L(s) = 1 | + (−1.10 − 1.91i)2-s + (−1.38 + 1.04i)3-s + (−1.43 + 2.49i)4-s + (−2.22 − 0.255i)5-s + (3.52 + 1.48i)6-s + 1.94·8-s + (0.810 − 2.88i)9-s + (1.96 + 4.53i)10-s + (−3.30 − 1.90i)11-s + (−0.622 − 4.94i)12-s − 6.50·13-s + (3.33 − 1.97i)15-s + (0.732 + 1.26i)16-s + (2.54 + 1.47i)17-s + (−6.42 + 1.64i)18-s + (−1.76 + 1.01i)19-s + ⋯ |
L(s) = 1 | + (−0.781 − 1.35i)2-s + (−0.796 + 0.604i)3-s + (−0.719 + 1.24i)4-s + (−0.993 − 0.114i)5-s + (1.43 + 0.606i)6-s + 0.687·8-s + (0.270 − 0.962i)9-s + (0.621 + 1.43i)10-s + (−0.996 − 0.575i)11-s + (−0.179 − 1.42i)12-s − 1.80·13-s + (0.860 − 0.509i)15-s + (0.183 + 0.317i)16-s + (0.617 + 0.356i)17-s + (−1.51 + 0.386i)18-s + (−0.404 + 0.233i)19-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(0.797+0.603i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(0.797+0.603i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
0.797+0.603i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(374,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), 0.797+0.603i)
|
Particular Values
L(1) |
≈ |
0.289189−0.0970738i |
L(21) |
≈ |
0.289189−0.0970738i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.38−1.04i)T |
| 5 | 1+(2.22+0.255i)T |
| 7 | 1 |
good | 2 | 1+(1.10+1.91i)T+(−1+1.73i)T2 |
| 11 | 1+(3.30+1.90i)T+(5.5+9.52i)T2 |
| 13 | 1+6.50T+13T2 |
| 17 | 1+(−2.54−1.47i)T+(8.5+14.7i)T2 |
| 19 | 1+(1.76−1.01i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.50+2.59i)T+(−11.5+19.9i)T2 |
| 29 | 1−2.25iT−29T2 |
| 31 | 1+(−5.77−3.33i)T+(15.5+26.8i)T2 |
| 37 | 1+(−2.91+1.68i)T+(18.5−32.0i)T2 |
| 41 | 1+3.51T+41T2 |
| 43 | 1+7.03iT−43T2 |
| 47 | 1+(−4.34+2.50i)T+(23.5−40.7i)T2 |
| 53 | 1+(0.967−1.67i)T+(−26.5−45.8i)T2 |
| 59 | 1+(3.96−6.86i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−11.8+6.83i)T+(30.5−52.8i)T2 |
| 67 | 1+(−9.34−5.39i)T+(33.5+58.0i)T2 |
| 71 | 1−10.9iT−71T2 |
| 73 | 1+(−1.65+2.86i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.92−5.06i)T+(−39.5+68.4i)T2 |
| 83 | 1−2.66iT−83T2 |
| 89 | 1+(6.75+11.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+4.46T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28129618448427905566558015969, −9.936138758011543092565284732338, −8.760480673245069120803008108525, −8.060933354473876652696718778631, −6.99901858464522817885006214235, −5.54596487864892249880547160198, −4.58802730482168263628121281497, −3.57858517111664520712730483978, −2.55485200474944397392278528292, −0.63280970994829087904061401168,
0.41496849333041086863742347426, 2.59645819265375800404136052744, 4.65468304904873522189462576243, 5.24407327820315262362544839306, 6.38657122904140315148745566075, 7.21618181675760672024633387040, 7.72604643612377042900674756014, 8.163013074471608194934146616267, 9.645000788184025297967991238134, 10.16212838743685963097852901226