Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [735,2,Mod(374,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.374");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 735.p (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.31116960000.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 105) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
374.1 |
|
0 | −1.62968 | + | 0.586627i | 1.00000 | − | 1.73205i | 1.93649 | − | 1.11803i | 0 | 0 | 0 | 2.31174 | − | 1.91203i | 0 | ||||||||||||||||||||||||||||||||||
374.2 | 0 | −0.306808 | − | 1.70466i | 1.00000 | − | 1.73205i | 1.93649 | − | 1.11803i | 0 | 0 | 0 | −2.81174 | + | 1.04601i | 0 | |||||||||||||||||||||||||||||||||||
374.3 | 0 | 0.306808 | + | 1.70466i | 1.00000 | − | 1.73205i | −1.93649 | + | 1.11803i | 0 | 0 | 0 | −2.81174 | + | 1.04601i | 0 | |||||||||||||||||||||||||||||||||||
374.4 | 0 | 1.62968 | − | 0.586627i | 1.00000 | − | 1.73205i | −1.93649 | + | 1.11803i | 0 | 0 | 0 | 2.31174 | − | 1.91203i | 0 | |||||||||||||||||||||||||||||||||||
509.1 | 0 | −1.62968 | − | 0.586627i | 1.00000 | + | 1.73205i | 1.93649 | + | 1.11803i | 0 | 0 | 0 | 2.31174 | + | 1.91203i | 0 | |||||||||||||||||||||||||||||||||||
509.2 | 0 | −0.306808 | + | 1.70466i | 1.00000 | + | 1.73205i | 1.93649 | + | 1.11803i | 0 | 0 | 0 | −2.81174 | − | 1.04601i | 0 | |||||||||||||||||||||||||||||||||||
509.3 | 0 | 0.306808 | − | 1.70466i | 1.00000 | + | 1.73205i | −1.93649 | − | 1.11803i | 0 | 0 | 0 | −2.81174 | − | 1.04601i | 0 | |||||||||||||||||||||||||||||||||||
509.4 | 0 | 1.62968 | + | 0.586627i | 1.00000 | + | 1.73205i | −1.93649 | − | 1.11803i | 0 | 0 | 0 | 2.31174 | + | 1.91203i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
35.c | odd | 2 | 1 | CM by |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
21.h | odd | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
35.j | even | 6 | 1 | inner |
105.g | even | 2 | 1 | inner |
105.o | odd | 6 | 1 | inner |
105.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.p.b | 8 | |
3.b | odd | 2 | 1 | inner | 735.2.p.b | 8 | |
5.b | even | 2 | 1 | inner | 735.2.p.b | 8 | |
7.b | odd | 2 | 1 | inner | 735.2.p.b | 8 | |
7.c | even | 3 | 1 | 105.2.g.b | ✓ | 4 | |
7.c | even | 3 | 1 | inner | 735.2.p.b | 8 | |
7.d | odd | 6 | 1 | 105.2.g.b | ✓ | 4 | |
7.d | odd | 6 | 1 | inner | 735.2.p.b | 8 | |
15.d | odd | 2 | 1 | inner | 735.2.p.b | 8 | |
21.c | even | 2 | 1 | inner | 735.2.p.b | 8 | |
21.g | even | 6 | 1 | 105.2.g.b | ✓ | 4 | |
21.g | even | 6 | 1 | inner | 735.2.p.b | 8 | |
21.h | odd | 6 | 1 | 105.2.g.b | ✓ | 4 | |
21.h | odd | 6 | 1 | inner | 735.2.p.b | 8 | |
28.f | even | 6 | 1 | 1680.2.k.b | 4 | ||
28.g | odd | 6 | 1 | 1680.2.k.b | 4 | ||
35.c | odd | 2 | 1 | CM | 735.2.p.b | 8 | |
35.i | odd | 6 | 1 | 105.2.g.b | ✓ | 4 | |
35.i | odd | 6 | 1 | inner | 735.2.p.b | 8 | |
35.j | even | 6 | 1 | 105.2.g.b | ✓ | 4 | |
35.j | even | 6 | 1 | inner | 735.2.p.b | 8 | |
35.k | even | 12 | 2 | 525.2.b.f | 4 | ||
35.l | odd | 12 | 2 | 525.2.b.f | 4 | ||
84.j | odd | 6 | 1 | 1680.2.k.b | 4 | ||
84.n | even | 6 | 1 | 1680.2.k.b | 4 | ||
105.g | even | 2 | 1 | inner | 735.2.p.b | 8 | |
105.o | odd | 6 | 1 | 105.2.g.b | ✓ | 4 | |
105.o | odd | 6 | 1 | inner | 735.2.p.b | 8 | |
105.p | even | 6 | 1 | 105.2.g.b | ✓ | 4 | |
105.p | even | 6 | 1 | inner | 735.2.p.b | 8 | |
105.w | odd | 12 | 2 | 525.2.b.f | 4 | ||
105.x | even | 12 | 2 | 525.2.b.f | 4 | ||
140.p | odd | 6 | 1 | 1680.2.k.b | 4 | ||
140.s | even | 6 | 1 | 1680.2.k.b | 4 | ||
420.ba | even | 6 | 1 | 1680.2.k.b | 4 | ||
420.be | odd | 6 | 1 | 1680.2.k.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.g.b | ✓ | 4 | 7.c | even | 3 | 1 | |
105.2.g.b | ✓ | 4 | 7.d | odd | 6 | 1 | |
105.2.g.b | ✓ | 4 | 21.g | even | 6 | 1 | |
105.2.g.b | ✓ | 4 | 21.h | odd | 6 | 1 | |
105.2.g.b | ✓ | 4 | 35.i | odd | 6 | 1 | |
105.2.g.b | ✓ | 4 | 35.j | even | 6 | 1 | |
105.2.g.b | ✓ | 4 | 105.o | odd | 6 | 1 | |
105.2.g.b | ✓ | 4 | 105.p | even | 6 | 1 | |
525.2.b.f | 4 | 35.k | even | 12 | 2 | ||
525.2.b.f | 4 | 35.l | odd | 12 | 2 | ||
525.2.b.f | 4 | 105.w | odd | 12 | 2 | ||
525.2.b.f | 4 | 105.x | even | 12 | 2 | ||
735.2.p.b | 8 | 1.a | even | 1 | 1 | trivial | |
735.2.p.b | 8 | 3.b | odd | 2 | 1 | inner | |
735.2.p.b | 8 | 5.b | even | 2 | 1 | inner | |
735.2.p.b | 8 | 7.b | odd | 2 | 1 | inner | |
735.2.p.b | 8 | 7.c | even | 3 | 1 | inner | |
735.2.p.b | 8 | 7.d | odd | 6 | 1 | inner | |
735.2.p.b | 8 | 15.d | odd | 2 | 1 | inner | |
735.2.p.b | 8 | 21.c | even | 2 | 1 | inner | |
735.2.p.b | 8 | 21.g | even | 6 | 1 | inner | |
735.2.p.b | 8 | 21.h | odd | 6 | 1 | inner | |
735.2.p.b | 8 | 35.c | odd | 2 | 1 | CM | |
735.2.p.b | 8 | 35.i | odd | 6 | 1 | inner | |
735.2.p.b | 8 | 35.j | even | 6 | 1 | inner | |
735.2.p.b | 8 | 105.g | even | 2 | 1 | inner | |
735.2.p.b | 8 | 105.o | odd | 6 | 1 | inner | |
735.2.p.b | 8 | 105.p | even | 6 | 1 | inner | |
1680.2.k.b | 4 | 28.f | even | 6 | 1 | ||
1680.2.k.b | 4 | 28.g | odd | 6 | 1 | ||
1680.2.k.b | 4 | 84.j | odd | 6 | 1 | ||
1680.2.k.b | 4 | 84.n | even | 6 | 1 | ||
1680.2.k.b | 4 | 140.p | odd | 6 | 1 | ||
1680.2.k.b | 4 | 140.s | even | 6 | 1 | ||
1680.2.k.b | 4 | 420.ba | even | 6 | 1 | ||
1680.2.k.b | 4 | 420.be | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|