L(s) = 1 | + (0.306 + 1.70i)3-s + (1 − 1.73i)4-s + (−1.93 + 1.11i)5-s + (−2.81 + 1.04i)9-s + (−5.12 − 2.95i)11-s + (3.25 + 1.17i)12-s − 2.64·13-s + (−2.5 − 2.95i)15-s + (−1.99 − 3.46i)16-s + (−1.93 − 1.11i)17-s + 4.47i·20-s + (2.5 − 4.33i)25-s + (−2.64 − 4.47i)27-s + 5.91i·29-s + (3.47 − 9.64i)33-s + ⋯ |
L(s) = 1 | + (0.177 + 0.984i)3-s + (0.5 − 0.866i)4-s + (−0.866 + 0.499i)5-s + (−0.937 + 0.348i)9-s + (−1.54 − 0.891i)11-s + (0.940 + 0.338i)12-s − 0.733·13-s + (−0.645 − 0.763i)15-s + (−0.499 − 0.866i)16-s + (−0.469 − 0.271i)17-s + 0.999i·20-s + (0.5 − 0.866i)25-s + (−0.509 − 0.860i)27-s + 1.09i·29-s + (0.604 − 1.67i)33-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(−0.803+0.595i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(−0.803+0.595i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
−0.803+0.595i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(374,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), −0.803+0.595i)
|
Particular Values
L(1) |
≈ |
0.0446230−0.135039i |
L(21) |
≈ |
0.0446230−0.135039i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.306−1.70i)T |
| 5 | 1+(1.93−1.11i)T |
| 7 | 1 |
good | 2 | 1+(−1+1.73i)T2 |
| 11 | 1+(5.12+2.95i)T+(5.5+9.52i)T2 |
| 13 | 1+2.64T+13T2 |
| 17 | 1+(1.93+1.11i)T+(8.5+14.7i)T2 |
| 19 | 1+(9.5−16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1−5.91iT−29T2 |
| 31 | 1+(15.5+26.8i)T2 |
| 37 | 1+(18.5−32.0i)T2 |
| 41 | 1+41T2 |
| 43 | 1−43T2 |
| 47 | 1+(9.68−5.59i)T+(23.5−40.7i)T2 |
| 53 | 1+(−26.5−45.8i)T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(30.5−52.8i)T2 |
| 67 | 1+(33.5+58.0i)T2 |
| 71 | 1+11.8iT−71T2 |
| 73 | 1+(−5.29+9.16i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1−8.94iT−83T2 |
| 89 | 1+(−44.5+77.0i)T2 |
| 97 | 1+18.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.25576850371377866625268741556, −9.368380969914482382456523676034, −8.302766408860814553068562162393, −7.53032192361578198664318962599, −6.44150101718114467927977264428, −5.33646793979217160602002521253, −4.71468423707253193836834271767, −3.27903497850911129168240966286, −2.53000351921565958319880799780, −0.06376460010592685334312796048,
2.06705041109976935303399422597, 2.94492298740847056535524040493, 4.24060394100272543928750123009, 5.33188276100516328644173972485, 6.72813367137609255600527696043, 7.42290806189520344017294218687, 7.994140838189322223460339747997, 8.554238566861824412403679581572, 9.826117936275046439169283269037, 11.02376377795217713132717321566