Properties

Label 735.2.p.b
Level $735$
Weight $2$
Character orbit 735.p
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
CM discriminant -35
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.31116960000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{3} + (2 \beta_{4} + 2) q^{4} + ( - \beta_{6} + \beta_{5} + \cdots + \beta_1) q^{5} + (\beta_{4} - \beta_{2}) q^{9} + (2 \beta_{7} + \beta_{4} + 1) q^{11} + (2 \beta_{6} - 2 \beta_{3}) q^{12}+ \cdots + ( - \beta_{7} - \beta_{2} + 17) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{4} - 2 q^{9} - 20 q^{15} - 16 q^{16} + 20 q^{25} - 8 q^{36} + 14 q^{39} - 10 q^{51} - 20 q^{60} - 64 q^{64} + 4 q^{79} + 34 q^{81} + 40 q^{85} + 140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + x^{6} - 8x^{4} + 9x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{7} - 8\nu^{5} + 64\nu^{3} + 81\nu ) / 216 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 8\nu^{4} + 8\nu^{2} - 81 ) / 72 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + 8\nu^{5} + 8\nu^{3} - 81\nu ) / 72 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 17\nu ) / 24 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} - 8\nu^{2} + 9 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + 3\beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + 9\beta_{4} + 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{6} + 8\beta_{5} - 3\beta_{3} + 8\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 8\beta_{7} + 8\beta_{2} - 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 24\beta_{6} - 17\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-\beta_{4}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
374.1
0.306808 + 1.70466i
1.62968 0.586627i
−1.62968 + 0.586627i
−0.306808 1.70466i
0.306808 1.70466i
1.62968 + 0.586627i
−1.62968 0.586627i
−0.306808 + 1.70466i
0 −1.62968 + 0.586627i 1.00000 1.73205i 1.93649 1.11803i 0 0 0 2.31174 1.91203i 0
374.2 0 −0.306808 1.70466i 1.00000 1.73205i 1.93649 1.11803i 0 0 0 −2.81174 + 1.04601i 0
374.3 0 0.306808 + 1.70466i 1.00000 1.73205i −1.93649 + 1.11803i 0 0 0 −2.81174 + 1.04601i 0
374.4 0 1.62968 0.586627i 1.00000 1.73205i −1.93649 + 1.11803i 0 0 0 2.31174 1.91203i 0
509.1 0 −1.62968 0.586627i 1.00000 + 1.73205i 1.93649 + 1.11803i 0 0 0 2.31174 + 1.91203i 0
509.2 0 −0.306808 + 1.70466i 1.00000 + 1.73205i 1.93649 + 1.11803i 0 0 0 −2.81174 1.04601i 0
509.3 0 0.306808 1.70466i 1.00000 + 1.73205i −1.93649 1.11803i 0 0 0 −2.81174 1.04601i 0
509.4 0 1.62968 + 0.586627i 1.00000 + 1.73205i −1.93649 1.11803i 0 0 0 2.31174 + 1.91203i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 374.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.c odd 2 1 CM by \(\Q(\sqrt{-35}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
15.d odd 2 1 inner
21.c even 2 1 inner
21.g even 6 1 inner
21.h odd 6 1 inner
35.i odd 6 1 inner
35.j even 6 1 inner
105.g even 2 1 inner
105.o odd 6 1 inner
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.p.b 8
3.b odd 2 1 inner 735.2.p.b 8
5.b even 2 1 inner 735.2.p.b 8
7.b odd 2 1 inner 735.2.p.b 8
7.c even 3 1 105.2.g.b 4
7.c even 3 1 inner 735.2.p.b 8
7.d odd 6 1 105.2.g.b 4
7.d odd 6 1 inner 735.2.p.b 8
15.d odd 2 1 inner 735.2.p.b 8
21.c even 2 1 inner 735.2.p.b 8
21.g even 6 1 105.2.g.b 4
21.g even 6 1 inner 735.2.p.b 8
21.h odd 6 1 105.2.g.b 4
21.h odd 6 1 inner 735.2.p.b 8
28.f even 6 1 1680.2.k.b 4
28.g odd 6 1 1680.2.k.b 4
35.c odd 2 1 CM 735.2.p.b 8
35.i odd 6 1 105.2.g.b 4
35.i odd 6 1 inner 735.2.p.b 8
35.j even 6 1 105.2.g.b 4
35.j even 6 1 inner 735.2.p.b 8
35.k even 12 2 525.2.b.f 4
35.l odd 12 2 525.2.b.f 4
84.j odd 6 1 1680.2.k.b 4
84.n even 6 1 1680.2.k.b 4
105.g even 2 1 inner 735.2.p.b 8
105.o odd 6 1 105.2.g.b 4
105.o odd 6 1 inner 735.2.p.b 8
105.p even 6 1 105.2.g.b 4
105.p even 6 1 inner 735.2.p.b 8
105.w odd 12 2 525.2.b.f 4
105.x even 12 2 525.2.b.f 4
140.p odd 6 1 1680.2.k.b 4
140.s even 6 1 1680.2.k.b 4
420.ba even 6 1 1680.2.k.b 4
420.be odd 6 1 1680.2.k.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.g.b 4 7.c even 3 1
105.2.g.b 4 7.d odd 6 1
105.2.g.b 4 21.g even 6 1
105.2.g.b 4 21.h odd 6 1
105.2.g.b 4 35.i odd 6 1
105.2.g.b 4 35.j even 6 1
105.2.g.b 4 105.o odd 6 1
105.2.g.b 4 105.p even 6 1
525.2.b.f 4 35.k even 12 2
525.2.b.f 4 35.l odd 12 2
525.2.b.f 4 105.w odd 12 2
525.2.b.f 4 105.x even 12 2
735.2.p.b 8 1.a even 1 1 trivial
735.2.p.b 8 3.b odd 2 1 inner
735.2.p.b 8 5.b even 2 1 inner
735.2.p.b 8 7.b odd 2 1 inner
735.2.p.b 8 7.c even 3 1 inner
735.2.p.b 8 7.d odd 6 1 inner
735.2.p.b 8 15.d odd 2 1 inner
735.2.p.b 8 21.c even 2 1 inner
735.2.p.b 8 21.g even 6 1 inner
735.2.p.b 8 21.h odd 6 1 inner
735.2.p.b 8 35.c odd 2 1 CM
735.2.p.b 8 35.i odd 6 1 inner
735.2.p.b 8 35.j even 6 1 inner
735.2.p.b 8 105.g even 2 1 inner
735.2.p.b 8 105.o odd 6 1 inner
735.2.p.b 8 105.p even 6 1 inner
1680.2.k.b 4 28.f even 6 1
1680.2.k.b 4 28.g odd 6 1
1680.2.k.b 4 84.j odd 6 1
1680.2.k.b 4 84.n even 6 1
1680.2.k.b 4 140.p odd 6 1
1680.2.k.b 4 140.s even 6 1
1680.2.k.b 4 420.ba even 6 1
1680.2.k.b 4 420.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{13}^{2} - 7 \) Copy content Toggle raw display
\( T_{257}^{4} - 20T_{257}^{2} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( (T^{4} - 5 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( (T^{4} - 35 T^{2} + 1225)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 7)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 5 T^{2} + 25)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{2} + 35)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} - 125 T^{2} + 15625)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( (T^{2} + 140)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} + 112 T^{2} + 12544)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 80)^{4} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( (T^{2} - 343)^{4} \) Copy content Toggle raw display
show more
show less