Properties

Label 735.2.p.b
Level 735735
Weight 22
Character orbit 735.p
Analytic conductor 5.8695.869
Analytic rank 00
Dimension 88
CM discriminant -35
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 735=3572 735 = 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 735.p (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.869004548565.86900454856
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 8.0.31116960000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+x68x4+9x2+81 x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β6q3+(2β4+2)q4+(β6+β5++β1)q5+(β4β2)q9+(2β7+β4+1)q11+(2β62β3)q12++(β7β2+17)q99+O(q100) q + \beta_{6} q^{3} + (2 \beta_{4} + 2) q^{4} + ( - \beta_{6} + \beta_{5} + \cdots + \beta_1) q^{5} + (\beta_{4} - \beta_{2}) q^{9} + (2 \beta_{7} + \beta_{4} + 1) q^{11} + (2 \beta_{6} - 2 \beta_{3}) q^{12}+ \cdots + ( - \beta_{7} - \beta_{2} + 17) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q42q920q1516q16+20q258q36+14q3910q5120q6064q64+4q79+34q81+40q85+140q99+O(q100) 8 q + 8 q^{4} - 2 q^{9} - 20 q^{15} - 16 q^{16} + 20 q^{25} - 8 q^{36} + 14 q^{39} - 10 q^{51} - 20 q^{60} - 64 q^{64} + 4 q^{79} + 34 q^{81} + 40 q^{85} + 140 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+x68x4+9x2+81 x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2 \nu^{2} Copy content Toggle raw display
β3\beta_{3}== (ν78ν5+64ν3+81ν)/216 ( \nu^{7} - 8\nu^{5} + 64\nu^{3} + 81\nu ) / 216 Copy content Toggle raw display
β4\beta_{4}== (ν6+8ν4+8ν281)/72 ( -\nu^{6} + 8\nu^{4} + 8\nu^{2} - 81 ) / 72 Copy content Toggle raw display
β5\beta_{5}== (ν7+8ν5+8ν381ν)/72 ( -\nu^{7} + 8\nu^{5} + 8\nu^{3} - 81\nu ) / 72 Copy content Toggle raw display
β6\beta_{6}== (ν7+17ν)/24 ( \nu^{7} + 17\nu ) / 24 Copy content Toggle raw display
β7\beta_{7}== (ν68ν2+9)/8 ( \nu^{6} - 8\nu^{2} + 9 ) / 8 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2 \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β5+3β3 \beta_{5} + 3\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== β7+9β4+9 \beta_{7} + 9\beta_{4} + 9 Copy content Toggle raw display
ν5\nu^{5}== 3β6+8β53β3+8β1 3\beta_{6} + 8\beta_{5} - 3\beta_{3} + 8\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 8β7+8β29 8\beta_{7} + 8\beta_{2} - 9 Copy content Toggle raw display
ν7\nu^{7}== 24β617β1 24\beta_{6} - 17\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/735Z)×\left(\mathbb{Z}/735\mathbb{Z}\right)^\times.

nn 346346 442442 491491
χ(n)\chi(n) β4-\beta_{4} 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
374.1
0.306808 + 1.70466i
1.62968 0.586627i
−1.62968 + 0.586627i
−0.306808 1.70466i
0.306808 1.70466i
1.62968 + 0.586627i
−1.62968 0.586627i
−0.306808 + 1.70466i
0 −1.62968 + 0.586627i 1.00000 1.73205i 1.93649 1.11803i 0 0 0 2.31174 1.91203i 0
374.2 0 −0.306808 1.70466i 1.00000 1.73205i 1.93649 1.11803i 0 0 0 −2.81174 + 1.04601i 0
374.3 0 0.306808 + 1.70466i 1.00000 1.73205i −1.93649 + 1.11803i 0 0 0 −2.81174 + 1.04601i 0
374.4 0 1.62968 0.586627i 1.00000 1.73205i −1.93649 + 1.11803i 0 0 0 2.31174 1.91203i 0
509.1 0 −1.62968 0.586627i 1.00000 + 1.73205i 1.93649 + 1.11803i 0 0 0 2.31174 + 1.91203i 0
509.2 0 −0.306808 + 1.70466i 1.00000 + 1.73205i 1.93649 + 1.11803i 0 0 0 −2.81174 1.04601i 0
509.3 0 0.306808 1.70466i 1.00000 + 1.73205i −1.93649 1.11803i 0 0 0 −2.81174 1.04601i 0
509.4 0 1.62968 + 0.586627i 1.00000 + 1.73205i −1.93649 1.11803i 0 0 0 2.31174 + 1.91203i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 374.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by Q(35)\Q(\sqrt{-35})
3.b odd 2 1 inner
5.b even 2 1 inner
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
15.d odd 2 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
21.h odd 6 1 inner
35.i odd 6 1 inner
35.j even 6 1 inner
105.g even 2 1 inner
105.o odd 6 1 inner
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.p.b 8
3.b odd 2 1 inner 735.2.p.b 8
5.b even 2 1 inner 735.2.p.b 8
7.b odd 2 1 inner 735.2.p.b 8
7.c even 3 1 105.2.g.b 4
7.c even 3 1 inner 735.2.p.b 8
7.d odd 6 1 105.2.g.b 4
7.d odd 6 1 inner 735.2.p.b 8
15.d odd 2 1 inner 735.2.p.b 8
21.c even 2 1 inner 735.2.p.b 8
21.g even 6 1 105.2.g.b 4
21.g even 6 1 inner 735.2.p.b 8
21.h odd 6 1 105.2.g.b 4
21.h odd 6 1 inner 735.2.p.b 8
28.f even 6 1 1680.2.k.b 4
28.g odd 6 1 1680.2.k.b 4
35.c odd 2 1 CM 735.2.p.b 8
35.i odd 6 1 105.2.g.b 4
35.i odd 6 1 inner 735.2.p.b 8
35.j even 6 1 105.2.g.b 4
35.j even 6 1 inner 735.2.p.b 8
35.k even 12 2 525.2.b.f 4
35.l odd 12 2 525.2.b.f 4
84.j odd 6 1 1680.2.k.b 4
84.n even 6 1 1680.2.k.b 4
105.g even 2 1 inner 735.2.p.b 8
105.o odd 6 1 105.2.g.b 4
105.o odd 6 1 inner 735.2.p.b 8
105.p even 6 1 105.2.g.b 4
105.p even 6 1 inner 735.2.p.b 8
105.w odd 12 2 525.2.b.f 4
105.x even 12 2 525.2.b.f 4
140.p odd 6 1 1680.2.k.b 4
140.s even 6 1 1680.2.k.b 4
420.ba even 6 1 1680.2.k.b 4
420.be odd 6 1 1680.2.k.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.g.b 4 7.c even 3 1
105.2.g.b 4 7.d odd 6 1
105.2.g.b 4 21.g even 6 1
105.2.g.b 4 21.h odd 6 1
105.2.g.b 4 35.i odd 6 1
105.2.g.b 4 35.j even 6 1
105.2.g.b 4 105.o odd 6 1
105.2.g.b 4 105.p even 6 1
525.2.b.f 4 35.k even 12 2
525.2.b.f 4 35.l odd 12 2
525.2.b.f 4 105.w odd 12 2
525.2.b.f 4 105.x even 12 2
735.2.p.b 8 1.a even 1 1 trivial
735.2.p.b 8 3.b odd 2 1 inner
735.2.p.b 8 5.b even 2 1 inner
735.2.p.b 8 7.b odd 2 1 inner
735.2.p.b 8 7.c even 3 1 inner
735.2.p.b 8 7.d odd 6 1 inner
735.2.p.b 8 15.d odd 2 1 inner
735.2.p.b 8 21.c even 2 1 inner
735.2.p.b 8 21.g even 6 1 inner
735.2.p.b 8 21.h odd 6 1 inner
735.2.p.b 8 35.c odd 2 1 CM
735.2.p.b 8 35.i odd 6 1 inner
735.2.p.b 8 35.j even 6 1 inner
735.2.p.b 8 105.g even 2 1 inner
735.2.p.b 8 105.o odd 6 1 inner
735.2.p.b 8 105.p even 6 1 inner
1680.2.k.b 4 28.f even 6 1
1680.2.k.b 4 28.g odd 6 1
1680.2.k.b 4 84.j odd 6 1
1680.2.k.b 4 84.n even 6 1
1680.2.k.b 4 140.p odd 6 1
1680.2.k.b 4 140.s even 6 1
1680.2.k.b 4 420.ba even 6 1
1680.2.k.b 4 420.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(735,[χ])S_{2}^{\mathrm{new}}(735, [\chi]):

T2 T_{2} Copy content Toggle raw display
T1327 T_{13}^{2} - 7 Copy content Toggle raw display
T257420T2572+400 T_{257}^{4} - 20T_{257}^{2} + 400 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T8+T6++81 T^{8} + T^{6} + \cdots + 81 Copy content Toggle raw display
55 (T45T2+25)2 (T^{4} - 5 T^{2} + 25)^{2} Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 (T435T2+1225)2 (T^{4} - 35 T^{2} + 1225)^{2} Copy content Toggle raw display
1313 (T27)4 (T^{2} - 7)^{4} Copy content Toggle raw display
1717 (T45T2+25)2 (T^{4} - 5 T^{2} + 25)^{2} Copy content Toggle raw display
1919 T8 T^{8} Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 (T2+35)4 (T^{2} + 35)^{4} Copy content Toggle raw display
3131 T8 T^{8} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 (T4125T2+15625)2 (T^{4} - 125 T^{2} + 15625)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T8 T^{8} Copy content Toggle raw display
7171 (T2+140)4 (T^{2} + 140)^{4} Copy content Toggle raw display
7373 (T4+112T2+12544)2 (T^{4} + 112 T^{2} + 12544)^{2} Copy content Toggle raw display
7979 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
8383 (T2+80)4 (T^{2} + 80)^{4} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T2343)4 (T^{2} - 343)^{4} Copy content Toggle raw display
show more
show less