Properties

Label 735.2.p.f.374.3
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.3
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.f.509.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.757344 - 1.31176i) q^{2} +(-0.419611 + 1.68045i) q^{3} +(-0.147140 + 0.254854i) q^{4} +(-2.20411 + 0.376714i) q^{5} +(2.52214 - 0.722254i) q^{6} -2.58363 q^{8} +(-2.64785 - 1.41027i) q^{9} +(2.16343 + 2.60595i) q^{10} +(1.86048 + 1.07415i) q^{11} +(-0.366529 - 0.354202i) q^{12} +3.48097 q^{13} +(0.291817 - 3.86197i) q^{15} +(2.25098 + 3.89881i) q^{16} +(-3.09793 - 1.78859i) q^{17} +(0.155396 + 4.54141i) q^{18} +(1.05858 - 0.611171i) q^{19} +(0.228305 - 0.617156i) q^{20} -3.25401i q^{22} +(0.757344 + 1.31176i) q^{23} +(1.08412 - 4.34168i) q^{24} +(4.71617 - 1.66064i) q^{25} +(-2.63629 - 4.56619i) q^{26} +(3.48097 - 3.85783i) q^{27} -5.95645i q^{29} +(-5.28698 + 2.54205i) q^{30} +(-2.75098 - 1.58828i) q^{31} +(0.825899 - 1.43050i) q^{32} +(-2.58574 + 2.67573i) q^{33} +5.41832i q^{34} +(0.749020 - 0.467309i) q^{36} +(6.75803 - 3.90175i) q^{37} +(-1.60342 - 0.925734i) q^{38} +(-1.46065 + 5.84961i) q^{39} +(5.69460 - 0.973292i) q^{40} +11.8685 q^{41} +2.99294i q^{43} +(-0.547504 + 0.316101i) q^{44} +(6.36742 + 2.11091i) q^{45} +(1.14714 - 1.98691i) q^{46} +(5.28420 - 3.05084i) q^{47} +(-7.49631 + 2.14668i) q^{48} +(-5.75012 - 4.92881i) q^{50} +(4.30557 - 4.45542i) q^{51} +(-0.512191 + 0.887140i) q^{52} +(5.61301 - 9.72202i) q^{53} +(-7.69683 - 1.64449i) q^{54} +(-4.50535 - 1.66667i) q^{55} +(0.582853 + 2.03535i) q^{57} +(-7.81342 + 4.51108i) q^{58} +(1.08467 - 1.87871i) q^{59} +(0.941303 + 0.642622i) q^{60} +(2.94338 - 1.69936i) q^{61} +4.81149i q^{62} +6.50196 q^{64} +(-7.67243 + 1.31133i) q^{65} +(5.46821 + 1.36542i) q^{66} +(-8.93534 - 5.15882i) q^{67} +(0.911660 - 0.526347i) q^{68} +(-2.52214 + 0.722254i) q^{69} +10.3968i q^{71} +(6.84108 + 3.64363i) q^{72} +(3.42779 - 5.93710i) q^{73} +(-10.2363 - 5.90993i) q^{74} +(0.811666 + 8.62213i) q^{75} +0.359711i q^{76} +(8.77950 - 2.51414i) q^{78} +(0.941421 + 1.63059i) q^{79} +(-6.43014 - 7.74542i) q^{80} +(5.02225 + 7.46840i) q^{81} +(-8.98853 - 15.5686i) q^{82} -9.10486i q^{83} +(7.50196 + 2.77521i) q^{85} +(3.92601 - 2.26668i) q^{86} +(10.0095 + 2.49939i) q^{87} +(-4.80681 - 2.77521i) q^{88} +(-0.889962 - 1.54146i) q^{89} +(-2.05332 - 9.95121i) q^{90} -0.445743 q^{92} +(3.82337 - 3.95644i) q^{93} +(-8.00392 - 4.62107i) q^{94} +(-2.10299 + 1.74587i) q^{95} +(2.05733 + 1.98814i) q^{96} -1.32584 q^{97} +(-3.41144 - 5.46799i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 6 q^{9} - 24 q^{15} - 12 q^{16} - 18 q^{24} - 12 q^{25} + 18 q^{30} + 84 q^{36} - 12 q^{39} + 72 q^{40} + 18 q^{45} + 36 q^{46} - 12 q^{51} + 36 q^{54} + 12 q^{60} - 36 q^{61} + 24 q^{64}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.757344 1.31176i −0.535523 0.927553i −0.999138 0.0415164i \(-0.986781\pi\)
0.463615 0.886037i \(-0.346552\pi\)
\(3\) −0.419611 + 1.68045i −0.242263 + 0.970211i
\(4\) −0.147140 + 0.254854i −0.0735701 + 0.127427i
\(5\) −2.20411 + 0.376714i −0.985706 + 0.168472i
\(6\) 2.52214 0.722254i 1.02966 0.294859i
\(7\) 0 0
\(8\) −2.58363 −0.913452
\(9\) −2.64785 1.41027i −0.882618 0.470092i
\(10\) 2.16343 + 2.60595i 0.684135 + 0.824075i
\(11\) 1.86048 + 1.07415i 0.560957 + 0.323869i 0.753529 0.657414i \(-0.228350\pi\)
−0.192573 + 0.981283i \(0.561683\pi\)
\(12\) −0.366529 0.354202i −0.105808 0.102249i
\(13\) 3.48097 0.965448 0.482724 0.875773i \(-0.339647\pi\)
0.482724 + 0.875773i \(0.339647\pi\)
\(14\) 0 0
\(15\) 0.291817 3.86197i 0.0753468 0.997157i
\(16\) 2.25098 + 3.89881i 0.562745 + 0.974703i
\(17\) −3.09793 1.78859i −0.751359 0.433797i 0.0748259 0.997197i \(-0.476160\pi\)
−0.826185 + 0.563399i \(0.809493\pi\)
\(18\) 0.155396 + 4.54141i 0.0366272 + 1.07042i
\(19\) 1.05858 0.611171i 0.242855 0.140212i −0.373633 0.927576i \(-0.621888\pi\)
0.616488 + 0.787364i \(0.288555\pi\)
\(20\) 0.228305 0.617156i 0.0510506 0.138000i
\(21\) 0 0
\(22\) 3.25401i 0.693757i
\(23\) 0.757344 + 1.31176i 0.157917 + 0.273521i 0.934117 0.356966i \(-0.116189\pi\)
−0.776200 + 0.630486i \(0.782855\pi\)
\(24\) 1.08412 4.34168i 0.221295 0.886241i
\(25\) 4.71617 1.66064i 0.943235 0.332127i
\(26\) −2.63629 4.56619i −0.517020 0.895504i
\(27\) 3.48097 3.85783i 0.669913 0.742439i
\(28\) 0 0
\(29\) 5.95645i 1.10608i −0.833153 0.553042i \(-0.813467\pi\)
0.833153 0.553042i \(-0.186533\pi\)
\(30\) −5.28698 + 2.54205i −0.965267 + 0.464113i
\(31\) −2.75098 1.58828i −0.494091 0.285263i 0.232179 0.972673i \(-0.425414\pi\)
−0.726270 + 0.687410i \(0.758748\pi\)
\(32\) 0.825899 1.43050i 0.146000 0.252879i
\(33\) −2.58574 + 2.67573i −0.450120 + 0.465785i
\(34\) 5.41832i 0.929234i
\(35\) 0 0
\(36\) 0.749020 0.467309i 0.124837 0.0778848i
\(37\) 6.75803 3.90175i 1.11101 0.641444i 0.171921 0.985111i \(-0.445002\pi\)
0.939092 + 0.343667i \(0.111669\pi\)
\(38\) −1.60342 0.925734i −0.260109 0.150174i
\(39\) −1.46065 + 5.84961i −0.233892 + 0.936688i
\(40\) 5.69460 0.973292i 0.900396 0.153891i
\(41\) 11.8685 1.85355 0.926773 0.375622i \(-0.122571\pi\)
0.926773 + 0.375622i \(0.122571\pi\)
\(42\) 0 0
\(43\) 2.99294i 0.456419i 0.973612 + 0.228209i \(0.0732871\pi\)
−0.973612 + 0.228209i \(0.926713\pi\)
\(44\) −0.547504 + 0.316101i −0.0825393 + 0.0476541i
\(45\) 6.36742 + 2.11091i 0.949199 + 0.314676i
\(46\) 1.14714 1.98691i 0.169137 0.292953i
\(47\) 5.28420 3.05084i 0.770780 0.445010i −0.0623727 0.998053i \(-0.519867\pi\)
0.833153 + 0.553043i \(0.186533\pi\)
\(48\) −7.49631 + 2.14668i −1.08200 + 0.309847i
\(49\) 0 0
\(50\) −5.75012 4.92881i −0.813190 0.697038i
\(51\) 4.30557 4.45542i 0.602901 0.623883i
\(52\) −0.512191 + 0.887140i −0.0710281 + 0.123024i
\(53\) 5.61301 9.72202i 0.771006 1.33542i −0.166006 0.986125i \(-0.553087\pi\)
0.937012 0.349297i \(-0.113580\pi\)
\(54\) −7.69683 1.64449i −1.04741 0.223787i
\(55\) −4.50535 1.66667i −0.607502 0.224734i
\(56\) 0 0
\(57\) 0.582853 + 2.03535i 0.0772008 + 0.269589i
\(58\) −7.81342 + 4.51108i −1.02595 + 0.592334i
\(59\) 1.08467 1.87871i 0.141213 0.244587i −0.786741 0.617283i \(-0.788233\pi\)
0.927954 + 0.372696i \(0.121567\pi\)
\(60\) 0.941303 + 0.642622i 0.121522 + 0.0829622i
\(61\) 2.94338 1.69936i 0.376861 0.217581i −0.299591 0.954068i \(-0.596850\pi\)
0.676452 + 0.736487i \(0.263517\pi\)
\(62\) 4.81149i 0.611060i
\(63\) 0 0
\(64\) 6.50196 0.812745
\(65\) −7.67243 + 1.31133i −0.951648 + 0.162651i
\(66\) 5.46821 + 1.36542i 0.673090 + 0.168071i
\(67\) −8.93534 5.15882i −1.09163 0.630250i −0.157617 0.987500i \(-0.550381\pi\)
−0.934009 + 0.357250i \(0.883714\pi\)
\(68\) 0.911660 0.526347i 0.110555 0.0638290i
\(69\) −2.52214 + 0.722254i −0.303630 + 0.0869491i
\(70\) 0 0
\(71\) 10.3968i 1.23387i 0.787013 + 0.616936i \(0.211626\pi\)
−0.787013 + 0.616936i \(0.788374\pi\)
\(72\) 6.84108 + 3.64363i 0.806229 + 0.429406i
\(73\) 3.42779 5.93710i 0.401192 0.694885i −0.592678 0.805439i \(-0.701929\pi\)
0.993870 + 0.110555i \(0.0352627\pi\)
\(74\) −10.2363 5.90993i −1.18995 0.687016i
\(75\) 0.811666 + 8.62213i 0.0937231 + 0.995598i
\(76\) 0.359711i 0.0412617i
\(77\) 0 0
\(78\) 8.77950 2.51414i 0.994082 0.284671i
\(79\) 0.941421 + 1.63059i 0.105918 + 0.183456i 0.914113 0.405460i \(-0.132889\pi\)
−0.808195 + 0.588915i \(0.799555\pi\)
\(80\) −6.43014 7.74542i −0.718911 0.865964i
\(81\) 5.02225 + 7.46840i 0.558028 + 0.829822i
\(82\) −8.98853 15.5686i −0.992617 1.71926i
\(83\) 9.10486i 0.999388i −0.866202 0.499694i \(-0.833446\pi\)
0.866202 0.499694i \(-0.166554\pi\)
\(84\) 0 0
\(85\) 7.50196 + 2.77521i 0.813702 + 0.301014i
\(86\) 3.92601 2.26668i 0.423353 0.244423i
\(87\) 10.0095 + 2.49939i 1.07313 + 0.267963i
\(88\) −4.80681 2.77521i −0.512407 0.295839i
\(89\) −0.889962 1.54146i −0.0943358 0.163394i 0.814995 0.579467i \(-0.196739\pi\)
−0.909331 + 0.416073i \(0.863406\pi\)
\(90\) −2.05332 9.95121i −0.216439 1.04895i
\(91\) 0 0
\(92\) −0.445743 −0.0464719
\(93\) 3.82337 3.95644i 0.396465 0.410263i
\(94\) −8.00392 4.62107i −0.825541 0.476626i
\(95\) −2.10299 + 1.74587i −0.215762 + 0.179122i
\(96\) 2.05733 + 1.98814i 0.209976 + 0.202914i
\(97\) −1.32584 −0.134618 −0.0673092 0.997732i \(-0.521441\pi\)
−0.0673092 + 0.997732i \(0.521441\pi\)
\(98\) 0 0
\(99\) −3.41144 5.46799i −0.342863 0.549553i
\(100\) −0.270718 + 1.44628i −0.0270718 + 0.144628i
\(101\) −6.71005 + 11.6221i −0.667675 + 1.15645i 0.310878 + 0.950450i \(0.399377\pi\)
−0.978553 + 0.205997i \(0.933956\pi\)
\(102\) −9.10523 2.27359i −0.901553 0.225119i
\(103\) 2.89342 + 5.01154i 0.285097 + 0.493802i 0.972633 0.232348i \(-0.0746409\pi\)
−0.687536 + 0.726150i \(0.741308\pi\)
\(104\) −8.99355 −0.881890
\(105\) 0 0
\(106\) −17.0039 −1.65157
\(107\) 1.94323 + 3.36576i 0.187859 + 0.325381i 0.944536 0.328408i \(-0.106512\pi\)
−0.756677 + 0.653788i \(0.773179\pi\)
\(108\) 0.470993 + 1.45478i 0.0453214 + 0.139986i
\(109\) −2.60384 + 4.50998i −0.249403 + 0.431978i −0.963360 0.268211i \(-0.913568\pi\)
0.713958 + 0.700189i \(0.246901\pi\)
\(110\) 1.22583 + 7.17218i 0.116878 + 0.683840i
\(111\) 3.72097 + 12.9938i 0.353179 + 1.23331i
\(112\) 0 0
\(113\) −9.36235 −0.880736 −0.440368 0.897817i \(-0.645152\pi\)
−0.440368 + 0.897817i \(0.645152\pi\)
\(114\) 2.22847 2.30602i 0.208715 0.215979i
\(115\) −2.16343 2.60595i −0.201740 0.243006i
\(116\) 1.51803 + 0.876432i 0.140945 + 0.0813747i
\(117\) −9.21710 4.90913i −0.852121 0.453849i
\(118\) −3.28589 −0.302490
\(119\) 0 0
\(120\) −0.753947 + 9.97793i −0.0688257 + 0.910856i
\(121\) −3.19240 5.52940i −0.290218 0.502673i
\(122\) −4.45830 2.57400i −0.403636 0.233039i
\(123\) −4.98015 + 19.9444i −0.449045 + 1.79833i
\(124\) 0.809559 0.467399i 0.0727006 0.0419737i
\(125\) −9.76936 + 5.43687i −0.873798 + 0.486289i
\(126\) 0 0
\(127\) 9.57778i 0.849891i −0.905219 0.424945i \(-0.860293\pi\)
0.905219 0.424945i \(-0.139707\pi\)
\(128\) −6.57602 11.3900i −0.581243 1.00674i
\(129\) −5.02950 1.25587i −0.442823 0.110573i
\(130\) 7.53082 + 9.07125i 0.660497 + 0.795601i
\(131\) 4.72508 + 8.18408i 0.412832 + 0.715047i 0.995198 0.0978802i \(-0.0312062\pi\)
−0.582366 + 0.812927i \(0.697873\pi\)
\(132\) −0.301455 1.05269i −0.0262383 0.0916253i
\(133\) 0 0
\(134\) 15.6280i 1.35005i
\(135\) −6.21913 + 9.81440i −0.535258 + 0.844689i
\(136\) 8.00392 + 4.62107i 0.686330 + 0.396253i
\(137\) 5.35276 9.27125i 0.457317 0.792096i −0.541501 0.840700i \(-0.682144\pi\)
0.998818 + 0.0486038i \(0.0154772\pi\)
\(138\) 2.85755 + 2.76144i 0.243251 + 0.235070i
\(139\) 4.11136i 0.348721i −0.984682 0.174360i \(-0.944214\pi\)
0.984682 0.174360i \(-0.0557858\pi\)
\(140\) 0 0
\(141\) 2.90948 + 10.1600i 0.245022 + 0.855629i
\(142\) 13.6381 7.87395i 1.14448 0.660767i
\(143\) 6.47629 + 3.73909i 0.541575 + 0.312678i
\(144\) −0.461868 13.4980i −0.0384890 1.12483i
\(145\) 2.24388 + 13.1286i 0.186344 + 1.09027i
\(146\) −10.3841 −0.859390
\(147\) 0 0
\(148\) 2.29642i 0.188764i
\(149\) −2.20294 + 1.27187i −0.180472 + 0.104196i −0.587514 0.809214i \(-0.699893\pi\)
0.407042 + 0.913409i \(0.366560\pi\)
\(150\) 10.6954 7.59463i 0.873280 0.620099i
\(151\) 2.80956 4.86630i 0.228639 0.396014i −0.728766 0.684763i \(-0.759906\pi\)
0.957405 + 0.288749i \(0.0932392\pi\)
\(152\) −2.73498 + 1.57904i −0.221836 + 0.128077i
\(153\) 5.68046 + 9.10486i 0.459238 + 0.736084i
\(154\) 0 0
\(155\) 6.66178 + 2.46440i 0.535087 + 0.197946i
\(156\) −1.27588 1.23297i −0.102152 0.0987164i
\(157\) −6.96194 + 12.0584i −0.555623 + 0.962368i 0.442231 + 0.896901i \(0.354187\pi\)
−0.997855 + 0.0654670i \(0.979146\pi\)
\(158\) 1.42596 2.46983i 0.113443 0.196489i
\(159\) 13.9821 + 13.5119i 1.10885 + 1.07156i
\(160\) −1.28148 + 3.46410i −0.101310 + 0.273861i
\(161\) 0 0
\(162\) 5.99317 12.2441i 0.470868 0.961990i
\(163\) −3.52533 + 2.03535i −0.276125 + 0.159421i −0.631668 0.775239i \(-0.717629\pi\)
0.355543 + 0.934660i \(0.384296\pi\)
\(164\) −1.74633 + 3.02473i −0.136366 + 0.236192i
\(165\) 4.69126 6.87168i 0.365214 0.534960i
\(166\) −11.9434 + 6.89551i −0.926986 + 0.535196i
\(167\) 13.9722i 1.08120i 0.841279 + 0.540602i \(0.181803\pi\)
−0.841279 + 0.540602i \(0.818197\pi\)
\(168\) 0 0
\(169\) −0.882841 −0.0679109
\(170\) −2.04116 11.9425i −0.156550 0.915952i
\(171\) −3.66488 + 0.125403i −0.280261 + 0.00958983i
\(172\) −0.762763 0.440382i −0.0581602 0.0335788i
\(173\) 8.66256 5.00133i 0.658602 0.380244i −0.133142 0.991097i \(-0.542507\pi\)
0.791744 + 0.610853i \(0.209173\pi\)
\(174\) −4.30206 15.0230i −0.326139 1.13889i
\(175\) 0 0
\(176\) 9.67157i 0.729022i
\(177\) 2.70195 + 2.61107i 0.203091 + 0.196260i
\(178\) −1.34801 + 2.33483i −0.101038 + 0.175003i
\(179\) 14.0378 + 8.10475i 1.04924 + 0.605777i 0.922436 0.386151i \(-0.126196\pi\)
0.126801 + 0.991928i \(0.459529\pi\)
\(180\) −1.47488 + 1.31216i −0.109931 + 0.0978030i
\(181\) 19.4123i 1.44290i −0.692465 0.721451i \(-0.743475\pi\)
0.692465 0.721451i \(-0.256525\pi\)
\(182\) 0 0
\(183\) 1.62062 + 5.65929i 0.119800 + 0.418347i
\(184\) −1.95670 3.38910i −0.144250 0.249848i
\(185\) −13.4256 + 11.1457i −0.987068 + 0.819450i
\(186\) −8.08550 2.01896i −0.592857 0.148037i
\(187\) −3.84243 6.65529i −0.280987 0.486683i
\(188\) 1.79560i 0.130958i
\(189\) 0 0
\(190\) 3.88284 + 1.43639i 0.281691 + 0.104206i
\(191\) 11.0018 6.35188i 0.796061 0.459606i −0.0460309 0.998940i \(-0.514657\pi\)
0.842092 + 0.539334i \(0.181324\pi\)
\(192\) −2.72830 + 10.9262i −0.196898 + 0.788534i
\(193\) 18.0302 + 10.4098i 1.29785 + 0.749311i 0.980032 0.198842i \(-0.0637181\pi\)
0.317813 + 0.948153i \(0.397051\pi\)
\(194\) 1.00411 + 1.73918i 0.0720912 + 0.124866i
\(195\) 1.01581 13.4434i 0.0727433 0.962703i
\(196\) 0 0
\(197\) 2.23465 0.159212 0.0796062 0.996826i \(-0.474634\pi\)
0.0796062 + 0.996826i \(0.474634\pi\)
\(198\) −4.58904 + 8.61613i −0.326129 + 0.612322i
\(199\) 21.5831 + 12.4610i 1.52998 + 0.883337i 0.999362 + 0.0357284i \(0.0113751\pi\)
0.530622 + 0.847608i \(0.321958\pi\)
\(200\) −12.1849 + 4.29048i −0.861600 + 0.303383i
\(201\) 12.4185 12.8507i 0.875936 0.906421i
\(202\) 20.3273 1.43022
\(203\) 0 0
\(204\) 0.501960 + 1.75286i 0.0351442 + 0.122725i
\(205\) −26.1594 + 4.47103i −1.82705 + 0.312270i
\(206\) 4.38262 7.59093i 0.305352 0.528885i
\(207\) −0.155396 4.54141i −0.0108008 0.315650i
\(208\) 7.83560 + 13.5716i 0.543301 + 0.941025i
\(209\) 2.62596 0.181641
\(210\) 0 0
\(211\) −6.61520 −0.455409 −0.227705 0.973730i \(-0.573122\pi\)
−0.227705 + 0.973730i \(0.573122\pi\)
\(212\) 1.65180 + 2.86100i 0.113446 + 0.196494i
\(213\) −17.4713 4.36261i −1.19712 0.298921i
\(214\) 2.94338 5.09808i 0.201205 0.348498i
\(215\) −1.12748 6.59676i −0.0768937 0.449895i
\(216\) −8.99355 + 9.96721i −0.611934 + 0.678183i
\(217\) 0 0
\(218\) 7.88801 0.534243
\(219\) 8.53868 + 8.25151i 0.576991 + 0.557585i
\(220\) 1.08768 0.902974i 0.0733312 0.0608785i
\(221\) −10.7838 6.22604i −0.725398 0.418808i
\(222\) 14.2266 14.7218i 0.954830 0.988060i
\(223\) 4.31027 0.288637 0.144318 0.989531i \(-0.453901\pi\)
0.144318 + 0.989531i \(0.453901\pi\)
\(224\) 0 0
\(225\) −14.8297 2.25398i −0.988646 0.150265i
\(226\) 7.09052 + 12.2811i 0.471654 + 0.816929i
\(227\) −9.62260 5.55561i −0.638675 0.368739i 0.145429 0.989369i \(-0.453544\pi\)
−0.784104 + 0.620630i \(0.786877\pi\)
\(228\) −0.604478 0.150939i −0.0400326 0.00999617i
\(229\) −8.63774 + 4.98700i −0.570798 + 0.329550i −0.757468 0.652872i \(-0.773564\pi\)
0.186670 + 0.982423i \(0.440230\pi\)
\(230\) −1.77992 + 4.81149i −0.117365 + 0.317261i
\(231\) 0 0
\(232\) 15.3893i 1.01036i
\(233\) 10.3144 + 17.8650i 0.675716 + 1.17037i 0.976259 + 0.216606i \(0.0694988\pi\)
−0.300543 + 0.953768i \(0.597168\pi\)
\(234\) 0.540929 + 15.8085i 0.0353616 + 1.03343i
\(235\) −10.4977 + 8.71500i −0.684791 + 0.568504i
\(236\) 0.319198 + 0.552868i 0.0207780 + 0.0359886i
\(237\) −3.13516 + 0.897801i −0.203650 + 0.0583184i
\(238\) 0 0
\(239\) 2.87353i 0.185873i −0.995672 0.0929365i \(-0.970375\pi\)
0.995672 0.0929365i \(-0.0296254\pi\)
\(240\) 15.7140 7.55549i 1.01433 0.487705i
\(241\) −22.5792 13.0361i −1.45445 0.839728i −0.455722 0.890122i \(-0.650619\pi\)
−0.998729 + 0.0503940i \(0.983952\pi\)
\(242\) −4.83549 + 8.37532i −0.310837 + 0.538386i
\(243\) −14.6577 + 5.30584i −0.940292 + 0.340370i
\(244\) 1.00018i 0.0640298i
\(245\) 0 0
\(246\) 29.9340 8.57206i 1.90852 0.546534i
\(247\) 3.68488 2.12747i 0.234464 0.135368i
\(248\) 7.10752 + 4.10353i 0.451328 + 0.260574i
\(249\) 15.3003 + 3.82050i 0.969617 + 0.242114i
\(250\) 14.5306 + 8.69746i 0.918998 + 0.550076i
\(251\) −0.161120 −0.0101698 −0.00508489 0.999987i \(-0.501619\pi\)
−0.00508489 + 0.999987i \(0.501619\pi\)
\(252\) 0 0
\(253\) 3.25401i 0.204578i
\(254\) −12.5637 + 7.25368i −0.788319 + 0.455136i
\(255\) −7.81152 + 11.4422i −0.489177 + 0.716538i
\(256\) −3.45866 + 5.99057i −0.216166 + 0.374411i
\(257\) 11.3712 6.56514i 0.709314 0.409522i −0.101493 0.994836i \(-0.532362\pi\)
0.810807 + 0.585314i \(0.199029\pi\)
\(258\) 2.16166 + 7.54861i 0.134579 + 0.469956i
\(259\) 0 0
\(260\) 0.794725 2.14830i 0.0492867 0.133232i
\(261\) −8.40022 + 15.7718i −0.519961 + 0.976249i
\(262\) 7.15703 12.3963i 0.442163 0.765848i
\(263\) 8.86526 15.3551i 0.546655 0.946835i −0.451846 0.892096i \(-0.649234\pi\)
0.998501 0.0547384i \(-0.0174325\pi\)
\(264\) 6.68061 6.91311i 0.411163 0.425473i
\(265\) −8.70925 + 23.5429i −0.535005 + 1.44623i
\(266\) 0 0
\(267\) 2.96379 0.848727i 0.181381 0.0519412i
\(268\) 2.62950 1.51814i 0.160622 0.0927352i
\(269\) −2.20294 + 3.81561i −0.134316 + 0.232642i −0.925336 0.379148i \(-0.876217\pi\)
0.791020 + 0.611790i \(0.209550\pi\)
\(270\) 17.5841 + 0.725124i 1.07014 + 0.0441296i
\(271\) −20.4287 + 11.7945i −1.24095 + 0.716465i −0.969288 0.245927i \(-0.920908\pi\)
−0.271665 + 0.962392i \(0.587574\pi\)
\(272\) 16.1043i 0.976469i
\(273\) 0 0
\(274\) −16.2155 −0.979615
\(275\) 10.5581 + 1.97629i 0.636680 + 0.119175i
\(276\) 0.187039 0.749051i 0.0112584 0.0450876i
\(277\) −11.1127 6.41589i −0.667695 0.385494i 0.127508 0.991838i \(-0.459302\pi\)
−0.795203 + 0.606344i \(0.792636\pi\)
\(278\) −5.39311 + 3.11371i −0.323457 + 0.186748i
\(279\) 5.04428 + 8.08517i 0.301993 + 0.484046i
\(280\) 0 0
\(281\) 21.2397i 1.26706i −0.773719 0.633528i \(-0.781606\pi\)
0.773719 0.633528i \(-0.218394\pi\)
\(282\) 11.1240 11.5112i 0.662426 0.685480i
\(283\) −3.27706 + 5.67603i −0.194801 + 0.337405i −0.946835 0.321719i \(-0.895739\pi\)
0.752034 + 0.659124i \(0.229073\pi\)
\(284\) −2.64967 1.52979i −0.157229 0.0907761i
\(285\) −2.05142 4.26656i −0.121515 0.252729i
\(286\) 11.3271i 0.669786i
\(287\) 0 0
\(288\) −4.20426 + 2.62301i −0.247738 + 0.154562i
\(289\) −2.10188 3.64056i −0.123640 0.214151i
\(290\) 15.5222 12.8863i 0.911496 0.756711i
\(291\) 0.556336 2.22801i 0.0326130 0.130608i
\(292\) 1.00873 + 1.74717i 0.0590315 + 0.102245i
\(293\) 3.71937i 0.217288i −0.994081 0.108644i \(-0.965349\pi\)
0.994081 0.108644i \(-0.0346509\pi\)
\(294\) 0 0
\(295\) −1.68300 + 4.54949i −0.0979881 + 0.264882i
\(296\) −17.4603 + 10.0807i −1.01486 + 0.585928i
\(297\) 10.6202 3.43834i 0.616245 0.199513i
\(298\) 3.33677 + 1.92648i 0.193294 + 0.111598i
\(299\) 2.63629 + 4.56619i 0.152461 + 0.264070i
\(300\) −2.31682 1.06181i −0.133761 0.0613034i
\(301\) 0 0
\(302\) −8.51121 −0.489765
\(303\) −16.7149 16.1527i −0.960245 0.927949i
\(304\) 4.76568 + 2.75147i 0.273331 + 0.157808i
\(305\) −5.84735 + 4.85439i −0.334818 + 0.277961i
\(306\) 7.64132 14.3469i 0.436825 0.820158i
\(307\) −11.2102 −0.639800 −0.319900 0.947451i \(-0.603649\pi\)
−0.319900 + 0.947451i \(0.603649\pi\)
\(308\) 0 0
\(309\) −9.63578 + 2.75935i −0.548160 + 0.156974i
\(310\) −1.81256 10.6050i −0.102946 0.602326i
\(311\) 9.46050 16.3861i 0.536456 0.929168i −0.462636 0.886548i \(-0.653096\pi\)
0.999091 0.0426199i \(-0.0135704\pi\)
\(312\) 3.77380 15.1133i 0.213649 0.855620i
\(313\) −8.19024 14.1859i −0.462940 0.801835i 0.536166 0.844112i \(-0.319872\pi\)
−0.999106 + 0.0422775i \(0.986539\pi\)
\(314\) 21.0903 1.19020
\(315\) 0 0
\(316\) −0.554083 −0.0311696
\(317\) −5.05836 8.76134i −0.284106 0.492086i 0.688286 0.725439i \(-0.258363\pi\)
−0.972392 + 0.233353i \(0.925030\pi\)
\(318\) 7.13503 28.5743i 0.400113 1.60237i
\(319\) 6.39812 11.0819i 0.358226 0.620466i
\(320\) −14.3310 + 2.44938i −0.801128 + 0.136925i
\(321\) −6.47141 + 1.85319i −0.361199 + 0.103435i
\(322\) 0 0
\(323\) −4.37254 −0.243295
\(324\) −2.64233 + 0.181040i −0.146796 + 0.0100578i
\(325\) 16.4169 5.78063i 0.910644 0.320652i
\(326\) 5.33977 + 3.08292i 0.295743 + 0.170747i
\(327\) −6.48622 6.26807i −0.358689 0.346625i
\(328\) −30.6638 −1.69313
\(329\) 0 0
\(330\) −12.5669 0.949574i −0.691785 0.0522723i
\(331\) −9.63774 16.6931i −0.529738 0.917533i −0.999398 0.0346861i \(-0.988957\pi\)
0.469660 0.882847i \(-0.344376\pi\)
\(332\) 2.32041 + 1.33969i 0.127349 + 0.0735251i
\(333\) −23.3968 + 0.800582i −1.28214 + 0.0438716i
\(334\) 18.3282 10.5818i 1.00287 0.579009i
\(335\) 21.6378 + 8.00452i 1.18220 + 0.437334i
\(336\) 0 0
\(337\) 23.6381i 1.28765i −0.765174 0.643824i \(-0.777347\pi\)
0.765174 0.643824i \(-0.222653\pi\)
\(338\) 0.668614 + 1.15807i 0.0363678 + 0.0629909i
\(339\) 3.92855 15.7330i 0.213369 0.854499i
\(340\) −1.81111 + 1.50356i −0.0982215 + 0.0815421i
\(341\) −3.41210 5.90993i −0.184776 0.320041i
\(342\) 2.94008 + 4.71247i 0.158981 + 0.254821i
\(343\) 0 0
\(344\) 7.73266i 0.416917i
\(345\) 5.28698 2.54205i 0.284642 0.136859i
\(346\) −13.1211 7.57546i −0.705394 0.407259i
\(347\) −7.95360 + 13.7760i −0.426971 + 0.739536i −0.996602 0.0823644i \(-0.973753\pi\)
0.569631 + 0.821901i \(0.307086\pi\)
\(348\) −2.10979 + 2.18321i −0.113096 + 0.117032i
\(349\) 0.0192397i 0.00102988i −1.00000 0.000514938i \(-0.999836\pi\)
1.00000 0.000514938i \(-0.000163910\pi\)
\(350\) 0 0
\(351\) 12.1172 13.4290i 0.646766 0.716786i
\(352\) 3.07314 1.77428i 0.163799 0.0945695i
\(353\) 22.0143 + 12.7100i 1.17170 + 0.676484i 0.954081 0.299549i \(-0.0968362\pi\)
0.217624 + 0.976033i \(0.430170\pi\)
\(354\) 1.37880 5.52178i 0.0732821 0.293479i
\(355\) −3.91662 22.9156i −0.207873 1.21624i
\(356\) 0.523797 0.0277612
\(357\) 0 0
\(358\) 24.5523i 1.29763i
\(359\) 20.9396 12.0895i 1.10515 0.638057i 0.167579 0.985859i \(-0.446405\pi\)
0.937568 + 0.347801i \(0.113072\pi\)
\(360\) −16.4511 5.45382i −0.867048 0.287442i
\(361\) −8.75294 + 15.1605i −0.460681 + 0.797923i
\(362\) −25.4642 + 14.7018i −1.33837 + 0.772708i
\(363\) 10.6315 3.04448i 0.558007 0.159794i
\(364\) 0 0
\(365\) −5.31861 + 14.3773i −0.278389 + 0.752542i
\(366\) 6.19625 6.41189i 0.323883 0.335155i
\(367\) 4.53636 7.85721i 0.236796 0.410143i −0.722997 0.690851i \(-0.757236\pi\)
0.959793 + 0.280708i \(0.0905693\pi\)
\(368\) −3.40953 + 5.90548i −0.177734 + 0.307845i
\(369\) −31.4260 16.7378i −1.63597 0.871336i
\(370\) 24.7883 + 9.16996i 1.28868 + 0.476724i
\(371\) 0 0
\(372\) 0.445743 + 1.55655i 0.0231107 + 0.0807035i
\(373\) 13.4785 7.78183i 0.697891 0.402928i −0.108670 0.994078i \(-0.534659\pi\)
0.806562 + 0.591150i \(0.201326\pi\)
\(374\) −5.82009 + 10.0807i −0.300950 + 0.521260i
\(375\) −5.03708 18.6983i −0.260114 0.965578i
\(376\) −13.6524 + 7.88224i −0.704071 + 0.406496i
\(377\) 20.7342i 1.06787i
\(378\) 0 0
\(379\) 34.0984 1.75152 0.875758 0.482751i \(-0.160362\pi\)
0.875758 + 0.482751i \(0.160362\pi\)
\(380\) −0.135508 0.792842i −0.00695143 0.0406719i
\(381\) 16.0950 + 4.01894i 0.824573 + 0.205897i
\(382\) −16.6643 9.62112i −0.852618 0.492259i
\(383\) 9.15965 5.28833i 0.468036 0.270221i −0.247381 0.968918i \(-0.579570\pi\)
0.715417 + 0.698697i \(0.246237\pi\)
\(384\) 21.8997 6.27133i 1.11757 0.320032i
\(385\) 0 0
\(386\) 31.5351i 1.60509i
\(387\) 4.22087 7.92486i 0.214559 0.402843i
\(388\) 0.195084 0.337895i 0.00990388 0.0171540i
\(389\) 14.6659 + 8.46736i 0.743590 + 0.429312i 0.823373 0.567500i \(-0.192089\pi\)
−0.0797828 + 0.996812i \(0.525423\pi\)
\(390\) −18.4038 + 8.84880i −0.931914 + 0.448077i
\(391\) 5.41832i 0.274016i
\(392\) 0 0
\(393\) −15.7357 + 4.50615i −0.793760 + 0.227305i
\(394\) −1.69240 2.93132i −0.0852619 0.147678i
\(395\) −2.68926 3.23934i −0.135311 0.162989i
\(396\) 1.89550 0.0648594i 0.0952524 0.00325931i
\(397\) −0.203913 0.353188i −0.0102341 0.0177260i 0.860863 0.508837i \(-0.169924\pi\)
−0.871097 + 0.491111i \(0.836591\pi\)
\(398\) 37.7491i 1.89219i
\(399\) 0 0
\(400\) 17.0905 + 14.6494i 0.854526 + 0.732470i
\(401\) −24.2302 + 13.9893i −1.21000 + 0.698593i −0.962759 0.270361i \(-0.912857\pi\)
−0.247240 + 0.968954i \(0.579524\pi\)
\(402\) −26.2622 6.55769i −1.30984 0.327068i
\(403\) −9.57608 5.52875i −0.477019 0.275407i
\(404\) −1.97464 3.42017i −0.0982418 0.170160i
\(405\) −13.8830 14.5692i −0.689853 0.723949i
\(406\) 0 0
\(407\) 16.7643 0.830974
\(408\) −11.1240 + 11.5112i −0.550721 + 0.569888i
\(409\) −2.26960 1.31036i −0.112225 0.0647929i 0.442837 0.896602i \(-0.353972\pi\)
−0.555062 + 0.831809i \(0.687305\pi\)
\(410\) 25.6766 + 30.9287i 1.26808 + 1.52746i
\(411\) 13.3338 + 12.8854i 0.657709 + 0.635589i
\(412\) −1.70295 −0.0838984
\(413\) 0 0
\(414\) −5.83954 + 3.64325i −0.286998 + 0.179056i
\(415\) 3.42993 + 20.0681i 0.168369 + 0.985104i
\(416\) 2.87493 4.97953i 0.140955 0.244141i
\(417\) 6.90895 + 1.72517i 0.338333 + 0.0844820i
\(418\) −1.98876 3.44462i −0.0972732 0.168482i
\(419\) 8.39649 0.410195 0.205098 0.978742i \(-0.434249\pi\)
0.205098 + 0.978742i \(0.434249\pi\)
\(420\) 0 0
\(421\) −7.84952 −0.382562 −0.191281 0.981535i \(-0.561264\pi\)
−0.191281 + 0.981535i \(0.561264\pi\)
\(422\) 5.00998 + 8.67754i 0.243882 + 0.422416i
\(423\) −18.2943 + 0.625987i −0.889500 + 0.0304365i
\(424\) −14.5020 + 25.1181i −0.704277 + 1.21984i
\(425\) −17.5806 3.29077i −0.852783 0.159626i
\(426\) 7.50912 + 26.2222i 0.363818 + 1.27047i
\(427\) 0 0
\(428\) −1.14371 −0.0552831
\(429\) −9.00089 + 9.31415i −0.434567 + 0.449691i
\(430\) −7.79946 + 6.47500i −0.376123 + 0.312252i
\(431\) −10.6154 6.12880i −0.511326 0.295214i 0.222053 0.975035i \(-0.428724\pi\)
−0.733378 + 0.679821i \(0.762058\pi\)
\(432\) 22.8765 + 4.88776i 1.10065 + 0.235162i
\(433\) 5.13957 0.246992 0.123496 0.992345i \(-0.460589\pi\)
0.123496 + 0.992345i \(0.460589\pi\)
\(434\) 0 0
\(435\) −23.0036 1.73819i −1.10294 0.0833398i
\(436\) −0.766259 1.32720i −0.0366971 0.0635613i
\(437\) 1.60342 + 0.925734i 0.0767019 + 0.0442838i
\(438\) 4.35726 17.4499i 0.208198 0.833790i
\(439\) 14.4620 8.34964i 0.690234 0.398507i −0.113466 0.993542i \(-0.536195\pi\)
0.803700 + 0.595035i \(0.202862\pi\)
\(440\) 11.6402 + 4.30607i 0.554924 + 0.205284i
\(441\) 0 0
\(442\) 18.8610i 0.897127i
\(443\) −0.126110 0.218429i −0.00599167 0.0103779i 0.863014 0.505180i \(-0.168574\pi\)
−0.869006 + 0.494802i \(0.835241\pi\)
\(444\) −3.85902 0.963602i −0.183141 0.0457305i
\(445\) 2.54226 + 3.06228i 0.120515 + 0.145166i
\(446\) −3.26436 5.65403i −0.154572 0.267726i
\(447\) −1.21294 4.23563i −0.0573700 0.200339i
\(448\) 0 0
\(449\) 28.8710i 1.36250i −0.732049 0.681252i \(-0.761436\pi\)
0.732049 0.681252i \(-0.238564\pi\)
\(450\) 8.27450 + 21.1600i 0.390064 + 0.997492i
\(451\) 22.0811 + 12.7485i 1.03976 + 0.600305i
\(452\) 1.37758 2.38603i 0.0647958 0.112230i
\(453\) 6.99867 + 6.76329i 0.328826 + 0.317767i
\(454\) 16.8300i 0.789873i
\(455\) 0 0
\(456\) −1.50588 5.25859i −0.0705193 0.246256i
\(457\) −20.8483 + 12.0368i −0.975242 + 0.563056i −0.900830 0.434171i \(-0.857041\pi\)
−0.0744117 + 0.997228i \(0.523708\pi\)
\(458\) 13.0835 + 7.55375i 0.611351 + 0.352964i
\(459\) −17.6839 + 5.72525i −0.825413 + 0.267232i
\(460\) 0.982465 0.167918i 0.0458077 0.00782921i
\(461\) −39.8709 −1.85697 −0.928486 0.371367i \(-0.878889\pi\)
−0.928486 + 0.371367i \(0.878889\pi\)
\(462\) 0 0
\(463\) 29.8417i 1.38686i 0.720524 + 0.693430i \(0.243901\pi\)
−0.720524 + 0.693430i \(0.756099\pi\)
\(464\) 23.2231 13.4078i 1.07810 0.622443i
\(465\) −6.93667 + 10.1607i −0.321681 + 0.471192i
\(466\) 15.6230 27.0599i 0.723723 1.25353i
\(467\) 3.62140 2.09082i 0.167579 0.0967515i −0.413865 0.910338i \(-0.635821\pi\)
0.581444 + 0.813587i \(0.302488\pi\)
\(468\) 2.60732 1.62669i 0.120523 0.0751937i
\(469\) 0 0
\(470\) 19.3823 + 7.17013i 0.894039 + 0.330733i
\(471\) −17.3423 16.7591i −0.799093 0.772218i
\(472\) −2.80240 + 4.85390i −0.128991 + 0.223419i
\(473\) −3.21487 + 5.56831i −0.147820 + 0.256031i
\(474\) 3.55209 + 3.43263i 0.163153 + 0.157666i
\(475\) 3.97751 4.64030i 0.182501 0.212912i
\(476\) 0 0
\(477\) −28.5731 + 17.8266i −1.30827 + 0.816223i
\(478\) −3.76937 + 2.17625i −0.172407 + 0.0995393i
\(479\) 13.9676 24.1926i 0.638196 1.10539i −0.347632 0.937631i \(-0.613014\pi\)
0.985828 0.167757i \(-0.0536525\pi\)
\(480\) −5.28354 3.60705i −0.241160 0.164638i
\(481\) 23.5245 13.5819i 1.07262 0.619280i
\(482\) 39.4912i 1.79878i
\(483\) 0 0
\(484\) 1.87892 0.0854055
\(485\) 2.92229 0.499462i 0.132694 0.0226794i
\(486\) 18.0609 + 15.2090i 0.819259 + 0.689895i
\(487\) 32.2536 + 18.6216i 1.46155 + 0.843826i 0.999083 0.0428116i \(-0.0136315\pi\)
0.462466 + 0.886637i \(0.346965\pi\)
\(488\) −7.60462 + 4.39053i −0.344245 + 0.198750i
\(489\) −1.94104 6.77821i −0.0877770 0.306521i
\(490\) 0 0
\(491\) 5.90572i 0.266522i −0.991081 0.133261i \(-0.957455\pi\)
0.991081 0.133261i \(-0.0425448\pi\)
\(492\) −4.35015 4.20384i −0.196120 0.189524i
\(493\) −10.6536 + 18.4527i −0.479816 + 0.831066i
\(494\) −5.58145 3.22245i −0.251121 0.144985i
\(495\) 9.57904 + 10.7669i 0.430546 + 0.483936i
\(496\) 14.3007i 0.642122i
\(497\) 0 0
\(498\) −6.57602 22.9637i −0.294678 1.02903i
\(499\) 9.37010 + 16.2295i 0.419463 + 0.726532i 0.995886 0.0906204i \(-0.0288850\pi\)
−0.576422 + 0.817152i \(0.695552\pi\)
\(500\) 0.0518560 3.28975i 0.00231907 0.147122i
\(501\) −23.4797 5.86290i −1.04899 0.261935i
\(502\) 0.122023 + 0.211350i 0.00544615 + 0.00943301i
\(503\) 32.0398i 1.42858i 0.699849 + 0.714291i \(0.253251\pi\)
−0.699849 + 0.714291i \(0.746749\pi\)
\(504\) 0 0
\(505\) 10.4114 28.1442i 0.463303 1.25240i
\(506\) 4.26847 2.46440i 0.189757 0.109556i
\(507\) 0.370450 1.48357i 0.0164523 0.0658878i
\(508\) 2.44094 + 1.40928i 0.108299 + 0.0625265i
\(509\) −9.57465 16.5838i −0.424389 0.735063i 0.571974 0.820272i \(-0.306178\pi\)
−0.996363 + 0.0852085i \(0.972844\pi\)
\(510\) 20.9254 + 1.58116i 0.926592 + 0.0700147i
\(511\) 0 0
\(512\) −15.8265 −0.699439
\(513\) 1.32709 6.21129i 0.0585925 0.274235i
\(514\) −17.2238 9.94415i −0.759708 0.438617i
\(515\) −8.26532 9.95599i −0.364213 0.438713i
\(516\) 1.06011 1.09700i 0.0466685 0.0482927i
\(517\) 13.1082 0.576499
\(518\) 0 0
\(519\) 4.76960 + 16.6557i 0.209362 + 0.731102i
\(520\) 19.8228 3.38800i 0.869285 0.148574i
\(521\) −1.94104 + 3.36199i −0.0850387 + 0.147291i −0.905408 0.424543i \(-0.860435\pi\)
0.820369 + 0.571834i \(0.193768\pi\)
\(522\) 27.0506 0.925607i 1.18397 0.0405127i
\(523\) 1.06192 + 1.83929i 0.0464343 + 0.0804266i 0.888308 0.459247i \(-0.151881\pi\)
−0.841874 + 0.539674i \(0.818548\pi\)
\(524\) −2.78100 −0.121488
\(525\) 0 0
\(526\) −26.8562 −1.17099
\(527\) 5.68157 + 9.84076i 0.247493 + 0.428670i
\(528\) −16.2526 4.05830i −0.707305 0.176615i
\(529\) 10.3529 17.9317i 0.450124 0.779638i
\(530\) 37.4785 6.40562i 1.62796 0.278242i
\(531\) −5.52156 + 3.44486i −0.239615 + 0.149494i
\(532\) 0 0
\(533\) 41.3138 1.78950
\(534\) −3.35793 3.24500i −0.145312 0.140425i
\(535\) −5.55101 6.68646i −0.239991 0.289081i
\(536\) 23.0856 + 13.3285i 0.997148 + 0.575704i
\(537\) −19.5101 + 20.1891i −0.841922 + 0.871224i
\(538\) 6.67354 0.287717
\(539\) 0 0
\(540\) −1.58616 3.02906i −0.0682573 0.130350i
\(541\) 7.59052 + 13.1472i 0.326342 + 0.565241i 0.981783 0.190005i \(-0.0608506\pi\)
−0.655441 + 0.755246i \(0.727517\pi\)
\(542\) 30.9431 + 17.8650i 1.32912 + 0.767367i
\(543\) 32.6214 + 8.14561i 1.39992 + 0.349561i
\(544\) −5.11716 + 2.95439i −0.219396 + 0.126669i
\(545\) 4.04017 10.9214i 0.173062 0.467821i
\(546\) 0 0
\(547\) 11.7540i 0.502566i −0.967914 0.251283i \(-0.919148\pi\)
0.967914 0.251283i \(-0.0808525\pi\)
\(548\) 1.57521 + 2.72835i 0.0672897 + 0.116549i
\(549\) −10.1902 + 0.348684i −0.434907 + 0.0148815i
\(550\) −5.40372 15.3465i −0.230416 0.654375i
\(551\) −3.64041 6.30537i −0.155087 0.268618i
\(552\) 6.51629 1.86604i 0.277352 0.0794239i
\(553\) 0 0
\(554\) 19.4362i 0.825763i
\(555\) −13.0963 27.2379i −0.555909 1.15619i
\(556\) 1.04780 + 0.604946i 0.0444365 + 0.0256554i
\(557\) −4.70135 + 8.14298i −0.199203 + 0.345029i −0.948270 0.317465i \(-0.897169\pi\)
0.749068 + 0.662494i \(0.230502\pi\)
\(558\) 6.78553 12.7401i 0.287254 0.539333i
\(559\) 10.4183i 0.440649i
\(560\) 0 0
\(561\) 12.7962 3.66440i 0.540258 0.154711i
\(562\) −27.8614 + 16.0858i −1.17526 + 0.678538i
\(563\) −16.9106 9.76331i −0.712695 0.411475i 0.0993632 0.995051i \(-0.468319\pi\)
−0.812058 + 0.583577i \(0.801653\pi\)
\(564\) −3.01743 0.753455i −0.127057 0.0317262i
\(565\) 20.6356 3.52693i 0.868147 0.148379i
\(566\) 9.92744 0.417281
\(567\) 0 0
\(568\) 26.8615i 1.12708i
\(569\) −11.1702 + 6.44911i −0.468279 + 0.270361i −0.715519 0.698593i \(-0.753810\pi\)
0.247240 + 0.968954i \(0.420476\pi\)
\(570\) −4.04306 + 5.92221i −0.169345 + 0.248054i
\(571\) 20.8321 36.0823i 0.871796 1.51000i 0.0116595 0.999932i \(-0.496289\pi\)
0.860137 0.510063i \(-0.170378\pi\)
\(572\) −1.90584 + 1.10034i −0.0796874 + 0.0460075i
\(573\) 6.05758 + 21.1533i 0.253059 + 0.883692i
\(574\) 0 0
\(575\) 5.75012 + 4.92881i 0.239797 + 0.205545i
\(576\) −17.2162 9.16955i −0.717343 0.382065i
\(577\) −3.74489 + 6.48634i −0.155902 + 0.270030i −0.933387 0.358871i \(-0.883162\pi\)
0.777485 + 0.628901i \(0.216495\pi\)
\(578\) −3.18369 + 5.51432i −0.132424 + 0.229365i
\(579\) −25.0588 + 25.9309i −1.04141 + 1.07765i
\(580\) −3.67605 1.35989i −0.152640 0.0564663i
\(581\) 0 0
\(582\) −3.34395 + 0.957590i −0.138611 + 0.0396934i
\(583\) 20.8858 12.0584i 0.865003 0.499409i
\(584\) −8.85614 + 15.3393i −0.366470 + 0.634744i
\(585\) 22.1648 + 7.34802i 0.916402 + 0.303803i
\(586\) −4.87892 + 2.81685i −0.201546 + 0.116363i
\(587\) 22.1920i 0.915961i −0.888962 0.457981i \(-0.848573\pi\)
0.888962 0.457981i \(-0.151427\pi\)
\(588\) 0 0
\(589\) −3.88284 −0.159990
\(590\) 7.24245 1.23784i 0.298167 0.0509611i
\(591\) −0.937685 + 3.75523i −0.0385712 + 0.154470i
\(592\) 30.4244 + 17.5655i 1.25043 + 0.721938i
\(593\) −5.46787 + 3.15687i −0.224538 + 0.129637i −0.608050 0.793899i \(-0.708048\pi\)
0.383512 + 0.923536i \(0.374715\pi\)
\(594\) −12.5534 11.3271i −0.515072 0.464757i
\(595\) 0 0
\(596\) 0.748572i 0.0306627i
\(597\) −29.9966 + 31.0406i −1.22768 + 1.27041i
\(598\) 3.99316 6.91636i 0.163293 0.282831i
\(599\) −17.8962 10.3324i −0.731219 0.422170i 0.0876487 0.996151i \(-0.472065\pi\)
−0.818868 + 0.573982i \(0.805398\pi\)
\(600\) −2.09705 22.2764i −0.0856116 0.909432i
\(601\) 12.5956i 0.513785i −0.966440 0.256892i \(-0.917301\pi\)
0.966440 0.256892i \(-0.0826986\pi\)
\(602\) 0 0
\(603\) 16.3841 + 26.2611i 0.667213 + 1.06943i
\(604\) 0.826798 + 1.43206i 0.0336419 + 0.0582695i
\(605\) 9.11940 + 10.9848i 0.370756 + 0.446594i
\(606\) −8.52955 + 34.1590i −0.346489 + 1.38762i
\(607\) 21.3383 + 36.9590i 0.866095 + 1.50012i 0.865956 + 0.500121i \(0.166711\pi\)
0.000139312 1.00000i \(0.499956\pi\)
\(608\) 2.01906i 0.0818838i
\(609\) 0 0
\(610\) 10.7962 + 3.99387i 0.437127 + 0.161707i
\(611\) 18.3942 10.6199i 0.744148 0.429634i
\(612\) −3.15624 + 0.107999i −0.127583 + 0.00436559i
\(613\) 4.60972 + 2.66142i 0.186185 + 0.107494i 0.590195 0.807261i \(-0.299051\pi\)
−0.404011 + 0.914754i \(0.632384\pi\)
\(614\) 8.48998 + 14.7051i 0.342628 + 0.593448i
\(615\) 3.46342 45.8358i 0.139659 1.84828i
\(616\) 0 0
\(617\) 30.1002 1.21179 0.605895 0.795545i \(-0.292815\pi\)
0.605895 + 0.795545i \(0.292815\pi\)
\(618\) 10.9172 + 10.5500i 0.439154 + 0.424385i
\(619\) −11.0265 6.36613i −0.443191 0.255876i 0.261759 0.965133i \(-0.415697\pi\)
−0.704950 + 0.709257i \(0.749031\pi\)
\(620\) −1.60828 + 1.33517i −0.0645900 + 0.0536217i
\(621\) 7.69683 + 1.64449i 0.308863 + 0.0659911i
\(622\) −28.6594 −1.14914
\(623\) 0 0
\(624\) −26.0944 + 7.47254i −1.04461 + 0.299141i
\(625\) 19.4846 15.6637i 0.779383 0.626548i
\(626\) −12.4057 + 21.4872i −0.495830 + 0.858802i
\(627\) −1.10188 + 4.41281i −0.0440049 + 0.176230i
\(628\) −2.04876 3.54856i −0.0817545 0.141603i
\(629\) −27.9145 −1.11303
\(630\) 0 0
\(631\) −17.4114 −0.693138 −0.346569 0.938024i \(-0.612653\pi\)
−0.346569 + 0.938024i \(0.612653\pi\)
\(632\) −2.43229 4.21284i −0.0967511 0.167578i
\(633\) 2.77581 11.1165i 0.110329 0.441843i
\(634\) −7.66184 + 13.2707i −0.304291 + 0.527047i
\(635\) 3.60809 + 21.1104i 0.143183 + 0.837743i
\(636\) −5.50089 + 1.57526i −0.218125 + 0.0624633i
\(637\) 0 0
\(638\) −19.3823 −0.767353
\(639\) 14.6623 27.5292i 0.580033 1.08904i
\(640\) 18.7850 + 22.6275i 0.742543 + 0.894430i
\(641\) −1.13893 0.657564i −0.0449852 0.0259722i 0.477339 0.878719i \(-0.341601\pi\)
−0.522324 + 0.852747i \(0.674935\pi\)
\(642\) 7.33202 + 7.08543i 0.289372 + 0.279640i
\(643\) 39.2223 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(644\) 0 0
\(645\) 11.5587 + 0.873390i 0.455121 + 0.0343897i
\(646\) 3.31152 + 5.73572i 0.130290 + 0.225669i
\(647\) −5.39634 3.11558i −0.212152 0.122486i 0.390159 0.920747i \(-0.372420\pi\)
−0.602311 + 0.798261i \(0.705753\pi\)
\(648\) −12.9757 19.2956i −0.509732 0.758003i
\(649\) 4.03604 2.33021i 0.158428 0.0914687i
\(650\) −20.0160 17.1570i −0.785092 0.672954i
\(651\) 0 0
\(652\) 1.19793i 0.0469144i
\(653\) 9.43091 + 16.3348i 0.369060 + 0.639230i 0.989419 0.145088i \(-0.0463464\pi\)
−0.620359 + 0.784318i \(0.713013\pi\)
\(654\) −3.30990 + 13.2554i −0.129427 + 0.518329i
\(655\) −13.4976 16.2586i −0.527397 0.635275i
\(656\) 26.7157 + 46.2730i 1.04307 + 1.80666i
\(657\) −17.4492 + 10.8864i −0.680759 + 0.424721i
\(658\) 0 0
\(659\) 41.6170i 1.62117i 0.585622 + 0.810584i \(0.300850\pi\)
−0.585622 + 0.810584i \(0.699150\pi\)
\(660\) 1.06100 + 2.20669i 0.0412996 + 0.0858953i
\(661\) −3.27232 1.88927i −0.127278 0.0734842i 0.435009 0.900426i \(-0.356745\pi\)
−0.562287 + 0.826942i \(0.690079\pi\)
\(662\) −14.5982 + 25.2848i −0.567374 + 0.982721i
\(663\) 14.9876 15.5092i 0.582069 0.602327i
\(664\) 23.5236i 0.912894i
\(665\) 0 0
\(666\) 18.7696 + 30.0846i 0.727307 + 1.16576i
\(667\) 7.81342 4.51108i 0.302537 0.174670i
\(668\) −3.56088 2.05588i −0.137775 0.0795442i
\(669\) −1.80864 + 7.24321i −0.0699259 + 0.280039i
\(670\) −5.88730 34.4458i −0.227446 1.33076i
\(671\) 7.30148 0.281871
\(672\) 0 0
\(673\) 31.2573i 1.20488i 0.798163 + 0.602441i \(0.205805\pi\)
−0.798163 + 0.602441i \(0.794195\pi\)
\(674\) −31.0075 + 17.9022i −1.19436 + 0.689565i
\(675\) 10.0104 23.9748i 0.385301 0.922791i
\(676\) 0.129901 0.224996i 0.00499621 0.00865369i
\(677\) −7.56724 + 4.36895i −0.290832 + 0.167912i −0.638317 0.769773i \(-0.720369\pi\)
0.347485 + 0.937686i \(0.387036\pi\)
\(678\) −23.6132 + 6.76199i −0.906858 + 0.259693i
\(679\) 0 0
\(680\) −19.3823 7.17013i −0.743278 0.274962i
\(681\) 13.3737 13.8391i 0.512481 0.530317i
\(682\) −5.16827 + 8.95171i −0.197903 + 0.342779i
\(683\) −10.9346 + 18.9393i −0.418401 + 0.724691i −0.995779 0.0917858i \(-0.970743\pi\)
0.577378 + 0.816477i \(0.304076\pi\)
\(684\) 0.507292 0.952463i 0.0193968 0.0364183i
\(685\) −8.30544 + 22.4513i −0.317334 + 0.857819i
\(686\) 0 0
\(687\) −4.75594 16.6079i −0.181450 0.633632i
\(688\) −11.6689 + 6.73705i −0.444873 + 0.256847i
\(689\) 19.5387 33.8421i 0.744366 1.28928i
\(690\) −7.33862 5.01004i −0.279377 0.190729i
\(691\) −19.5167 + 11.2680i −0.742449 + 0.428653i −0.822959 0.568101i \(-0.807678\pi\)
0.0805102 + 0.996754i \(0.474345\pi\)
\(692\) 2.94359i 0.111898i
\(693\) 0 0
\(694\) 24.0944 0.914612
\(695\) 1.54881 + 9.06187i 0.0587496 + 0.343736i
\(696\) −25.8610 6.45751i −0.980257 0.244771i
\(697\) −36.7678 21.2279i −1.39268 0.804063i
\(698\) −0.0252378 + 0.0145711i −0.000955266 + 0.000551523i
\(699\) −34.3493 + 9.83646i −1.29921 + 0.372049i
\(700\) 0 0
\(701\) 35.5019i 1.34089i 0.741960 + 0.670444i \(0.233896\pi\)
−0.741960 + 0.670444i \(0.766104\pi\)
\(702\) −26.7924 5.72442i −1.01122 0.216054i
\(703\) 4.76927 8.26062i 0.179877 0.311555i
\(704\) 12.0968 + 6.98408i 0.455915 + 0.263223i
\(705\) −10.2402 21.2977i −0.385669 0.802119i
\(706\) 38.5033i 1.44909i
\(707\) 0 0
\(708\) −1.06301 + 0.304409i −0.0399503 + 0.0114404i
\(709\) −2.03390 3.52282i −0.0763847 0.132302i 0.825303 0.564690i \(-0.191004\pi\)
−0.901688 + 0.432388i \(0.857671\pi\)
\(710\) −27.0936 + 22.4927i −1.01680 + 0.844135i
\(711\) −0.193166 5.64522i −0.00724428 0.211712i
\(712\) 2.29934 + 3.98257i 0.0861712 + 0.149253i
\(713\) 4.81149i 0.180192i
\(714\) 0 0
\(715\) −15.6830 5.80164i −0.586511 0.216969i
\(716\) −4.13106 + 2.38507i −0.154385 + 0.0891342i
\(717\) 4.82883 + 1.20576i 0.180336 + 0.0450301i
\(718\) −31.7169 18.3118i −1.18366 0.683389i
\(719\) 15.2703 + 26.4489i 0.569484 + 0.986376i 0.996617 + 0.0821868i \(0.0261904\pi\)
−0.427133 + 0.904189i \(0.640476\pi\)
\(720\) 6.10289 + 29.5770i 0.227441 + 1.10227i
\(721\) 0 0
\(722\) 26.5159 0.986821
\(723\) 31.3810 32.4732i 1.16707 1.20769i
\(724\) 4.94730 + 2.85632i 0.183865 + 0.106154i
\(725\) −9.89149 28.0916i −0.367361 1.04330i
\(726\) −12.0453 11.6402i −0.447043 0.432008i
\(727\) −23.4181 −0.868528 −0.434264 0.900786i \(-0.642992\pi\)
−0.434264 + 0.900786i \(0.642992\pi\)
\(728\) 0 0
\(729\) −2.76568 26.8580i −0.102433 0.994740i
\(730\) 22.8876 3.91182i 0.847107 0.144783i
\(731\) 5.35315 9.27192i 0.197993 0.342934i
\(732\) −1.68075 0.419686i −0.0621224 0.0155120i
\(733\) −8.44533 14.6277i −0.311935 0.540288i 0.666846 0.745196i \(-0.267644\pi\)
−0.978781 + 0.204908i \(0.934311\pi\)
\(734\) −13.7423 −0.507239
\(735\) 0 0
\(736\) 2.50196 0.0922235
\(737\) −11.0827 19.1958i −0.408237 0.707087i
\(738\) 1.84431 + 53.8996i 0.0678901 + 1.98407i
\(739\) −13.8321 + 23.9579i −0.508822 + 0.881306i 0.491126 + 0.871089i \(0.336586\pi\)
−0.999948 + 0.0102170i \(0.996748\pi\)
\(740\) −0.865093 5.06155i −0.0318014 0.186066i
\(741\) 2.02890 + 7.08499i 0.0745333 + 0.260274i
\(742\) 0 0
\(743\) −40.1701 −1.47370 −0.736850 0.676056i \(-0.763688\pi\)
−0.736850 + 0.676056i \(0.763688\pi\)
\(744\) −9.87819 + 10.2220i −0.362152 + 0.374756i
\(745\) 4.37639 3.63321i 0.160338 0.133111i
\(746\) −20.4158 11.7870i −0.747474 0.431554i
\(747\) −12.8404 + 24.1083i −0.469804 + 0.882078i
\(748\) 2.26151 0.0826888
\(749\) 0 0
\(750\) −20.7129 + 20.7685i −0.756328 + 0.758359i
\(751\) 24.8188 + 42.9874i 0.905650 + 1.56863i 0.820042 + 0.572303i \(0.193950\pi\)
0.0856082 + 0.996329i \(0.472717\pi\)
\(752\) 23.7893 + 13.7347i 0.867505 + 0.500854i
\(753\) 0.0676076 0.270754i 0.00246376 0.00986683i
\(754\) −27.1983 + 15.7029i −0.990503 + 0.571867i
\(755\) −4.35936 + 11.7842i −0.158654 + 0.428873i
\(756\) 0 0
\(757\) 47.7116i 1.73411i 0.498214 + 0.867054i \(0.333989\pi\)
−0.498214 + 0.867054i \(0.666011\pi\)
\(758\) −25.8242 44.7288i −0.937977 1.62462i
\(759\) −5.46821 1.36542i −0.198483 0.0495615i
\(760\) 5.43334 4.51068i 0.197088 0.163620i
\(761\) −9.91711 17.1769i −0.359495 0.622663i 0.628382 0.777905i \(-0.283718\pi\)
−0.987876 + 0.155242i \(0.950384\pi\)
\(762\) −6.91759 24.1565i −0.250598 0.875098i
\(763\) 0 0
\(764\) 3.73847i 0.135253i
\(765\) −15.9503 17.9282i −0.576683 0.648195i
\(766\) −13.8740 8.01017i −0.501289 0.289419i
\(767\) 3.77572 6.53974i 0.136333 0.236136i
\(768\) −8.61559 8.32583i −0.310888 0.300433i
\(769\) 10.6337i 0.383461i −0.981448 0.191731i \(-0.938590\pi\)
0.981448 0.191731i \(-0.0614100\pi\)
\(770\) 0 0
\(771\) 6.26096 + 21.8635i 0.225483 + 0.787396i
\(772\) −5.30595 + 3.06339i −0.190965 + 0.110254i
\(773\) 12.4039 + 7.16138i 0.446136 + 0.257577i 0.706197 0.708015i \(-0.250409\pi\)
−0.260061 + 0.965592i \(0.583743\pi\)
\(774\) −13.5922 + 0.465090i −0.488560 + 0.0167173i
\(775\) −15.6117 2.92222i −0.560787 0.104969i
\(776\) 3.42548 0.122967
\(777\) 0 0
\(778\) 25.6508i 0.919626i
\(779\) 12.5637 7.25368i 0.450142 0.259890i
\(780\) 3.27665 + 2.23695i 0.117323 + 0.0800956i
\(781\) −11.1677 + 19.3431i −0.399613 + 0.692149i
\(782\) −7.10752 + 4.10353i −0.254165 + 0.146742i
\(783\) −22.9789 20.7342i −0.821200 0.740980i
\(784\) 0 0
\(785\) 10.8023 29.2007i 0.385550 1.04222i
\(786\) 17.8283 + 17.2287i 0.635914 + 0.614527i
\(787\) 18.4671 31.9859i 0.658280 1.14017i −0.322781 0.946474i \(-0.604618\pi\)
0.981061 0.193700i \(-0.0620490\pi\)
\(788\) −0.328807 + 0.569511i −0.0117133 + 0.0202880i
\(789\) 22.0835 + 21.3408i 0.786195 + 0.759753i
\(790\) −2.21254 + 5.98095i −0.0787188 + 0.212793i
\(791\) 0 0
\(792\) 8.81391 + 14.1273i 0.313189 + 0.501991i
\(793\) 10.2458 5.91543i 0.363840 0.210063i
\(794\) −0.308865 + 0.534970i −0.0109612 + 0.0189854i
\(795\) −35.9082 24.5143i −1.27353 0.869434i
\(796\) −6.35148 + 3.66703i −0.225122 + 0.129974i
\(797\) 37.4862i 1.32783i 0.747809 + 0.663914i \(0.231106\pi\)
−0.747809 + 0.663914i \(0.768894\pi\)
\(798\) 0 0
\(799\) −21.8268 −0.772177
\(800\) 1.51954 8.11800i 0.0537240 0.287015i
\(801\) 0.182607 + 5.33665i 0.00645210 + 0.188561i
\(802\) 36.7012 + 21.1895i 1.29597 + 0.748226i
\(803\) 12.7547 7.36392i 0.450103 0.259867i
\(804\) 1.44780 + 5.05578i 0.0510599 + 0.178303i
\(805\) 0 0
\(806\) 16.7487i 0.589947i
\(807\) −5.48757 5.30301i −0.193172 0.186675i
\(808\) 17.3363 30.0274i 0.609889 1.05636i
\(809\) −22.1518 12.7893i −0.778814 0.449649i 0.0571956 0.998363i \(-0.481784\pi\)
−0.836010 + 0.548714i \(0.815117\pi\)
\(810\) −8.59704 + 29.2451i −0.302069 + 1.02757i
\(811\) 7.28791i 0.255913i 0.991780 + 0.127957i \(0.0408418\pi\)
−0.991780 + 0.127957i \(0.959158\pi\)
\(812\) 0 0
\(813\) −11.2480 39.2786i −0.394485 1.37756i
\(814\) −12.6963 21.9907i −0.445006 0.770773i
\(815\) 7.00345 5.81417i 0.245320 0.203661i
\(816\) 27.0626 + 6.75756i 0.947380 + 0.236562i
\(817\) 1.82920 + 3.16826i 0.0639955 + 0.110844i
\(818\) 3.96956i 0.138792i
\(819\) 0 0
\(820\) 2.70964 7.32470i 0.0946247 0.255790i
\(821\) −0.00729231 + 0.00421022i −0.000254504 + 0.000146938i −0.500127 0.865952i \(-0.666713\pi\)
0.499873 + 0.866099i \(0.333380\pi\)
\(822\) 6.80421 27.2494i 0.237324 0.950433i
\(823\) −27.0406 15.6119i −0.942578 0.544198i −0.0518103 0.998657i \(-0.516499\pi\)
−0.890767 + 0.454459i \(0.849832\pi\)
\(824\) −7.47553 12.9480i −0.260422 0.451065i
\(825\) −7.75138 + 16.9132i −0.269868 + 0.588842i
\(826\) 0 0
\(827\) −38.3189 −1.33248 −0.666239 0.745738i \(-0.732097\pi\)
−0.666239 + 0.745738i \(0.732097\pi\)
\(828\) 1.18026 + 0.628620i 0.0410169 + 0.0218461i
\(829\) 1.94142 + 1.12088i 0.0674283 + 0.0389298i 0.533335 0.845904i \(-0.320938\pi\)
−0.465907 + 0.884834i \(0.654272\pi\)
\(830\) 23.7268 19.6977i 0.823571 0.683717i
\(831\) 15.4446 15.9821i 0.535768 0.554414i
\(832\) 22.6331 0.784663
\(833\) 0 0
\(834\) −2.96944 10.3694i −0.102823 0.359064i
\(835\) −5.26354 30.7963i −0.182152 1.06575i
\(836\) −0.386384 + 0.669237i −0.0133634 + 0.0231460i
\(837\) −15.7034 + 5.08406i −0.542789 + 0.175731i
\(838\) −6.35903 11.0142i −0.219669 0.380478i
\(839\) −20.6544 −0.713069 −0.356535 0.934282i \(-0.616042\pi\)
−0.356535 + 0.934282i \(0.616042\pi\)
\(840\) 0 0
\(841\) −6.47924 −0.223422
\(842\) 5.94479 + 10.2967i 0.204871 + 0.354847i
\(843\) 35.6924 + 8.91243i 1.22931 + 0.306961i
\(844\) 0.973362 1.68591i 0.0335045 0.0580315i
\(845\) 1.94588 0.332579i 0.0669402 0.0114411i
\(846\) 14.6762 + 23.5236i 0.504579 + 0.808759i
\(847\) 0 0
\(848\) 50.5391 1.73552
\(849\) −8.16322 7.88867i −0.280161 0.270738i
\(850\) 8.99786 + 25.5537i 0.308624 + 0.876485i
\(851\) 10.2363 + 5.90993i 0.350896 + 0.202590i
\(852\) 3.68257 3.81073i 0.126163 0.130553i
\(853\) −7.06831 −0.242014 −0.121007 0.992652i \(-0.538612\pi\)
−0.121007 + 0.992652i \(0.538612\pi\)
\(854\) 0 0
\(855\) 8.03055 1.65702i 0.274639 0.0566687i
\(856\) −5.02058 8.69590i −0.171600 0.297220i
\(857\) −14.5780 8.41661i −0.497975 0.287506i 0.229902 0.973214i \(-0.426159\pi\)
−0.727877 + 0.685708i \(0.759493\pi\)
\(858\) 19.0347 + 4.75298i 0.649833 + 0.162264i
\(859\) 30.4698 17.5918i 1.03962 0.600223i 0.119893 0.992787i \(-0.461745\pi\)
0.919725 + 0.392563i \(0.128412\pi\)
\(860\) 1.84711 + 0.683304i 0.0629859 + 0.0233005i
\(861\) 0 0
\(862\) 18.5665i 0.632376i
\(863\) 18.9879 + 32.8880i 0.646356 + 1.11952i 0.983986 + 0.178243i \(0.0570414\pi\)
−0.337630 + 0.941279i \(0.609625\pi\)
\(864\) −2.64369 8.16571i −0.0899402 0.277803i
\(865\) −17.2091 + 14.2868i −0.585128 + 0.485765i
\(866\) −3.89242 6.74187i −0.132270 0.229098i
\(867\) 6.99977 2.00449i 0.237725 0.0680761i
\(868\) 0 0
\(869\) 4.04491i 0.137214i
\(870\) 15.1416 + 31.4916i 0.513348 + 1.06767i
\(871\) −31.1037 17.9577i −1.05391 0.608474i
\(872\) 6.72737 11.6521i 0.227817 0.394591i
\(873\) 3.51062 + 1.86979i 0.118817 + 0.0632829i
\(874\) 2.80440i 0.0948601i
\(875\) 0 0
\(876\) −3.35932 + 0.961992i −0.113501 + 0.0325027i
\(877\) −9.91566 + 5.72481i −0.334828 + 0.193313i −0.657983 0.753033i \(-0.728590\pi\)
0.323155 + 0.946346i \(0.395257\pi\)
\(878\) −21.9054 12.6471i −0.739272 0.426819i
\(879\) 6.25024 + 1.56069i 0.210815 + 0.0526408i
\(880\) −3.64342 21.3172i −0.122820 0.718601i
\(881\) 23.6698 0.797455 0.398728 0.917069i \(-0.369452\pi\)
0.398728 + 0.917069i \(0.369452\pi\)
\(882\) 0 0
\(883\) 16.8355i 0.566560i −0.959037 0.283280i \(-0.908577\pi\)
0.959037 0.283280i \(-0.0914226\pi\)
\(884\) 3.17346 1.83220i 0.106735 0.0616236i
\(885\) −6.93901 4.73722i −0.233252 0.159240i
\(886\) −0.191017 + 0.330852i −0.00641735 + 0.0111152i
\(887\) 45.5385 26.2917i 1.52903 0.882789i 0.529632 0.848227i \(-0.322330\pi\)
0.999403 0.0345613i \(-0.0110034\pi\)
\(888\) −9.61362 33.5712i −0.322612 1.12657i
\(889\) 0 0
\(890\) 2.09160 5.65403i 0.0701107 0.189524i
\(891\) 1.32163 + 19.2895i 0.0442761 + 0.646222i
\(892\) −0.634214 + 1.09849i −0.0212350 + 0.0367802i
\(893\) 3.72917 6.45910i 0.124792 0.216146i
\(894\) −4.63752 + 4.79891i −0.155102 + 0.160500i
\(895\) −33.9941 12.5755i −1.13630 0.420352i
\(896\) 0 0
\(897\) −8.77950 + 2.51414i −0.293139 + 0.0839448i
\(898\) −37.8717 + 21.8652i −1.26380 + 0.729653i
\(899\) −9.46050 + 16.3861i −0.315525 + 0.546506i
\(900\) 2.75648 3.44776i 0.0918826 0.114925i
\(901\) −34.7774 + 20.0788i −1.15860 + 0.668921i
\(902\) 38.6201i 1.28591i
\(903\) 0 0
\(904\) 24.1889 0.804510
\(905\) 7.31288 + 42.7867i 0.243088 + 1.42228i
\(906\) 3.57140 14.3027i 0.118652 0.475176i
\(907\) 43.9694 + 25.3858i 1.45998 + 0.842920i 0.999010 0.0444946i \(-0.0141678\pi\)
0.460971 + 0.887415i \(0.347501\pi\)
\(908\) 2.83174 1.63491i 0.0939747 0.0542563i
\(909\) 34.1577 21.3107i 1.13294 0.706832i
\(910\) 0 0
\(911\) 16.1165i 0.533963i 0.963702 + 0.266981i \(0.0860262\pi\)
−0.963702 + 0.266981i \(0.913974\pi\)
\(912\) −6.62345 + 6.85396i −0.219324 + 0.226957i
\(913\) 9.77999 16.9394i 0.323671 0.560614i
\(914\) 31.5787 + 18.2319i 1.04453 + 0.603059i
\(915\) −5.70396 11.8632i −0.188567 0.392184i
\(916\) 2.93515i 0.0969802i
\(917\) 0 0
\(918\) 20.9029 + 18.8610i 0.689900 + 0.622506i
\(919\) −19.8721 34.4194i −0.655519 1.13539i −0.981763 0.190106i \(-0.939117\pi\)
0.326245 0.945285i \(-0.394217\pi\)
\(920\) 5.58950 + 6.73283i 0.184280 + 0.221975i
\(921\) 4.70392 18.8382i 0.155000 0.620740i
\(922\) 30.1960 + 52.3010i 0.994452 + 1.72244i
\(923\) 36.1909i 1.19124i
\(924\) 0 0
\(925\) 25.3926 29.6240i 0.834905 0.974030i
\(926\) 39.1451 22.6004i 1.28639 0.742696i
\(927\) −0.593686 17.3503i −0.0194992 0.569860i
\(928\) −8.52069 4.91942i −0.279705 0.161488i
\(929\) −18.2593 31.6261i −0.599069 1.03762i −0.992959 0.118461i \(-0.962204\pi\)
0.393889 0.919158i \(-0.371129\pi\)
\(930\) 18.5819 + 1.40407i 0.609323 + 0.0460414i
\(931\) 0 0
\(932\) −6.07063 −0.198850
\(933\) 23.5663 + 22.7737i 0.771526 + 0.745578i
\(934\) −5.48530 3.16694i −0.179484 0.103625i
\(935\) 10.9763 + 13.2215i 0.358963 + 0.432388i
\(936\) 23.8136 + 12.6834i 0.778372 + 0.414569i
\(937\) −7.60980 −0.248601 −0.124301 0.992245i \(-0.539669\pi\)
−0.124301 + 0.992245i \(0.539669\pi\)
\(938\) 0 0
\(939\) 27.2755 7.81075i 0.890102 0.254894i
\(940\) −0.676429 3.95770i −0.0220627 0.129086i
\(941\) −11.0121 + 19.0735i −0.358985 + 0.621780i −0.987791 0.155782i \(-0.950210\pi\)
0.628807 + 0.777562i \(0.283544\pi\)
\(942\) −8.84974 + 35.4414i −0.288340 + 1.15474i
\(943\) 8.98853 + 15.5686i 0.292707 + 0.506983i
\(944\) 9.76632 0.317867
\(945\) 0 0
\(946\) 9.73904 0.316644
\(947\) −24.6291 42.6589i −0.800339 1.38623i −0.919393 0.393341i \(-0.871319\pi\)
0.119053 0.992888i \(-0.462014\pi\)
\(948\) 0.232499 0.931111i 0.00755123 0.0302411i
\(949\) 11.9320 20.6669i 0.387330 0.670875i
\(950\) −9.09930 1.70323i −0.295220 0.0552599i
\(951\) 16.8456 4.82399i 0.546255 0.156429i
\(952\) 0 0
\(953\) 10.2538 0.332154 0.166077 0.986113i \(-0.446890\pi\)
0.166077 + 0.986113i \(0.446890\pi\)
\(954\) 45.0239 + 23.9802i 1.45770 + 0.776388i
\(955\) −21.8563 + 18.1448i −0.707252 + 0.587150i
\(956\) 0.732331 + 0.422811i 0.0236853 + 0.0136747i
\(957\) 15.9379 + 15.4018i 0.515198 + 0.497870i
\(958\) −42.3131 −1.36708
\(959\) 0 0
\(960\) 1.89738 25.1104i 0.0612377 0.810435i
\(961\) −10.4547 18.1081i −0.337250 0.584134i
\(962\) −35.6323 20.5723i −1.14883 0.663278i
\(963\) −0.398721 11.6525i −0.0128486 0.375498i
\(964\) 6.64460 3.83626i 0.214008 0.123558i
\(965\) −43.6621 16.1520i −1.40553 0.519951i
\(966\) 0 0
\(967\) 4.62632i 0.148772i 0.997230 + 0.0743862i \(0.0236998\pi\)
−0.997230 + 0.0743862i \(0.976300\pi\)
\(968\) 8.24799 + 14.2859i 0.265101 + 0.459168i
\(969\) 1.83477 7.34786i 0.0589412 0.236047i
\(970\) −2.86835 3.45507i −0.0920971 0.110936i
\(971\) −12.6443 21.9006i −0.405775 0.702822i 0.588637 0.808398i \(-0.299665\pi\)
−0.994411 + 0.105575i \(0.966332\pi\)
\(972\) 0.804521 4.51628i 0.0258050 0.144860i
\(973\) 0 0
\(974\) 56.4119i 1.80755i
\(975\) 2.82538 + 30.0134i 0.0904847 + 0.961198i
\(976\) 13.2510 + 7.65046i 0.424154 + 0.244885i
\(977\) 12.0549 20.8797i 0.385670 0.668000i −0.606192 0.795318i \(-0.707304\pi\)
0.991862 + 0.127318i \(0.0406370\pi\)
\(978\) −7.42133 + 7.67961i −0.237308 + 0.245567i
\(979\) 3.82381i 0.122210i
\(980\) 0 0
\(981\) 13.2549 8.26964i 0.423196 0.264029i
\(982\) −7.74688 + 4.47267i −0.247213 + 0.142728i
\(983\) −41.6456 24.0441i −1.32829 0.766888i −0.343254 0.939243i \(-0.611529\pi\)
−0.985035 + 0.172354i \(0.944863\pi\)
\(984\) 12.8669 51.5291i 0.410181 1.64269i
\(985\) −4.92541 + 0.841825i −0.156937 + 0.0268228i
\(986\) 32.2739 1.02781
\(987\) 0 0
\(988\) 1.25214i 0.0398360i
\(989\) −3.92601 + 2.26668i −0.124840 + 0.0720764i
\(990\) 6.86892 20.7196i 0.218309 0.658513i
\(991\) −14.8587 + 25.7361i −0.472003 + 0.817534i −0.999487 0.0320314i \(-0.989802\pi\)
0.527483 + 0.849565i \(0.323136\pi\)
\(992\) −4.54406 + 2.62352i −0.144274 + 0.0832967i
\(993\) 32.0960 9.19119i 1.01854 0.291674i
\(994\) 0 0
\(995\) −52.2656 19.3347i −1.65693 0.612952i
\(996\) −3.22496 + 3.33720i −0.102187 + 0.105743i
\(997\) −13.3742 + 23.1647i −0.423564 + 0.733634i −0.996285 0.0861161i \(-0.972554\pi\)
0.572721 + 0.819750i \(0.305888\pi\)
\(998\) 14.1928 24.5826i 0.449265 0.778149i
\(999\) 8.47222 39.6532i 0.268049 1.25457i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.f.374.3 24
3.2 odd 2 inner 735.2.p.f.374.9 24
5.4 even 2 inner 735.2.p.f.374.10 24
7.2 even 3 105.2.p.a.89.3 yes 24
7.3 odd 6 735.2.g.b.734.18 24
7.4 even 3 735.2.g.b.734.19 24
7.5 odd 6 inner 735.2.p.f.509.4 24
7.6 odd 2 105.2.p.a.59.4 yes 24
15.14 odd 2 inner 735.2.p.f.374.4 24
21.2 odd 6 105.2.p.a.89.9 yes 24
21.5 even 6 inner 735.2.p.f.509.10 24
21.11 odd 6 735.2.g.b.734.8 24
21.17 even 6 735.2.g.b.734.5 24
21.20 even 2 105.2.p.a.59.10 yes 24
35.2 odd 12 525.2.t.j.26.3 24
35.4 even 6 735.2.g.b.734.6 24
35.9 even 6 105.2.p.a.89.10 yes 24
35.13 even 4 525.2.t.j.101.4 24
35.19 odd 6 inner 735.2.p.f.509.9 24
35.23 odd 12 525.2.t.j.26.10 24
35.24 odd 6 735.2.g.b.734.7 24
35.27 even 4 525.2.t.j.101.9 24
35.34 odd 2 105.2.p.a.59.9 yes 24
105.2 even 12 525.2.t.j.26.9 24
105.23 even 12 525.2.t.j.26.4 24
105.44 odd 6 105.2.p.a.89.4 yes 24
105.59 even 6 735.2.g.b.734.20 24
105.62 odd 4 525.2.t.j.101.3 24
105.74 odd 6 735.2.g.b.734.17 24
105.83 odd 4 525.2.t.j.101.10 24
105.89 even 6 inner 735.2.p.f.509.3 24
105.104 even 2 105.2.p.a.59.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.p.a.59.3 24 105.104 even 2
105.2.p.a.59.4 yes 24 7.6 odd 2
105.2.p.a.59.9 yes 24 35.34 odd 2
105.2.p.a.59.10 yes 24 21.20 even 2
105.2.p.a.89.3 yes 24 7.2 even 3
105.2.p.a.89.4 yes 24 105.44 odd 6
105.2.p.a.89.9 yes 24 21.2 odd 6
105.2.p.a.89.10 yes 24 35.9 even 6
525.2.t.j.26.3 24 35.2 odd 12
525.2.t.j.26.4 24 105.23 even 12
525.2.t.j.26.9 24 105.2 even 12
525.2.t.j.26.10 24 35.23 odd 12
525.2.t.j.101.3 24 105.62 odd 4
525.2.t.j.101.4 24 35.13 even 4
525.2.t.j.101.9 24 35.27 even 4
525.2.t.j.101.10 24 105.83 odd 4
735.2.g.b.734.5 24 21.17 even 6
735.2.g.b.734.6 24 35.4 even 6
735.2.g.b.734.7 24 35.24 odd 6
735.2.g.b.734.8 24 21.11 odd 6
735.2.g.b.734.17 24 105.74 odd 6
735.2.g.b.734.18 24 7.3 odd 6
735.2.g.b.734.19 24 7.4 even 3
735.2.g.b.734.20 24 105.59 even 6
735.2.p.f.374.3 24 1.1 even 1 trivial
735.2.p.f.374.4 24 15.14 odd 2 inner
735.2.p.f.374.9 24 3.2 odd 2 inner
735.2.p.f.374.10 24 5.4 even 2 inner
735.2.p.f.509.3 24 105.89 even 6 inner
735.2.p.f.509.4 24 7.5 odd 6 inner
735.2.p.f.509.9 24 35.19 odd 6 inner
735.2.p.f.509.10 24 21.5 even 6 inner