.844135i
\(711\) −0.193166 + 5.64522i −0.00724428 + 0.211712i
\(712\) 2.29934 3.98257i 0.0861712 0.149253i
\(713\) 4.81149i 0.180192i
\(714\) 0 0
\(715\) −15.6830 + 5.80164i −0.586511 + 0.216969i
\(716\) −4.13106 2.38507i −0.154385 0.0891342i
\(717\) 4.82883 1.20576i 0.180336 0.0450301i
\(718\) −31.7169 + 18.3118i −1.18366 + 0.683389i
\(719\) 15.2703 26.4489i 0.569484 0.986376i −0.427133 0.904189i \(-0.640476\pi\)
0.996617 0.0821868i \(-0.0261904\pi\)
\(720\) 6.10289 29.5770i 0.227441 1.10227i
\(721\) 0 0
\(722\) 26.5159 0.986821
\(723\) 31.3810 + 32.4732i 1.16707 + 1.20769i
\(724\) 4.94730 2.85632i 0.183865 0.106154i
\(725\) −9.89149 + 28.0916i −0.367361 + 1.04330i
\(726\) −12.0453 + 11.6402i −0.447043 + 0.432008i
\(727\) −23.4181 −0.868528 −0.434264 0.900786i \(-0.642992\pi\)
−0.434264 + 0.900786i \(0.642992\pi\)
\(728\) 0 0
\(729\) −2.76568 + 26.8580i −0.102433 + 0.994740i
\(730\) 22.8876 + 3.91182i 0.847107 + 0.144783i
\(731\) 5.35315 + 9.27192i 0.197993 + 0.342934i
\(732\) −1.68075 + 0.419686i −0.0621224 + 0.0155120i
\(733\) −8.44533 + 14.6277i −0.311935 + 0.540288i −0.978781 0.204908i \(-0.934311\pi\)
0.666846 + 0.745196i \(0.267644\pi\)
\(734\) −13.7423 −0.507239
\(735\) 0 0
\(736\) 2.50196 0.0922235
\(737\) −11.0827 + 19.1958i −0.408237 + 0.707087i
\(738\) 1.84431 53.8996i 0.0678901 1.98407i
\(739\) −13.8321 23.9579i −0.508822 0.881306i −0.999948 0.0102170i \(-0.996748\pi\)
0.491126 0.871089i \(-0.336586\pi\)
\(740\) −0.865093 + 5.06155i −0.0318014 + 0.186066i
\(741\) 2.02890 7.08499i 0.0745333 0.260274i
\(742\) 0 0
\(743\) −40.1701 −1.47370 −0.736850 0.676056i \(-0.763688\pi\)
−0.736850 + 0.676056i \(0.763688\pi\)
\(744\) −9.87819 10.2220i −0.362152 0.374756i
\(745\) 4.37639 + 3.63321i 0.160338 + 0.133111i
\(746\) −20.4158 + 11.7870i −0.747474 + 0.431554i
\(747\) −12.8404 24.1083i −0.469804 0.882078i
\(748\) 2.26151 0.0826888
\(749\) 0 0
\(750\) −20.7129 20.7685i −0.756328 0.758359i
\(751\) 24.8188 42.9874i 0.905650 1.56863i 0.0856082 0.996329i \(-0.472717\pi\)
0.820042 0.572303i \(-0.193950\pi\)
\(752\) 23.7893 13.7347i 0.867505 0.500854i
\(753\) 0.0676076 + 0.270754i 0.00246376 + 0.00986683i
\(754\) −27.1983 15.7029i −0.990503 0.571867i
\(755\) −4.35936 11.7842i −0.158654 0.428873i
\(756\) 0 0
\(757\) 47.7116i 1.73411i −0.498214 0.867054i \(-0.666011\pi\)
0.498214 0.867054i \(-0.333989\pi\)
\(758\) −25.8242 + 44.7288i −0.937977 + 1.62462i
\(759\) −5.46821 + 1.36542i −0.198483 + 0.0495615i
\(760\) 5.43334 + 4.51068i 0.197088 + 0.163620i
\(761\) −9.91711 + 17.1769i −0.359495 + 0.622663i −0.987876 0.155242i \(-0.950384\pi\)
0.628382 + 0.777905i \(0.283718\pi\)
\(762\) −6.91759 + 24.1565i −0.250598 + 0.875098i
\(763\) 0 0
\(764\) 3.73847i 0.135253i
\(765\) −15.9503 + 17.9282i −0.576683 + 0.648195i
\(766\) −13.8740 + 8.01017i −0.501289 + 0.289419i
\(767\) 3.77572 + 6.53974i 0.136333 + 0.236136i
\(768\) −8.61559 + 8.32583i −0.310888 + 0.300433i
\(769\) 10.6337i 0.383461i 0.981448 + 0.191731i \(0.0614100\pi\)
−0.981448 + 0.191731i \(0.938590\pi\)
\(770\) 0 0
\(771\) 6.26096 21.8635i 0.225483 0.787396i
\(772\) −5.30595 3.06339i −0.190965 0.110254i
\(773\) 12.4039 7.16138i 0.446136 0.257577i −0.260061 0.965592i \(-0.583743\pi\)
0.706197 + 0.708015i \(0.250409\pi\)
\(774\) −13.5922 0.465090i −0.488560 0.0167173i
\(775\) −15.6117 + 2.92222i −0.560787 + 0.104969i
\(776\) 3.42548 0.122967
\(777\) 0 0
\(778\) 25.6508i 0.919626i
\(779\) 12.5637 + 7.25368i 0.450142 + 0.259890i
\(780\) 3.27665 2.23695i 0.117323 0.0800956i
\(781\) −11.1677 19.3431i −0.399613 0.692149i
\(782\) −7.10752 4.10353i −0.254165 0.146742i
\(783\) −22.9789 + 20.7342i −0.821200 + 0.740980i
\(784\) 0 0
\(785\) 10.8023 + 29.2007i 0.385550 + 1.04222i
\(786\) 17.8283 17.2287i 0.635914 0.614527i
\(787\) 18.4671 + 31.9859i 0.658280 + 1.14017i 0.981061 + 0.193700i \(0.0620490\pi\)
−0.322781 + 0.946474i \(0.604618\pi\)
\(788\) −0.328807 0.569511i −0.0117133 0.0202880i
\(789\) 22.0835 21.3408i 0.786195 0.759753i
\(790\) −2.21254 5.98095i −0.0787188 0.212793i
\(791\) 0 0
\(792\) 8.81391 14.1273i 0.313189 0.501991i
\(793\) 10.2458 + 5.91543i 0.363840 + 0.210063i
\(794\) −0.308865 0.534970i −0.0109612 0.0189854i
\(795\) −35.9082 + 24.5143i −1.27353 + 0.869434i
\(796\) −6.35148 3.66703i −0.225122 0.129974i
\(797\) 37.4862i 1.32783i −0.747809 0.663914i \(-0.768894\pi\)
0.747809 0.663914i \(-0.231106\pi\)
\(798\) 0 0
\(799\) −21.8268 −0.772177
\(800\) 1.51954 + 8.11800i 0.0537240 + 0.287015i
\(801\) 0.182607 5.33665i 0.00645210 0.188561i
\(802\) 36.7012 21.1895i 1.29597 0.748226i
\(803\) 12.7547 + 7.36392i 0.450103 + 0.259867i
\(804\) 1.44780 5.05578i 0.0510599 0.178303i
\(805\) 0 0
\(806\) 16.7487i 0.589947i
\(807\) −5.48757 + 5.30301i −0.193172 + 0.186675i
\(808\) 17.3363 + 30.0274i 0.609889 + 1.05636i
\(809\) −22.1518 + 12.7893i −0.778814 + 0.449649i −0.836010 0.548714i \(-0.815117\pi\)
0.0571956 + 0.998363i \(0.481784\pi\)
\(810\) −8.59704 29.2451i −0.302069 1.02757i
\(811\) 7.28791i 0.255913i −0.991780 0.127957i \(-0.959158\pi\)
0.991780 0.127957i \(-0.0408418\pi\)
\(812\) 0 0
\(813\) −11.2480 + 39.2786i −0.394485 + 1.37756i
\(814\) −12.6963 + 21.9907i −0.445006 + 0.770773i
\(815\) 7.00345 + 5.81417i 0.245320 + 0.203661i
\(816\) 27.0626 6.75756i 0.947380 0.236562i
\(817\) 1.82920 3.16826i 0.0639955 0.110844i
\(818\) 3.96956i 0.138792i
\(819\) 0 0
\(820\) 2.70964 + 7.32470i 0.0946247 + 0.255790i
\(821\) −0.00729231 0.00421022i −0.000254504 0.000146938i 0.499873 0.866099i \(-0.333380\pi\)
−0.500127 + 0.865952i \(0.666713\pi\)
\(822\) 6.80421 + 27.2494i 0.237324 + 0.950433i
\(823\) −27.0406 + 15.6119i −0.942578 + 0.544198i −0.890767 0.454459i \(-0.849832\pi\)
−0.0518103 + 0.998657i \(0.516499\pi\)
\(824\) −7.47553 + 12.9480i −0.260422 + 0.451065i
\(825\) −7.75138 16.9132i −0.269868 0.588842i
\(826\) 0 0
\(827\) −38.3189 −1.33248 −0.666239 0.745738i \(-0.732097\pi\)
−0.666239 + 0.745738i \(0.732097\pi\)
\(828\) 1.18026 0.628620i 0.0410169 0.0218461i
\(829\) 1.94142 1.12088i 0.0674283 0.0389298i −0.465907 0.884834i \(-0.654272\pi\)
0.533335 + 0.845904i \(0.320938\pi\)
\(830\) 23.7268 + 19.6977i 0.823571 + 0.683717i
\(831\) 15.4446 + 15.9821i 0.535768 + 0.554414i
\(832\) 22.6331 0.784663
\(833\) 0 0
\(834\) −2.96944 + 10.3694i −0.102823 + 0.359064i
\(835\) −5.26354 + 30.7963i −0.182152 + 1.06575i
\(836\) −0.386384 0.669237i −0.0133634 0.0231460i
\(837\) −15.7034 5.08406i −0.542789 0.175731i
\(838\) −6.35903 + 11.0142i −0.219669 + 0.380478i
\(839\) −20.6544 −0.713069 −0.356535 0.934282i \(-0.616042\pi\)
−0.356535 + 0.934282i \(0.616042\pi\)
\(840\) 0 0
\(841\) −6.47924 −0.223422
\(842\) 5.94479 10.2967i 0.204871 0.354847i
\(843\) 35.6924 8.91243i 1.22931 0.306961i
\(844\) 0.973362 + 1.68591i 0.0335045 + 0.0580315i
\(845\) 1.94588 + 0.332579i 0.0669402 + 0.0114411i
\(846\) 14.6762 23.5236i 0.504579 0.808759i
\(847\) 0 0
\(848\) 50.5391 1.73552
\(849\) −8.16322 + 7.88867i −0.280161 + 0.270738i
\(850\) 8.99786 25.5537i 0.308624 0.876485i
\(851\) 10.2363 5.90993i 0.350896 0.202590i
\(852\) 3.68257 + 3.81073i 0.126163 + 0.130553i
\(853\) −7.06831 −0.242014 −0.121007 0.992652i \(-0.538612\pi\)
−0.121007 + 0.992652i \(0.538612\pi\)
\(854\) 0 0
\(855\) 8.03055 + 1.65702i 0.274639 + 0.0566687i
\(856\) −5.02058 + 8.69590i −0.171600 + 0.297220i
\(857\) −14.5780 + 8.41661i −0.497975 + 0.287506i −0.727877 0.685708i \(-0.759493\pi\)
0.229902 + 0.973214i \(0.426159\pi\)
\(858\) 19.0347 4.75298i 0.649833 0.162264i
\(859\) 30.4698 + 17.5918i 1.03962 + 0.600223i 0.919725 0.392563i \(-0.128412\pi\)
0.119893 + 0.992787i \(0.461745\pi\)
\(860\) 1.84711 0.683304i 0.0629859 0.0233005i
\(861\) 0 0
\(862\) 18.5665i 0.632376i
\(863\) 18.9879 32.8880i 0.646356 1.11952i −0.337630 0.941279i \(-0.609625\pi\)
0.983986 0.178243i \(-0.0570414\pi\)
\(864\) −2.64369 + 8.16571i −0.0899402 + 0.277803i
\(865\) −17.2091 14.2868i −0.585128 0.485765i
\(866\) −3.89242 + 6.74187i −0.132270 + 0.229098i
\(867\) 6.99977 + 2.00449i 0.237725 + 0.0680761i
\(868\) 0 0
\(869\) 4.04491i 0.137214i
\(870\) 15.1416 31.4916i 0.513348 1.06767i
\(871\) −31.1037 + 17.9577i −1.05391 + 0.608474i
\(872\) 6.72737 + 11.6521i 0.227817 + 0.394591i
\(873\) 3.51062 1.86979i 0.118817 0.0632829i
\(874\) 2.80440i 0.0948601i
\(875\) 0 0
\(876\) −3.35932 0.961992i −0.113501 0.0325027i
\(877\) −9.91566 5.72481i −0.334828 0.193313i 0.323155 0.946346i \(-0.395257\pi\)
−0.657983 + 0.753033i \(0.728590\pi\)
\(878\) −21.9054 + 12.6471i −0.739272 + 0.426819i
\(879\) 6.25024 1.56069i 0.210815 0.0526408i
\(880\) −3.64342 + 21.3172i −0.122820 + 0.718601i
\(881\) 23.6698 0.797455 0.398728 0.917069i \(-0.369452\pi\)
0.398728 + 0.917069i \(0.369452\pi\)
\(882\) 0 0
\(883\) 16.8355i 0.566560i 0.959037 + 0.283280i \(0.0914226\pi\)
−0.959037 + 0.283280i \(0.908577\pi\)
\(884\) 3.17346 + 1.83220i 0.106735 + 0.0616236i
\(885\) −6.93901 + 4.73722i −0.233252 + 0.159240i
\(886\) −0.191017 0.330852i −0.00641735 0.0111152i
\(887\) 45.5385 + 26.2917i 1.52903 + 0.882789i 0.999403 + 0.0345613i \(0.0110034\pi\)
0.529632 + 0.848227i \(0.322330\pi\)
\(888\) −9.61362 + 33.5712i −0.322612 + 1.12657i
\(889\) 0 0
\(890\) 2.09160 + 5.65403i 0.0701107 + 0.189524i
\(891\) 1.32163 19.2895i 0.0442761 0.646222i
\(892\) −0.634214 1.09849i −0.0212350 0.0367802i
\(893\) 3.72917 + 6.45910i 0.124792 + 0.216146i
\(894\) −4.63752 4.79891i −0.155102 0.160500i
\(895\) −33.9941 + 12.5755i −1.13630 + 0.420352i
\(896\) 0 0
\(897\) −8.77950 2.51414i −0.293139 0.0839448i
\(898\) −37.8717 21.8652i −1.26380 0.729653i
\(899\) −9.46050 16.3861i −0.315525 0.546506i
\(900\) 2.75648 + 3.44776i 0.0918826 + 0.114925i
\(901\) −34.7774 20.0788i −1.15860 0.668921i
\(902\) 38.6201i 1.28591i
\(903\) 0 0
\(904\) 24.1889 0.804510
\(905\) 7.31288 42.7867i 0.243088 1.42228i
\(906\) 3.57140 + 14.3027i 0.118652 + 0.475176i
\(907\) 43.9694 25.3858i 1.45998 0.842920i 0.460971 0.887415i \(-0.347501\pi\)
0.999010 + 0.0444946i \(0.0141678\pi\)
\(908\) 2.83174 + 1.63491i 0.0939747 + 0.0542563i
\(909\) 34.1577 + 21.3107i 1.13294 + 0.706832i
\(910\) 0 0
\(911\) 16.1165i 0.533963i −0.963702 0.266981i \(-0.913974\pi\)
0.963702 0.266981i \(-0.0860262\pi\)
\(912\) −6.62345 6.85396i −0.219324 0.226957i
\(913\) 9.77999 + 16.9394i 0.323671 + 0.560614i
\(914\) 31.5787 18.2319i 1.04453 0.603059i
\(915\) −5.70396 + 11.8632i −0.188567 + 0.392184i
\(916\) 2.93515i 0.0969802i
\(917\) 0 0
\(918\) 20.9029 18.8610i 0.689900 0.622506i
\(919\) −19.8721 + 34.4194i −0.655519 + 1.13539i 0.326245 + 0.945285i \(0.394217\pi\)
−0.981763 + 0.190106i \(0.939117\pi\)
\(920\) 5.58950 6.73283i 0.184280 0.221975i
\(921\) 4.70392 + 18.8382i 0.155000 + 0.620740i
\(922\) 30.1960 52.3010i 0.994452 1.72244i
\(923\) 36.1909i 1.19124i
\(924\) 0 0
\(925\) 25.3926 + 29.6240i 0.834905 + 0.974030i
\(926\) 39.1451 + 22.6004i 1.28639 + 0.742696i
\(927\) −0.593686 + 17.3503i −0.0194992 + 0.569860i
\(928\) −8.52069 + 4.91942i −0.279705 + 0.161488i
\(929\) −18.2593 + 31.6261i −0.599069 + 1.03762i 0.393889 + 0.919158i \(0.371129\pi\)
−0.992959 + 0.118461i \(0.962204\pi\)
\(930\) 18.5819 1.40407i 0.609323 0.0460414i
\(931\) 0 0
\(932\) −6.07063 −0.198850
\(933\) 23.5663 22.7737i 0.771526 0.745578i
\(934\) −5.48530 + 3.16694i −0.179484 + 0.103625i
\(935\) 10.9763 13.2215i 0.358963 0.432388i
\(936\) 23.8136 12.6834i 0.778372 0.414569i
\(937\) −7.60980 −0.248601 −0.124301 0.992245i \(-0.539669\pi\)
−0.124301 + 0.992245i \(0.539669\pi\)
\(938\) 0 0
\(939\) 27.2755 + 7.81075i 0.890102 + 0.254894i
\(940\) −0.676429 + 3.95770i −0.0220627 + 0.129086i
\(941\) −11.0121 19.0735i −0.358985 0.621780i 0.628807 0.777562i \(-0.283544\pi\)
−0.987791 + 0.155782i \(0.950210\pi\)
\(942\) −8.84974 35.4414i −0.288340 1.15474i
\(943\) 8.98853 15.5686i 0.292707 0.506983i
\(944\) 9.76632 0.317867
\(945\) 0 0
\(946\) 9.73904 0.316644
\(947\) −24.6291 + 42.6589i −0.800339 + 1.38623i 0.119053 + 0.992888i \(0.462014\pi\)
−0.919393 + 0.393341i \(0.871319\pi\)
\(948\) 0.232499 + 0.931111i 0.00755123 + 0.0302411i
\(949\) 11.9320 + 20.6669i 0.387330 + 0.670875i
\(950\) −9.09930 + 1.70323i −0.295220 + 0.0552599i
\(951\) 16.8456 + 4.82399i 0.546255 + 0.156429i
\(952\) 0 0
\(953\) 10.2538 0.332154 0.166077 0.986113i \(-0.446890\pi\)
0.166077 + 0.986113i \(0.446890\pi\)
\(954\) 45.0239 23.9802i 1.45770 0.776388i
\(955\) −21.8563 18.1448i −0.707252 0.587150i
\(956\) 0.732331 0.422811i 0.0236853 0.0136747i
\(957\) 15.9379 15.4018i 0.515198 0.497870i
\(958\) −42.3131 −1.36708
\(959\) 0 0
\(960\) 1.89738 + 25.1104i 0.0612377 + 0.810435i
\(961\) −10.4547 + 18.1081i −0.337250 + 0.584134i
\(962\) −35.6323 + 20.5723i −1.14883 + 0.663278i
\(963\) −0.398721 + 11.6525i −0.0128486 + 0.375498i
\(964\) 6.64460 + 3.83626i 0.214008 + 0.123558i
\(965\) −43.6621 + 16.1520i −1.40553 + 0.519951i
\(966\) 0 0
\(967\) 4.62632i 0.148772i −0.997230 0.0743862i \(-0.976300\pi\)
0.997230 0.0743862i \(-0.0236998\pi\)
\(968\) 8.24799 14.2859i 0.265101 0.459168i
\(969\) 1.83477 + 7.34786i 0.0589412 + 0.236047i
\(970\) −2.86835 + 3.45507i −0.0920971 + 0.110936i
\(971\) −12.6443 + 21.9006i −0.405775 + 0.702822i −0.994411 0.105575i \(-0.966332\pi\)
0.588637 + 0.808398i \(0.299665\pi\)
\(972\) 0.804521 + 4.51628i 0.0258050 + 0.144860i
\(973\) 0 0
\(974\) 56.4119i 1.80755i
\(975\) 2.82538 30.0134i 0.0904847 0.961198i
\(976\) 13.2510 7.65046i 0.424154 0.244885i
\(977\) 12.0549 + 20.8797i 0.385670 + 0.668000i 0.991862 0.127318i \(-0.0406370\pi\)
−0.606192 + 0.795318i \(0.707304\pi\)
\(978\) −7.42133 7.67961i −0.237308 0.245567i
\(979\) 3.82381i 0.122210i
\(980\) 0 0
\(981\) 13.2549 + 8.26964i 0.423196 + 0.264029i
\(982\) −7.74688 4.47267i −0.247213 0.142728i
\(983\) −41.6456 + 24.0441i −1.32829 + 0.766888i −0.985035 0.172354i \(-0.944863\pi\)
−0.343254 + 0.939243i \(0.611529\pi\)
\(984\) 12.8669 + 51.5291i 0.410181 + 1.64269i
\(985\) −4.92541 0.841825i −0.156937 0.0268228i
\(986\) 32.2739 1.02781
\(987\) 0 0
\(988\) 1.25214i 0.0398360i
\(989\) −3.92601 2.26668i −0.124840 0.0720764i
\(990\) 6.86892 + 20.7196i 0.218309 + 0.658513i
\(991\) −14.8587 25.7361i −0.472003 0.817534i 0.527483 0.849565i \(-0.323136\pi\)
−0.999487 + 0.0320314i \(0.989802\pi\)
\(992\) −4.54406 2.62352i −0.144274 0.0832967i
\(993\) 32.0960 + 9.19119i 1.01854 + 0.291674i
\(994\) 0 0
\(995\) −52.2656 + 19.3347i −1.65693 + 0.612952i
\(996\) −3.22496 3.33720i −0.102187 0.105743i
\(997\) −13.3742 23.1647i −0.423564 0.733634i 0.572721 0.819750i \(-0.305888\pi\)
−0.996285 + 0.0861161i \(0.972554\pi\)
\(998\) 14.1928 + 24.5826i 0.449265 + 0.778149i
\(999\) 8.47222 + 39.6532i 0.268049 + 1.25457i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.f.509.3 24
3.2 odd 2 inner 735.2.p.f.509.9 24
5.4 even 2 inner 735.2.p.f.509.10 24
7.2 even 3 735.2.g.b.734.20 24
7.3 odd 6 inner 735.2.p.f.374.4 24
7.4 even 3 105.2.p.a.59.3 24
7.5 odd 6 735.2.g.b.734.17 24
7.6 odd 2 105.2.p.a.89.4 yes 24
15.14 odd 2 inner 735.2.p.f.509.4 24
21.2 odd 6 735.2.g.b.734.7 24
21.5 even 6 735.2.g.b.734.6 24
21.11 odd 6 105.2.p.a.59.9 yes 24
21.17 even 6 inner 735.2.p.f.374.10 24
21.20 even 2 105.2.p.a.89.10 yes 24
35.4 even 6 105.2.p.a.59.10 yes 24
35.9 even 6 735.2.g.b.734.5 24
35.13 even 4 525.2.t.j.26.9 24
35.18 odd 12 525.2.t.j.101.3 24
35.19 odd 6 735.2.g.b.734.8 24
35.24 odd 6 inner 735.2.p.f.374.9 24
35.27 even 4 525.2.t.j.26.4 24
35.32 odd 12 525.2.t.j.101.10 24
35.34 odd 2 105.2.p.a.89.9 yes 24
105.32 even 12 525.2.t.j.101.4 24
105.44 odd 6 735.2.g.b.734.18 24
105.53 even 12 525.2.t.j.101.9 24
105.59 even 6 inner 735.2.p.f.374.3 24
105.62 odd 4 525.2.t.j.26.10 24
105.74 odd 6 105.2.p.a.59.4 yes 24
105.83 odd 4 525.2.t.j.26.3 24
105.89 even 6 735.2.g.b.734.19 24
105.104 even 2 105.2.p.a.89.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.3 24 7.4 even 3
105.2.p.a.59.4 yes 24 105.74 odd 6
105.2.p.a.59.9 yes 24 21.11 odd 6
105.2.p.a.59.10 yes 24 35.4 even 6
105.2.p.a.89.3 yes 24 105.104 even 2
105.2.p.a.89.4 yes 24 7.6 odd 2
105.2.p.a.89.9 yes 24 35.34 odd 2
105.2.p.a.89.10 yes 24 21.20 even 2
525.2.t.j.26.3 24 105.83 odd 4
525.2.t.j.26.4 24 35.27 even 4
525.2.t.j.26.9 24 35.13 even 4
525.2.t.j.26.10 24 105.62 odd 4
525.2.t.j.101.3 24 35.18 odd 12
525.2.t.j.101.4 24 105.32 even 12
525.2.t.j.101.9 24 105.53 even 12
525.2.t.j.101.10 24 35.32 odd 12
735.2.g.b.734.5 24 35.9 even 6
735.2.g.b.734.6 24 21.5 even 6
735.2.g.b.734.7 24 21.2 odd 6
735.2.g.b.734.8 24 35.19 odd 6
735.2.g.b.734.17 24 7.5 odd 6
735.2.g.b.734.18 24 105.44 odd 6
735.2.g.b.734.19 24 105.89 even 6
735.2.g.b.734.20 24 7.2 even 3
735.2.p.f.374.3 24 105.59 even 6 inner
735.2.p.f.374.4 24 7.3 odd 6 inner
735.2.p.f.374.9 24 35.24 odd 6 inner
735.2.p.f.374.10 24 21.17 even 6 inner
735.2.p.f.509.3 24 1.1 even 1 trivial
735.2.p.f.509.4 24 15.14 odd 2 inner
735.2.p.f.509.9 24 3.2 odd 2 inner
735.2.p.f.509.10 24 5.4 even 2 inner