Properties

Label 735.2.p.g.374.1
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.1
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10453 - 1.91310i) q^{2} +(-1.38025 + 1.04638i) q^{3} +(-1.43998 + 2.49412i) q^{4} +(-2.22140 - 0.255732i) q^{5} +(3.52637 + 1.48480i) q^{6} +1.94389 q^{8} +(0.810168 - 2.88853i) q^{9} +(1.96436 + 4.53223i) q^{10} +(-3.30554 - 1.90846i) q^{11} +(-0.622272 - 4.94927i) q^{12} -6.50161 q^{13} +(3.33367 - 1.97146i) q^{15} +(0.732874 + 1.26937i) q^{16} +(2.54654 + 1.47025i) q^{17} +(-6.42092 + 1.64054i) q^{18} +(-1.76224 + 1.01743i) q^{19} +(3.83659 - 5.17218i) q^{20} +8.43180i q^{22} +(-1.50029 - 2.59858i) q^{23} +(-2.68305 + 2.03405i) q^{24} +(4.86920 + 1.13616i) q^{25} +(7.18123 + 12.4383i) q^{26} +(1.90428 + 4.83464i) q^{27} +2.25259i q^{29} +(-7.45375 - 4.20013i) q^{30} +(5.77216 + 3.33256i) q^{31} +(3.56285 - 6.17104i) q^{32} +(6.55944 - 0.824719i) q^{33} -6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} +(2.91560 - 1.68332i) q^{37} +(3.89289 + 2.24756i) q^{38} +(8.97383 - 6.80317i) q^{39} +(-4.31815 - 0.497115i) q^{40} -3.51094 q^{41} -7.03729i q^{43} +(9.51983 - 5.49628i) q^{44} +(-2.53840 + 6.20939i) q^{45} +(-3.31424 + 5.74043i) q^{46} +(4.34120 - 2.50639i) q^{47} +(-2.33980 - 0.985185i) q^{48} +(-3.20459 - 10.5702i) q^{50} +(-5.05330 + 0.635352i) q^{51} +(9.36219 - 16.2158i) q^{52} +(-0.967113 + 1.67509i) q^{53} +(7.14584 - 8.98309i) q^{54} +(6.85487 + 5.08477i) q^{55} +(1.36770 - 3.24827i) q^{57} +(4.30944 - 2.48806i) q^{58} +(-3.96509 + 6.86774i) q^{59} +(0.116625 + 11.1534i) q^{60} +(11.8342 - 6.83249i) q^{61} -14.7237i q^{62} -12.8096 q^{64} +(14.4427 + 1.66267i) q^{65} +(-8.82289 - 11.6380i) q^{66} +(9.34121 + 5.39315i) q^{67} +(-7.33395 + 4.23426i) q^{68} +(4.78988 + 2.01681i) q^{69} +10.9926i q^{71} +(1.57488 - 5.61499i) q^{72} +(1.65449 - 2.86566i) q^{73} +(-6.44074 - 3.71856i) q^{74} +(-7.90957 + 3.52686i) q^{75} -5.86030i q^{76} +(-22.9271 - 9.65357i) q^{78} +(2.92489 + 5.06605i) q^{79} +(-1.30338 - 3.00720i) q^{80} +(-7.68725 - 4.68040i) q^{81} +(3.87795 + 6.71680i) q^{82} +2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} +(-13.4631 + 7.77291i) q^{86} +(-2.35707 - 3.10913i) q^{87} +(-6.42561 - 3.70983i) q^{88} +(-6.75793 - 11.7051i) q^{89} +(14.6830 - 2.00225i) q^{90} +8.64156 q^{92} +(-11.4541 + 1.44013i) q^{93} +(-9.58999 - 5.53678i) q^{94} +(4.17481 - 1.80945i) q^{95} +(1.53965 + 12.2457i) q^{96} -4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10453 1.91310i −0.781022 1.35277i −0.931347 0.364133i \(-0.881365\pi\)
0.150325 0.988637i \(-0.451968\pi\)
\(3\) −1.38025 + 1.04638i −0.796886 + 0.604129i
\(4\) −1.43998 + 2.49412i −0.719990 + 1.24706i
\(5\) −2.22140 0.255732i −0.993439 0.114367i
\(6\) 3.52637 + 1.48480i 1.43963 + 0.606166i
\(7\) 0 0
\(8\) 1.94389 0.687269
\(9\) 0.810168 2.88853i 0.270056 0.962845i
\(10\) 1.96436 + 4.53223i 0.621185 + 1.43322i
\(11\) −3.30554 1.90846i −0.996659 0.575421i −0.0894006 0.995996i \(-0.528495\pi\)
−0.907258 + 0.420575i \(0.861828\pi\)
\(12\) −0.622272 4.94927i −0.179635 1.42873i
\(13\) −6.50161 −1.80322 −0.901611 0.432548i \(-0.857615\pi\)
−0.901611 + 0.432548i \(0.857615\pi\)
\(14\) 0 0
\(15\) 3.33367 1.97146i 0.860750 0.509028i
\(16\) 0.732874 + 1.26937i 0.183218 + 0.317344i
\(17\) 2.54654 + 1.47025i 0.617628 + 0.356587i 0.775945 0.630801i \(-0.217274\pi\)
−0.158317 + 0.987388i \(0.550607\pi\)
\(18\) −6.42092 + 1.64054i −1.51343 + 0.386679i
\(19\) −1.76224 + 1.01743i −0.404285 + 0.233414i −0.688331 0.725397i \(-0.741656\pi\)
0.284046 + 0.958811i \(0.408323\pi\)
\(20\) 3.83659 5.17218i 0.857888 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) −1.50029 2.59858i −0.312832 0.541842i 0.666142 0.745825i \(-0.267944\pi\)
−0.978974 + 0.203983i \(0.934611\pi\)
\(24\) −2.68305 + 2.03405i −0.547675 + 0.415199i
\(25\) 4.86920 + 1.13616i 0.973840 + 0.227233i
\(26\) 7.18123 + 12.4383i 1.40836 + 2.43934i
\(27\) 1.90428 + 4.83464i 0.366478 + 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) −7.45375 4.20013i −1.36086 0.766835i
\(31\) 5.77216 + 3.33256i 1.03671 + 0.598545i 0.918900 0.394491i \(-0.129079\pi\)
0.117810 + 0.993036i \(0.462413\pi\)
\(32\) 3.56285 6.17104i 0.629829 1.09090i
\(33\) 6.55944 0.824719i 1.14185 0.143565i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) 2.91560 1.68332i 0.479321 0.276736i −0.240812 0.970572i \(-0.577414\pi\)
0.720134 + 0.693835i \(0.244081\pi\)
\(38\) 3.89289 + 2.24756i 0.631510 + 0.364603i
\(39\) 8.97383 6.80317i 1.43696 1.08938i
\(40\) −4.31815 0.497115i −0.682759 0.0786008i
\(41\) −3.51094 −0.548317 −0.274158 0.961685i \(-0.588399\pi\)
−0.274158 + 0.961685i \(0.588399\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) 9.51983 5.49628i 1.43517 0.828595i
\(45\) −2.53840 + 6.20939i −0.378402 + 0.925641i
\(46\) −3.31424 + 5.74043i −0.488658 + 0.846380i
\(47\) 4.34120 2.50639i 0.633229 0.365595i −0.148772 0.988871i \(-0.547532\pi\)
0.782002 + 0.623276i \(0.214199\pi\)
\(48\) −2.33980 0.985185i −0.337721 0.142199i
\(49\) 0 0
\(50\) −3.20459 10.5702i −0.453197 1.49486i
\(51\) −5.05330 + 0.635352i −0.707604 + 0.0889671i
\(52\) 9.36219 16.2158i 1.29830 2.24873i
\(53\) −0.967113 + 1.67509i −0.132843 + 0.230091i −0.924771 0.380523i \(-0.875744\pi\)
0.791928 + 0.610614i \(0.209077\pi\)
\(54\) 7.14584 8.98309i 0.972425 1.22244i
\(55\) 6.85487 + 5.08477i 0.924310 + 0.685630i
\(56\) 0 0
\(57\) 1.36770 3.24827i 0.181157 0.430244i
\(58\) 4.30944 2.48806i 0.565858 0.326698i
\(59\) −3.96509 + 6.86774i −0.516211 + 0.894104i 0.483612 + 0.875283i \(0.339325\pi\)
−0.999823 + 0.0188214i \(0.994009\pi\)
\(60\) 0.116625 + 11.1534i 0.0150562 + 1.43990i
\(61\) 11.8342 6.83249i 1.51522 0.874810i 0.515375 0.856965i \(-0.327653\pi\)
0.999841 0.0178455i \(-0.00568070\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) 14.4427 + 1.66267i 1.79139 + 0.206229i
\(66\) −8.82289 11.6380i −1.08602 1.43254i
\(67\) 9.34121 + 5.39315i 1.14121 + 0.658878i 0.946730 0.322029i \(-0.104365\pi\)
0.194480 + 0.980906i \(0.437698\pi\)
\(68\) −7.33395 + 4.23426i −0.889372 + 0.513479i
\(69\) 4.78988 + 2.01681i 0.576634 + 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) 1.57488 5.61499i 0.185601 0.661733i
\(73\) 1.65449 2.86566i 0.193643 0.335400i −0.752812 0.658236i \(-0.771303\pi\)
0.946455 + 0.322836i \(0.104636\pi\)
\(74\) −6.44074 3.71856i −0.748721 0.432274i
\(75\) −7.90957 + 3.52686i −0.913318 + 0.407246i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) −22.9271 9.65357i −2.59598 1.09305i
\(79\) 2.92489 + 5.06605i 0.329075 + 0.569975i 0.982329 0.187164i \(-0.0599296\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(80\) −1.30338 3.00720i −0.145723 0.336215i
\(81\) −7.68725 4.68040i −0.854139 0.520044i
\(82\) 3.87795 + 6.71680i 0.428248 + 0.741746i
\(83\) 2.66330i 0.292336i 0.989260 + 0.146168i \(0.0466939\pi\)
−0.989260 + 0.146168i \(0.953306\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) −13.4631 + 7.77291i −1.45176 + 0.838175i
\(87\) −2.35707 3.10913i −0.252705 0.333334i
\(88\) −6.42561 3.70983i −0.684972 0.395469i
\(89\) −6.75793 11.7051i −0.716339 1.24074i −0.962441 0.271492i \(-0.912483\pi\)
0.246101 0.969244i \(-0.420850\pi\)
\(90\) 14.6830 2.00225i 1.54772 0.211056i
\(91\) 0 0
\(92\) 8.64156 0.900945
\(93\) −11.4541 + 1.44013i −1.18774 + 0.149334i
\(94\) −9.58999 5.53678i −0.989132 0.571075i
\(95\) 4.17481 1.80945i 0.428327 0.185646i
\(96\) 1.53965 + 12.2457i 0.157140 + 1.24982i
\(97\) −4.46688 −0.453543 −0.226771 0.973948i \(-0.572817\pi\)
−0.226771 + 0.973948i \(0.572817\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) −9.84529 + 10.5083i −0.984529 + 1.05083i
\(101\) 4.43523 7.68205i 0.441322 0.764392i −0.556466 0.830871i \(-0.687843\pi\)
0.997788 + 0.0664781i \(0.0211763\pi\)
\(102\) 6.79703 + 8.96573i 0.673006 + 0.887740i
\(103\) 0.661216 + 1.14526i 0.0651516 + 0.112846i 0.896761 0.442515i \(-0.145914\pi\)
−0.831610 + 0.555361i \(0.812580\pi\)
\(104\) −12.6384 −1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) 1.66222 + 2.87905i 0.160693 + 0.278328i 0.935117 0.354338i \(-0.115294\pi\)
−0.774425 + 0.632666i \(0.781960\pi\)
\(108\) −14.8003 2.21229i −1.42416 0.212878i
\(109\) −6.14927 + 10.6509i −0.588994 + 1.02017i 0.405371 + 0.914152i \(0.367142\pi\)
−0.994365 + 0.106015i \(0.966191\pi\)
\(110\) 2.15628 18.7304i 0.205593 1.78587i
\(111\) −2.26285 + 5.37423i −0.214780 + 0.510099i
\(112\) 0 0
\(113\) 20.4591 1.92463 0.962314 0.271941i \(-0.0876657\pi\)
0.962314 + 0.271941i \(0.0876657\pi\)
\(114\) −7.72496 + 0.971260i −0.723509 + 0.0909668i
\(115\) 2.66820 + 6.15615i 0.248811 + 0.574064i
\(116\) −5.61823 3.24369i −0.521640 0.301169i
\(117\) −5.26740 + 18.7801i −0.486971 + 1.73622i
\(118\) 17.5183 1.61269
\(119\) 0 0
\(120\) 6.48029 3.83229i 0.591567 0.349839i
\(121\) 1.78441 + 3.09068i 0.162219 + 0.280971i
\(122\) −26.1425 15.0934i −2.36683 1.36649i
\(123\) 4.84597 3.67379i 0.436946 0.331254i
\(124\) −16.6236 + 9.59763i −1.49284 + 0.861893i
\(125\) −10.5259 3.76908i −0.941463 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) 7.02295 + 12.1641i 0.620747 + 1.07517i
\(129\) 7.36370 + 9.71321i 0.648337 + 0.855200i
\(130\) −12.7715 29.4668i −1.12013 2.58441i
\(131\) 2.90591 + 5.03319i 0.253891 + 0.439752i 0.964594 0.263741i \(-0.0849563\pi\)
−0.710703 + 0.703492i \(0.751623\pi\)
\(132\) −7.38852 + 17.5476i −0.643088 + 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) −2.99378 11.2266i −0.257664 0.966235i
\(136\) 4.95020 + 2.85800i 0.424476 + 0.245071i
\(137\) 0.546844 0.947161i 0.0467200 0.0809215i −0.841720 0.539915i \(-0.818456\pi\)
0.888440 + 0.458993i \(0.151790\pi\)
\(138\) −1.43221 11.3912i −0.121918 0.969681i
\(139\) 7.35968i 0.624240i −0.950043 0.312120i \(-0.898961\pi\)
0.950043 0.312120i \(-0.101039\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) 21.0299 12.1416i 1.76479 1.01890i
\(143\) 21.4913 + 12.4080i 1.79720 + 1.03761i
\(144\) 4.26038 1.08852i 0.355032 0.0907103i
\(145\) 0.576060 5.00390i 0.0478392 0.415551i
\(146\) −7.30973 −0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) −9.36993 + 5.40973i −0.767615 + 0.443183i −0.832023 0.554741i \(-0.812817\pi\)
0.0644082 + 0.997924i \(0.479484\pi\)
\(150\) 15.4836 + 11.2363i 1.26423 + 0.917441i
\(151\) 4.14799 7.18453i 0.337559 0.584669i −0.646414 0.762987i \(-0.723732\pi\)
0.983973 + 0.178318i \(0.0570655\pi\)
\(152\) −3.42559 + 1.97777i −0.277852 + 0.160418i
\(153\) 6.30999 6.16463i 0.510132 0.498381i
\(154\) 0 0
\(155\) −11.9700 8.87905i −0.961454 0.713183i
\(156\) 4.04577 + 32.1782i 0.323921 + 2.57632i
\(157\) −2.70593 + 4.68680i −0.215957 + 0.374048i −0.953568 0.301178i \(-0.902620\pi\)
0.737612 + 0.675225i \(0.235954\pi\)
\(158\) 6.46126 11.1912i 0.514030 0.890326i
\(159\) −0.417928 3.32401i −0.0331438 0.263611i
\(160\) −9.49264 + 12.7972i −0.750459 + 1.01171i
\(161\) 0 0
\(162\) −0.463276 + 19.8762i −0.0363984 + 1.56162i
\(163\) −14.8583 + 8.57846i −1.16379 + 0.671917i −0.952210 0.305443i \(-0.901195\pi\)
−0.211584 + 0.977360i \(0.567862\pi\)
\(164\) 5.05569 8.75671i 0.394783 0.683784i
\(165\) −14.7820 + 0.154567i −1.15078 + 0.0120330i
\(166\) 5.09518 2.94170i 0.395463 0.228320i
\(167\) 9.60588i 0.743325i 0.928368 + 0.371663i \(0.121212\pi\)
−0.928368 + 0.371663i \(0.878788\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) −1.66117 + 14.4296i −0.127406 + 1.10670i
\(171\) 1.51117 + 5.91457i 0.115562 + 0.452298i
\(172\) 17.5518 + 10.1336i 1.33832 + 0.772677i
\(173\) −8.80967 + 5.08627i −0.669787 + 0.386702i −0.795996 0.605302i \(-0.793052\pi\)
0.126209 + 0.992004i \(0.459719\pi\)
\(174\) −3.34464 + 7.94346i −0.253556 + 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) −1.71347 13.6282i −0.128793 1.02436i
\(178\) −14.9287 + 25.8573i −1.11895 + 1.93808i
\(179\) 20.4854 + 11.8273i 1.53115 + 0.884011i 0.999309 + 0.0371678i \(0.0118336\pi\)
0.531843 + 0.846843i \(0.321500\pi\)
\(180\) −11.8317 15.2725i −0.881885 1.13834i
\(181\) 15.6330i 1.16199i 0.813906 + 0.580997i \(0.197337\pi\)
−0.813906 + 0.580997i \(0.802663\pi\)
\(182\) 0 0
\(183\) −9.18476 + 21.8136i −0.678957 + 1.61251i
\(184\) −2.91640 5.05135i −0.215000 0.372391i
\(185\) −6.90717 + 2.99371i −0.507826 + 0.220102i
\(186\) 15.4066 + 20.3223i 1.12966 + 1.49010i
\(187\) −5.61181 9.71993i −0.410376 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) 9.33503 5.38958i 0.675459 0.389976i −0.122683 0.992446i \(-0.539150\pi\)
0.798142 + 0.602470i \(0.205817\pi\)
\(192\) 17.6805 13.4038i 1.27598 0.967335i
\(193\) −1.59886 0.923104i −0.115089 0.0664465i 0.441351 0.897335i \(-0.354500\pi\)
−0.556439 + 0.830888i \(0.687833\pi\)
\(194\) 4.93381 + 8.54561i 0.354227 + 0.613539i
\(195\) −21.6742 + 12.8176i −1.55212 + 0.917890i
\(196\) 0 0
\(197\) −8.09941 −0.577059 −0.288530 0.957471i \(-0.593166\pi\)
−0.288530 + 0.957471i \(0.593166\pi\)
\(198\) 24.3555 + 6.83118i 1.73087 + 0.485471i
\(199\) −8.74922 5.05137i −0.620216 0.358082i 0.156737 0.987640i \(-0.449902\pi\)
−0.776953 + 0.629559i \(0.783236\pi\)
\(200\) 9.46519 + 2.20858i 0.669290 + 0.156170i
\(201\) −18.5365 + 2.33059i −1.30746 + 0.164387i
\(202\) −19.5954 −1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) 7.79919 + 0.897861i 0.544719 + 0.0627093i
\(206\) 1.46067 2.52995i 0.101770 0.176270i
\(207\) −8.72158 + 2.22835i −0.606192 + 0.154881i
\(208\) −4.76486 8.25298i −0.330383 0.572241i
\(209\) 7.76686 0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) −2.78525 4.82419i −0.191292 0.331327i
\(213\) −11.5024 15.1725i −0.788133 1.03960i
\(214\) 3.67195 6.36000i 0.251009 0.434761i
\(215\) −1.79966 + 15.6326i −0.122736 + 1.06614i
\(216\) 3.70170 + 9.39800i 0.251869 + 0.639453i
\(217\) 0 0
\(218\) 27.1683 1.84007
\(219\) 0.714969 + 5.68654i 0.0483131 + 0.384261i
\(220\) −22.5529 + 9.77488i −1.52052 + 0.659023i
\(221\) −16.5566 9.55898i −1.11372 0.643006i
\(222\) 12.7809 1.60694i 0.857795 0.107851i
\(223\) 4.13183 0.276688 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(224\) 0 0
\(225\) 7.22672 13.1444i 0.481782 0.876291i
\(226\) −22.5977 39.1404i −1.50318 2.60358i
\(227\) 6.21430 + 3.58783i 0.412458 + 0.238132i 0.691845 0.722046i \(-0.256798\pi\)
−0.279388 + 0.960178i \(0.590131\pi\)
\(228\) 6.13212 + 8.08867i 0.406109 + 0.535685i
\(229\) −9.05093 + 5.22556i −0.598102 + 0.345315i −0.768295 0.640096i \(-0.778894\pi\)
0.170192 + 0.985411i \(0.445561\pi\)
\(230\) 8.83025 11.9042i 0.582250 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) 1.95072 + 3.37875i 0.127796 + 0.221349i 0.922822 0.385226i \(-0.125876\pi\)
−0.795026 + 0.606575i \(0.792543\pi\)
\(234\) 41.7463 10.6661i 2.72904 0.697268i
\(235\) −10.2845 + 4.45751i −0.670886 + 0.290776i
\(236\) −11.4193 19.7788i −0.743334 1.28749i
\(237\) −9.33810 3.93186i −0.606574 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) 4.94567 + 2.78685i 0.319242 + 0.179890i
\(241\) −11.5030 6.64126i −0.740974 0.427801i 0.0814495 0.996677i \(-0.474045\pi\)
−0.822423 + 0.568876i \(0.807378\pi\)
\(242\) 3.94187 6.82752i 0.253393 0.438889i
\(243\) 15.5078 1.58370i 0.994826 0.101594i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) 11.4574 6.61492i 0.729015 0.420897i
\(248\) 11.2204 + 6.47812i 0.712498 + 0.411361i
\(249\) −2.78683 3.67602i −0.176608 0.232958i
\(250\) 4.41551 + 24.3002i 0.279261 + 1.53688i
\(251\) −9.12747 −0.576121 −0.288060 0.957612i \(-0.593010\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) −1.14275 + 0.659769i −0.0717027 + 0.0413976i
\(255\) 11.3879 0.119076i 0.713136 0.00745684i
\(256\) 2.70450 4.68433i 0.169031 0.292770i
\(257\) −5.79051 + 3.34315i −0.361202 + 0.208540i −0.669608 0.742715i \(-0.733538\pi\)
0.308406 + 0.951255i \(0.400205\pi\)
\(258\) 10.4489 24.8161i 0.650523 1.54498i
\(259\) 0 0
\(260\) −24.9440 + 33.6275i −1.54696 + 2.08549i
\(261\) 6.50669 + 1.82498i 0.402754 + 0.112963i
\(262\) 6.41935 11.1186i 0.396588 0.686911i
\(263\) −12.0642 + 20.8958i −0.743908 + 1.28849i 0.206795 + 0.978384i \(0.433697\pi\)
−0.950703 + 0.310103i \(0.899637\pi\)
\(264\) 12.7508 1.60316i 0.784759 0.0986678i
\(265\) 2.57672 3.47371i 0.158286 0.213389i
\(266\) 0 0
\(267\) 21.5756 + 9.08453i 1.32041 + 0.555964i
\(268\) −26.9023 + 15.5321i −1.64332 + 0.948771i
\(269\) 9.50393 16.4613i 0.579465 1.00366i −0.416076 0.909330i \(-0.636595\pi\)
0.995541 0.0943328i \(-0.0300718\pi\)
\(270\) −18.1710 + 18.1276i −1.10585 + 1.10321i
\(271\) 10.2612 5.92429i 0.623321 0.359875i −0.154840 0.987940i \(-0.549486\pi\)
0.778161 + 0.628065i \(0.216153\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) −13.9270 13.0483i −0.839832 0.786842i
\(276\) −11.9275 + 9.04238i −0.717951 + 0.544287i
\(277\) −14.3051 8.25906i −0.859511 0.496239i 0.00433762 0.999991i \(-0.498619\pi\)
−0.863848 + 0.503752i \(0.831953\pi\)
\(278\) −14.0798 + 8.12900i −0.844452 + 0.487545i
\(279\) 14.3026 13.9731i 0.856275 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) 19.0302 2.39266i 1.13323 0.142481i
\(283\) 3.00101 5.19791i 0.178392 0.308984i −0.762938 0.646472i \(-0.776244\pi\)
0.941330 + 0.337488i \(0.109577\pi\)
\(284\) −27.4167 15.8291i −1.62688 0.939282i
\(285\) −3.86890 + 6.86594i −0.229174 + 0.406703i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) −14.9388 15.2910i −0.880275 0.901031i
\(289\) −4.17674 7.23433i −0.245691 0.425549i
\(290\) −10.2093 + 4.42490i −0.599508 + 0.259839i
\(291\) 6.16540 4.67406i 0.361422 0.273998i
\(292\) 4.76486 + 8.25298i 0.278842 + 0.482969i
\(293\) 3.55369i 0.207609i −0.994598 0.103805i \(-0.966898\pi\)
0.994598 0.103805i \(-0.0331016\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) 5.66760 3.27219i 0.329422 0.190192i
\(297\) 2.93202 19.6153i 0.170133 1.13820i
\(298\) 20.6988 + 11.9504i 1.19905 + 0.692271i
\(299\) 9.75431 + 16.8950i 0.564106 + 0.977061i
\(300\) 2.59322 24.8060i 0.149720 1.43218i
\(301\) 0 0
\(302\) −18.3264 −1.05456
\(303\) 1.91664 + 15.2441i 0.110108 + 0.875750i
\(304\) −2.58299 1.49129i −0.148145 0.0855314i
\(305\) −28.0358 + 12.1513i −1.60532 + 0.695780i
\(306\) −18.7632 5.26264i −1.07262 0.300845i
\(307\) 29.0345 1.65709 0.828544 0.559923i \(-0.189169\pi\)
0.828544 + 0.559923i \(0.189169\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) −3.76531 + 32.7071i −0.213855 + 1.85764i
\(311\) −4.32216 + 7.48620i −0.245087 + 0.424503i −0.962156 0.272499i \(-0.912150\pi\)
0.717069 + 0.697002i \(0.245483\pi\)
\(312\) 17.4441 13.2246i 0.987580 0.748696i
\(313\) 5.42607 + 9.39824i 0.306700 + 0.531220i 0.977638 0.210293i \(-0.0674419\pi\)
−0.670938 + 0.741513i \(0.734109\pi\)
\(314\) 11.9551 0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) 4.67046 + 8.08947i 0.262319 + 0.454350i 0.966858 0.255316i \(-0.0821794\pi\)
−0.704539 + 0.709665i \(0.748846\pi\)
\(318\) −5.89756 + 4.47101i −0.330719 + 0.250722i
\(319\) 4.29897 7.44604i 0.240696 0.416898i
\(320\) 28.4553 + 3.27584i 1.59070 + 0.183125i
\(321\) −5.30686 2.23448i −0.296200 0.124717i
\(322\) 0 0
\(323\) −5.98348 −0.332930
\(324\) 22.7430 12.4332i 1.26350 0.690736i
\(325\) −31.6576 7.38690i −1.75605 0.409752i
\(326\) 32.8230 + 18.9504i 1.81790 + 1.04956i
\(327\) −2.65734 21.1353i −0.146951 1.16879i
\(328\) −6.82488 −0.376841
\(329\) 0 0
\(330\) 16.6229 + 28.1088i 0.915062 + 1.54734i
\(331\) −1.45459 2.51942i −0.0799515 0.138480i 0.823277 0.567639i \(-0.192143\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(332\) −6.64260 3.83511i −0.364560 0.210479i
\(333\) −2.50020 9.78557i −0.137010 0.536246i
\(334\) 18.3771 10.6100i 1.00555 0.580553i
\(335\) −19.3713 14.3692i −1.05837 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) −32.3307 55.9983i −1.75856 3.04591i
\(339\) −28.2386 + 21.4080i −1.53371 + 1.16272i
\(340\) 17.3744 7.53043i 0.942261 0.408395i
\(341\) −12.7201 22.0318i −0.688830 1.19309i
\(342\) 9.64606 9.42384i 0.521599 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) −10.1245 5.70506i −0.545083 0.307150i
\(346\) 19.4611 + 11.2359i 1.04624 + 0.604045i
\(347\) 15.7892 27.3477i 0.847609 1.46810i −0.0357279 0.999362i \(-0.511375\pi\)
0.883336 0.468739i \(-0.155292\pi\)
\(348\) 11.1487 1.40172i 0.597632 0.0751403i
\(349\) 8.25024i 0.441625i −0.975316 0.220813i \(-0.929129\pi\)
0.975316 0.220813i \(-0.0708709\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) −23.5543 + 13.5991i −1.25545 + 0.724834i
\(353\) −3.71360 2.14405i −0.197655 0.114116i 0.397906 0.917426i \(-0.369737\pi\)
−0.595561 + 0.803310i \(0.703070\pi\)
\(354\) −24.1796 + 18.3308i −1.28513 + 0.974272i
\(355\) 2.81115 24.4188i 0.149200 1.29602i
\(356\) 38.9252 2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) −6.17938 + 3.56767i −0.326135 + 0.188294i −0.654124 0.756387i \(-0.726963\pi\)
0.327989 + 0.944682i \(0.393629\pi\)
\(360\) −4.93436 + 12.0704i −0.260064 + 0.636164i
\(361\) −7.42968 + 12.8686i −0.391036 + 0.677294i
\(362\) 29.9076 17.2672i 1.57191 0.907542i
\(363\) −5.69696 2.39874i −0.299013 0.125901i
\(364\) 0 0
\(365\) −4.40811 + 5.94265i −0.230731 + 0.311053i
\(366\) 51.8766 6.52245i 2.71163 0.340934i
\(367\) 12.1957 21.1235i 0.636609 1.10264i −0.349563 0.936913i \(-0.613670\pi\)
0.986172 0.165726i \(-0.0529969\pi\)
\(368\) 2.19905 3.80886i 0.114633 0.198551i
\(369\) −2.84445 + 10.1415i −0.148076 + 0.527944i
\(370\) 13.3565 + 9.90750i 0.694370 + 0.515067i
\(371\) 0 0
\(372\) 12.9019 30.6417i 0.668931 1.58870i
\(373\) 19.0999 11.0273i 0.988956 0.570974i 0.0839940 0.996466i \(-0.473232\pi\)
0.904962 + 0.425492i \(0.139899\pi\)
\(374\) −12.3968 + 21.4719i −0.641025 + 1.11029i
\(375\) 18.4722 5.81182i 0.953901 0.300121i
\(376\) 8.43881 4.87215i 0.435199 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) −1.49867 + 13.0181i −0.0768800 + 0.667812i
\(381\) 0.625034 + 0.824462i 0.0320215 + 0.0422385i
\(382\) −20.6217 11.9059i −1.05510 0.609160i
\(383\) −1.84403 + 1.06465i −0.0942255 + 0.0544011i −0.546372 0.837542i \(-0.683992\pi\)
0.452147 + 0.891944i \(0.350658\pi\)
\(384\) −22.4217 9.44079i −1.14420 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) −20.3275 5.70139i −1.03330 0.289818i
\(388\) 6.43222 11.1409i 0.326546 0.565595i
\(389\) 20.9207 + 12.0785i 1.06072 + 0.612406i 0.925631 0.378427i \(-0.123535\pi\)
0.135088 + 0.990834i \(0.456868\pi\)
\(390\) 48.4614 + 27.3076i 2.45394 + 1.38277i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) −9.27752 3.90635i −0.467989 0.197049i
\(394\) 8.94606 + 15.4950i 0.450696 + 0.780628i
\(395\) −5.20178 12.0017i −0.261730 0.603871i
\(396\) −8.16352 31.9513i −0.410232 1.60561i
\(397\) −6.00792 10.4060i −0.301529 0.522263i 0.674954 0.737860i \(-0.264164\pi\)
−0.976482 + 0.215597i \(0.930830\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) 26.6997 15.4151i 1.33332 0.769792i 0.347513 0.937675i \(-0.387026\pi\)
0.985807 + 0.167883i \(0.0536930\pi\)
\(402\) 24.9328 + 32.8880i 1.24353 + 1.64030i
\(403\) −37.5283 21.6670i −1.86942 1.07931i
\(404\) 12.7733 + 22.1240i 0.635495 + 1.10071i
\(405\) 15.8795 + 12.3629i 0.789059 + 0.614317i
\(406\) 0 0
\(407\) −12.8502 −0.636959
\(408\) −9.82306 + 1.23505i −0.486314 + 0.0611443i
\(409\) 13.5699 + 7.83456i 0.670986 + 0.387394i 0.796450 0.604704i \(-0.206709\pi\)
−0.125464 + 0.992098i \(0.540042\pi\)
\(410\) −6.89675 15.9124i −0.340606 0.785857i
\(411\) 0.236313 + 1.87953i 0.0116564 + 0.0927101i
\(412\) −3.80855 −0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) 0.681092 5.91625i 0.0334335 0.290417i
\(416\) −23.1643 + 40.1217i −1.13572 + 1.96713i
\(417\) 7.70103 + 10.1582i 0.377121 + 0.497448i
\(418\) −8.57874 14.8588i −0.419600 0.726769i
\(419\) 19.5975 0.957399 0.478699 0.877979i \(-0.341108\pi\)
0.478699 + 0.877979i \(0.341108\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) −11.7984 20.4355i −0.574338 0.994782i
\(423\) −3.72270 14.5703i −0.181004 0.708433i
\(424\) −1.87996 + 3.25619i −0.0912990 + 0.158134i
\(425\) 10.7292 + 10.0522i 0.520442 + 0.487605i
\(426\) −16.3217 + 38.7638i −0.790789 + 1.87811i
\(427\) 0 0
\(428\) −9.57425 −0.462789
\(429\) −42.6469 + 5.36200i −2.05901 + 0.258880i
\(430\) 31.8946 13.8238i 1.53809 0.666642i
\(431\) 24.1528 + 13.9447i 1.16340 + 0.671690i 0.952117 0.305734i \(-0.0989019\pi\)
0.211285 + 0.977425i \(0.432235\pi\)
\(432\) −4.74137 + 5.96042i −0.228119 + 0.286771i
\(433\) −3.47350 −0.166926 −0.0834629 0.996511i \(-0.526598\pi\)
−0.0834629 + 0.996511i \(0.526598\pi\)
\(434\) 0 0
\(435\) 4.44088 + 7.50940i 0.212924 + 0.360048i
\(436\) −17.7097 30.6740i −0.848139 1.46902i
\(437\) 5.28774 + 3.05288i 0.252947 + 0.146039i
\(438\) 10.0892 7.64878i 0.482083 0.365473i
\(439\) −3.41910 + 1.97402i −0.163185 + 0.0942147i −0.579368 0.815066i \(-0.696701\pi\)
0.416184 + 0.909281i \(0.363367\pi\)
\(440\) 13.3251 + 9.88423i 0.635249 + 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) 8.01539 + 13.8831i 0.380823 + 0.659604i 0.991180 0.132522i \(-0.0423075\pi\)
−0.610357 + 0.792126i \(0.708974\pi\)
\(444\) −10.1455 13.3826i −0.481484 0.635110i
\(445\) 12.0187 + 27.7298i 0.569740 + 1.31452i
\(446\) −4.56373 7.90462i −0.216099 0.374295i
\(447\) 7.27218 17.2713i 0.343962 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) −33.1287 + 0.692891i −1.56170 + 0.0326632i
\(451\) 11.6056 + 6.70048i 0.546485 + 0.315513i
\(452\) −29.4607 + 51.0274i −1.38571 + 2.40013i
\(453\) 1.79251 + 14.2568i 0.0842195 + 0.669844i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) −8.31969 + 4.80338i −0.389179 + 0.224692i −0.681804 0.731535i \(-0.738804\pi\)
0.292625 + 0.956227i \(0.405471\pi\)
\(458\) 19.9941 + 11.5436i 0.934262 + 0.539397i
\(459\) −2.25879 + 15.1114i −0.105431 + 0.705339i
\(460\) −19.1963 2.20993i −0.895034 0.103038i
\(461\) 24.5367 1.14279 0.571393 0.820676i \(-0.306403\pi\)
0.571393 + 0.820676i \(0.306403\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) −2.85938 + 1.65086i −0.132743 + 0.0766395i
\(465\) 25.8125 0.269906i 1.19702 0.0125166i
\(466\) 4.30927 7.46387i 0.199623 0.345757i
\(467\) 15.5179 8.95926i 0.718083 0.414585i −0.0959639 0.995385i \(-0.530593\pi\)
0.814047 + 0.580800i \(0.197260\pi\)
\(468\) −39.2549 40.1805i −1.81456 1.85735i
\(469\) 0 0
\(470\) 19.8872 + 14.7519i 0.917330 + 0.680452i
\(471\) −1.16934 9.30039i −0.0538802 0.428539i
\(472\) −7.70770 + 13.3501i −0.354776 + 0.614490i
\(473\) −13.4304 + 23.2621i −0.617529 + 1.06959i
\(474\) 2.79216 + 22.2076i 0.128248 + 1.02003i
\(475\) −9.73665 + 2.95187i −0.446748 + 0.135441i
\(476\) 0 0
\(477\) 4.05503 + 4.15064i 0.185667 + 0.190045i
\(478\) 45.5076 26.2738i 2.08147 1.20174i
\(479\) −1.48248 + 2.56774i −0.0677364 + 0.117323i −0.897905 0.440190i \(-0.854911\pi\)
0.830168 + 0.557513i \(0.188244\pi\)
\(480\) −0.288558 27.5962i −0.0131708 1.25959i
\(481\) −18.9561 + 10.9443i −0.864322 + 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) 9.92271 + 1.14232i 0.450567 + 0.0518703i
\(486\) −20.1586 27.9188i −0.914414 1.26642i
\(487\) 28.8004 + 16.6279i 1.30507 + 0.753482i 0.981269 0.192644i \(-0.0617061\pi\)
0.323800 + 0.946125i \(0.395039\pi\)
\(488\) 23.0044 13.2816i 1.04136 0.601230i
\(489\) 11.5318 27.3879i 0.521487 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) 2.18476 + 17.3766i 0.0984966 + 0.783398i
\(493\) −3.31187 + 5.73632i −0.149159 + 0.258351i
\(494\) −25.3101 14.6128i −1.13875 0.657460i
\(495\) 20.2411 15.6810i 0.909771 0.704808i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) −3.95447 + 9.39179i −0.177204 + 0.420856i
\(499\) 16.8358 + 29.1604i 0.753673 + 1.30540i 0.946031 + 0.324076i \(0.105053\pi\)
−0.192358 + 0.981325i \(0.561613\pi\)
\(500\) 24.5576 20.8254i 1.09825 0.931339i
\(501\) −10.0514 13.2585i −0.449064 0.592346i
\(502\) 10.0816 + 17.4618i 0.449963 + 0.779358i
\(503\) 35.2418i 1.57135i 0.618637 + 0.785677i \(0.287685\pi\)
−0.618637 + 0.785677i \(0.712315\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) 21.9107 12.6502i 0.974050 0.562368i
\(507\) −40.4011 + 30.6286i −1.79428 + 1.36026i
\(508\) 1.48981 + 0.860142i 0.0660996 + 0.0381626i
\(509\) −11.5914 20.0770i −0.513782 0.889896i −0.999872 0.0159875i \(-0.994911\pi\)
0.486090 0.873908i \(-0.338423\pi\)
\(510\) −12.8061 21.6547i −0.567062 0.958884i
\(511\) 0 0
\(512\) 16.1430 0.713426
\(513\) −8.27468 6.58231i −0.365336 0.290616i
\(514\) 12.7916 + 7.38523i 0.564213 + 0.325749i
\(515\) −1.17594 2.71317i −0.0518183 0.119557i
\(516\) −34.8295 + 4.37911i −1.53328 + 0.192780i
\(517\) −19.1334 −0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) 28.0749 + 3.23205i 1.23117 + 0.141735i
\(521\) 7.18762 12.4493i 0.314895 0.545415i −0.664520 0.747271i \(-0.731364\pi\)
0.979415 + 0.201856i \(0.0646972\pi\)
\(522\) −3.69547 14.4637i −0.161746 0.633060i
\(523\) 12.6242 + 21.8658i 0.552018 + 0.956124i 0.998129 + 0.0611461i \(0.0194755\pi\)
−0.446110 + 0.894978i \(0.647191\pi\)
\(524\) −16.7378 −0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) 9.79936 + 16.9730i 0.426867 + 0.739355i
\(528\) 5.85412 + 7.72197i 0.254768 + 0.336056i
\(529\) 6.99825 12.1213i 0.304272 0.527014i
\(530\) −9.49164 1.09270i −0.412291 0.0474638i
\(531\) 16.6253 + 17.0173i 0.721477 + 0.738489i
\(532\) 0 0
\(533\) 22.8268 0.988737
\(534\) −6.45128 51.3106i −0.279174 2.22042i
\(535\) −2.95618 6.82059i −0.127807 0.294880i
\(536\) 18.1583 + 10.4837i 0.784318 + 0.452826i
\(537\) −40.6508 + 5.11102i −1.75421 + 0.220557i
\(538\) −41.9896 −1.81030
\(539\) 0 0
\(540\) 32.3115 + 8.69928i 1.39047 + 0.374357i
\(541\) −7.88973 13.6654i −0.339206 0.587522i 0.645078 0.764117i \(-0.276825\pi\)
−0.984284 + 0.176595i \(0.943492\pi\)
\(542\) −22.6676 13.0871i −0.973655 0.562140i
\(543\) −16.3581 21.5774i −0.701994 0.925977i
\(544\) 18.1459 10.4766i 0.778000 0.449179i
\(545\) 16.3837 22.0872i 0.701802 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) 1.57489 + 2.72779i 0.0672759 + 0.116525i
\(549\) −10.1482 39.7190i −0.433113 1.69517i
\(550\) −9.57991 + 41.0561i −0.408489 + 1.75064i
\(551\) −2.29185 3.96960i −0.0976360 0.169111i
\(552\) 9.31100 + 3.92045i 0.396303 + 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 6.40105 11.3596i 0.271709 0.482188i
\(556\) 18.3559 + 10.5978i 0.778464 + 0.449446i
\(557\) −14.4676 + 25.0586i −0.613011 + 1.06177i 0.377719 + 0.925920i \(0.376708\pi\)
−0.990730 + 0.135845i \(0.956625\pi\)
\(558\) −42.5298 11.9286i −1.80043 0.504980i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) −19.3369 + 11.1641i −0.815677 + 0.470931i
\(563\) −5.39368 3.11404i −0.227316 0.131241i 0.382017 0.924155i \(-0.375230\pi\)
−0.609333 + 0.792914i \(0.708563\pi\)
\(564\) −15.1062 19.9261i −0.636087 0.839041i
\(565\) −45.4477 5.23204i −1.91200 0.220114i
\(566\) −13.2589 −0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 8.56862 4.94710i 0.359215 0.207393i −0.309521 0.950893i \(-0.600169\pi\)
0.668736 + 0.743500i \(0.266835\pi\)
\(570\) 17.4086 0.182031i 0.729165 0.00762446i
\(571\) −9.60472 + 16.6359i −0.401945 + 0.696189i −0.993961 0.109737i \(-0.964999\pi\)
0.592015 + 0.805927i \(0.298332\pi\)
\(572\) −61.8942 + 35.7347i −2.58793 + 1.49414i
\(573\) −7.24509 + 17.2070i −0.302668 + 0.718831i
\(574\) 0 0
\(575\) −4.35281 14.3576i −0.181525 0.598753i
\(576\) −10.3780 + 37.0011i −0.432415 + 1.54171i
\(577\) −19.0377 + 32.9742i −0.792549 + 1.37273i 0.131835 + 0.991272i \(0.457913\pi\)
−0.924384 + 0.381463i \(0.875420\pi\)
\(578\) −9.22669 + 15.9811i −0.383780 + 0.664726i
\(579\) 3.17275 0.398910i 0.131855 0.0165781i
\(580\) 11.6508 + 8.64228i 0.483773 + 0.358851i
\(581\) 0 0
\(582\) −15.7519 6.63241i −0.652935 0.274922i
\(583\) 6.39367 3.69139i 0.264799 0.152882i
\(584\) 3.21614 5.57052i 0.133085 0.230510i
\(585\) 16.5037 40.3710i 0.682342 1.66914i
\(586\) −6.79859 + 3.92517i −0.280847 + 0.162147i
\(587\) 11.9232i 0.492124i −0.969254 0.246062i \(-0.920863\pi\)
0.969254 0.246062i \(-0.0791367\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) −38.9151 4.47999i −1.60211 0.184438i
\(591\) 11.1792 8.47508i 0.459851 0.348618i
\(592\) 4.27353 + 2.46732i 0.175641 + 0.101406i
\(593\) 14.5994 8.42896i 0.599525 0.346136i −0.169330 0.985559i \(-0.554160\pi\)
0.768855 + 0.639424i \(0.220827\pi\)
\(594\) −40.7647 + 16.0565i −1.67260 + 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) 17.3618 2.18289i 0.710569 0.0893399i
\(598\) 21.5479 37.3220i 0.881159 1.52621i
\(599\) 11.7736 + 6.79751i 0.481058 + 0.277739i 0.720857 0.693084i \(-0.243748\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(600\) −15.3753 + 6.85582i −0.627695 + 0.279888i
\(601\) 46.2155i 1.88517i −0.333966 0.942585i \(-0.608387\pi\)
0.333966 0.942585i \(-0.391613\pi\)
\(602\) 0 0
\(603\) 23.1462 22.6130i 0.942588 0.920874i
\(604\) 11.9461 + 20.6912i 0.486078 + 0.841912i
\(605\) −3.17349 7.32196i −0.129021 0.297680i
\(606\) 27.0465 20.5043i 1.09869 0.832930i
\(607\) 4.37164 + 7.57190i 0.177439 + 0.307334i 0.941003 0.338399i \(-0.109885\pi\)
−0.763563 + 0.645733i \(0.776552\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) −28.2248 + 16.2956i −1.14185 + 0.659249i
\(612\) 6.28906 + 24.6148i 0.254220 + 0.994995i
\(613\) 21.0938 + 12.1785i 0.851970 + 0.491885i 0.861315 0.508071i \(-0.169641\pi\)
−0.00934480 + 0.999956i \(0.502975\pi\)
\(614\) −32.0696 55.5461i −1.29422 2.24166i
\(615\) −11.7043 + 6.92167i −0.471964 + 0.279109i
\(616\) 0 0
\(617\) −25.3125 −1.01904 −0.509522 0.860458i \(-0.670178\pi\)
−0.509522 + 0.860458i \(0.670178\pi\)
\(618\) 0.631212 + 5.02038i 0.0253911 + 0.201949i
\(619\) 26.2018 + 15.1276i 1.05314 + 0.608029i 0.923526 0.383535i \(-0.125294\pi\)
0.129612 + 0.991565i \(0.458627\pi\)
\(620\) 39.3820 17.0690i 1.58162 0.685506i
\(621\) 9.70623 12.2018i 0.389498 0.489641i
\(622\) 19.0958 0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) 22.4183 + 11.0644i 0.896730 + 0.442577i
\(626\) 11.9865 20.7613i 0.479079 0.829788i
\(627\) −10.7202 + 8.12711i −0.428123 + 0.324565i
\(628\) −7.79296 13.4978i −0.310973 0.538621i
\(629\) 9.89959 0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) 5.68566 + 9.84784i 0.226163 + 0.391726i
\(633\) −14.7436 + 11.1773i −0.586004 + 0.444257i
\(634\) 10.3173 17.8701i 0.409754 0.709714i
\(635\) −0.152756 + 1.32690i −0.00606194 + 0.0526566i
\(636\) 8.89228 + 3.74415i 0.352602 + 0.148465i
\(637\) 0 0
\(638\) −18.9934 −0.751956
\(639\) 31.7524 + 8.90582i 1.25610 + 0.352309i
\(640\) −12.4900 28.8173i −0.493711 1.13910i
\(641\) −0.111457 0.0643495i −0.00440227 0.00254165i 0.497797 0.867293i \(-0.334142\pi\)
−0.502200 + 0.864752i \(0.667476\pi\)
\(642\) 1.58679 + 12.6206i 0.0626257 + 0.498097i
\(643\) −0.150563 −0.00593763 −0.00296881 0.999996i \(-0.500945\pi\)
−0.00296881 + 0.999996i \(0.500945\pi\)
\(644\) 0 0
\(645\) −13.8737 23.4600i −0.546277 0.923737i
\(646\) 6.60894 + 11.4470i 0.260025 + 0.450377i
\(647\) 35.8147 + 20.6776i 1.40802 + 0.812920i 0.995197 0.0978912i \(-0.0312097\pi\)
0.412822 + 0.910812i \(0.364543\pi\)
\(648\) −14.9432 9.09817i −0.587023 0.357410i
\(649\) 26.2136 15.1344i 1.02897 0.594078i
\(650\) 20.8350 + 68.7235i 0.817214 + 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) 14.7304 + 25.5138i 0.576446 + 0.998433i 0.995883 + 0.0906487i \(0.0288940\pi\)
−0.419437 + 0.907784i \(0.637773\pi\)
\(654\) −37.4990 + 28.4284i −1.46633 + 1.11164i
\(655\) −5.16804 11.9238i −0.201932 0.465903i
\(656\) −2.57308 4.45670i −0.100462 0.174005i
\(657\) −6.93713 7.10071i −0.270643 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) 20.9003 37.0907i 0.813544 1.44375i
\(661\) 20.3164 + 11.7297i 0.790218 + 0.456233i 0.840039 0.542526i \(-0.182532\pi\)
−0.0498213 + 0.998758i \(0.515865\pi\)
\(662\) −3.21328 + 5.56557i −0.124888 + 0.216312i
\(663\) 32.8546 4.13081i 1.27597 0.160427i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) 5.85354 3.37954i 0.226650 0.130856i
\(668\) −23.9582 13.8323i −0.926971 0.535187i
\(669\) −5.70294 + 4.32347i −0.220489 + 0.167155i
\(670\) −6.09349 + 52.9306i −0.235412 + 2.04489i
\(671\) −52.1580 −2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) −29.2533 + 16.8894i −1.12680 + 0.650555i
\(675\) 3.77936 + 25.7044i 0.145468 + 0.989363i
\(676\) −42.1496 + 73.0052i −1.62114 + 2.80789i
\(677\) 39.5783 22.8505i 1.52112 0.878217i 0.521427 0.853296i \(-0.325400\pi\)
0.999689 0.0249214i \(-0.00793355\pi\)
\(678\) 72.1462 + 30.3776i 2.77076 + 1.16664i
\(679\) 0 0
\(680\) −10.2655 7.61467i −0.393663 0.292009i
\(681\) −12.3315 + 1.55044i −0.472545 + 0.0594130i
\(682\) −28.0994 + 48.6697i −1.07598 + 1.86366i
\(683\) 19.3444 33.5055i 0.740192 1.28205i −0.212215 0.977223i \(-0.568068\pi\)
0.952407 0.304828i \(-0.0985990\pi\)
\(684\) −16.9277 4.74783i −0.647246 0.181538i
\(685\) −1.45698 + 1.96418i −0.0556682 + 0.0750473i
\(686\) 0 0
\(687\) 7.02460 16.6833i 0.268005 0.636508i
\(688\) 8.93296 5.15745i 0.340566 0.196626i
\(689\) 6.28779 10.8908i 0.239546 0.414905i
\(690\) 0.268422 + 25.6706i 0.0102187 + 0.977262i
\(691\) 16.6768 9.62834i 0.634415 0.366279i −0.148045 0.988981i \(-0.547298\pi\)
0.782460 + 0.622701i \(0.213965\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) −1.88211 + 16.3488i −0.0713923 + 0.620144i
\(696\) −4.58189 6.04381i −0.173676 0.229090i
\(697\) −8.94077 5.16195i −0.338656 0.195523i
\(698\) −15.7836 + 9.11265i −0.597417 + 0.344919i
\(699\) −6.22794 2.62231i −0.235562 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) −46.4594 + 58.4046i −1.75350 + 2.20434i
\(703\) −3.42531 + 5.93282i −0.129188 + 0.223760i
\(704\) 42.3428 + 24.4466i 1.59586 + 0.921367i
\(705\) 9.53089 16.9140i 0.358954 0.637017i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) 36.4577 + 15.3507i 1.37016 + 0.576916i
\(709\) −2.44586 4.23635i −0.0918561 0.159099i 0.816436 0.577436i \(-0.195947\pi\)
−0.908292 + 0.418336i \(0.862613\pi\)
\(710\) −49.8208 + 21.5933i −1.86974 + 0.810384i
\(711\) 17.0031 4.34428i 0.637667 0.162923i
\(712\) −13.1367 22.7534i −0.492318 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) −58.9972 + 34.0620i −2.20483 + 1.27296i
\(717\) −24.8906 32.8324i −0.929557 1.22615i
\(718\) 13.6506 + 7.88121i 0.509438 + 0.294124i
\(719\) 19.0108 + 32.9277i 0.708985 + 1.22800i 0.965234 + 0.261387i \(0.0841798\pi\)
−0.256249 + 0.966611i \(0.582487\pi\)
\(720\) −9.74237 + 1.32852i −0.363077 + 0.0495112i
\(721\) 0 0
\(722\) 32.8253 1.22163
\(723\) 22.8263 2.86995i 0.848919 0.106735i
\(724\) −38.9906 22.5112i −1.44907 0.836624i
\(725\) −2.55931 + 10.9683i −0.0950506 + 0.407353i
\(726\) 1.70344 + 13.5484i 0.0632205 + 0.502827i
\(727\) −18.6502 −0.691699 −0.345849 0.938290i \(-0.612409\pi\)
−0.345849 + 0.938290i \(0.612409\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) 16.2378 + 1.86933i 0.600988 + 0.0691872i
\(731\) 10.3466 17.9208i 0.382681 0.662824i
\(732\) −41.1799 54.3191i −1.52205 2.00769i
\(733\) 18.7967 + 32.5568i 0.694271 + 1.20251i 0.970426 + 0.241399i \(0.0776062\pi\)
−0.276155 + 0.961113i \(0.589060\pi\)
\(734\) −53.8821 −1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) −20.5852 35.6546i −0.758264 1.31335i
\(738\) 22.5435 5.75984i 0.829837 0.212023i
\(739\) 24.7189 42.8144i 0.909300 1.57495i 0.0942603 0.995548i \(-0.469951\pi\)
0.815039 0.579406i \(-0.196715\pi\)
\(740\) 2.47953 21.5382i 0.0911492 0.791760i
\(741\) −8.89228 + 21.1190i −0.326666 + 0.775826i
\(742\) 0 0
\(743\) −42.7477 −1.56826 −0.784131 0.620596i \(-0.786891\pi\)
−0.784131 + 0.620596i \(0.786891\pi\)
\(744\) −22.2656 + 2.79945i −0.816295 + 0.102633i
\(745\) 22.1978 9.62097i 0.813264 0.352485i
\(746\) −42.1929 24.3601i −1.54479 0.891886i
\(747\) 7.69304 + 2.15772i 0.281474 + 0.0789470i
\(748\) 32.3236 1.18187
\(749\) 0 0
\(750\) −31.5218 28.9200i −1.15101 1.05601i
\(751\) −2.79526 4.84152i −0.102000 0.176670i 0.810508 0.585727i \(-0.199191\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(752\) 6.36310 + 3.67374i 0.232039 + 0.133968i
\(753\) 12.5982 9.55082i 0.459103 0.348051i
\(754\) −28.0183 + 16.1764i −1.02037 + 0.589109i
\(755\) −11.0517 + 14.8989i −0.402211 + 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) −1.27906 2.21539i −0.0464574 0.0804666i
\(759\) −11.9842 15.8079i −0.434998 0.573791i
\(760\) 8.11537 3.51737i 0.294376 0.127588i
\(761\) 24.5715 + 42.5591i 0.890716 + 1.54277i 0.839019 + 0.544102i \(0.183130\pi\)
0.0516970 + 0.998663i \(0.483537\pi\)
\(762\) 0.886912 2.10640i 0.0321294 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) −15.5935 + 12.0804i −0.563783 + 0.436768i
\(766\) 4.07358 + 2.35188i 0.147184 + 0.0849769i
\(767\) 25.7795 44.6514i 0.930843 1.61227i
\(768\) 1.16872 + 9.29547i 0.0421725 + 0.335421i
\(769\) 27.0203i 0.974376i −0.873297 0.487188i \(-0.838023\pi\)
0.873297 0.487188i \(-0.161977\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) 4.60466 2.65850i 0.165725 0.0956816i
\(773\) −45.8267 26.4581i −1.64827 0.951631i −0.977758 0.209735i \(-0.932740\pi\)
−0.670515 0.741896i \(-0.733927\pi\)
\(774\) 11.5450 + 45.1859i 0.414975 + 1.62417i
\(775\) 24.3195 + 22.7850i 0.873581 + 0.818462i
\(776\) −8.68312 −0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 6.18711 3.57213i 0.221676 0.127985i
\(780\) −0.758249 72.5152i −0.0271497 2.59646i
\(781\) 20.9788 36.3364i 0.750681 1.30022i
\(782\) −16.8797 + 9.74550i −0.603617 + 0.348499i
\(783\) −10.8905 + 4.28956i −0.389193 + 0.153296i
\(784\) 0 0
\(785\) 7.20950 9.71926i 0.257318 0.346895i
\(786\) 2.77405 + 22.0636i 0.0989471 + 0.786981i
\(787\) 8.37879 14.5125i 0.298672 0.517315i −0.677161 0.735835i \(-0.736790\pi\)
0.975832 + 0.218521i \(0.0701231\pi\)
\(788\) 11.6630 20.2009i 0.415477 0.719627i
\(789\) −5.21340 41.4650i −0.185602 1.47619i
\(790\) −17.2150 + 23.2078i −0.612481 + 0.825697i
\(791\) 0 0
\(792\) −15.9218 + 15.5550i −0.565756 + 0.552723i
\(793\) −76.9414 + 44.4222i −2.73227 + 1.57748i
\(794\) −13.2719 + 22.9876i −0.471001 + 0.815798i
\(795\) 0.0783271 + 7.49082i 0.00277798 + 0.265672i
\(796\) 25.1974 14.5477i 0.893099 0.515631i
\(797\) 55.9724i 1.98264i 0.131462 + 0.991321i \(0.458033\pi\)
−0.131462 + 0.991321i \(0.541967\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) 24.3596 26.0001i 0.861241 0.919241i
\(801\) −39.2856 + 10.0374i −1.38809 + 0.354655i
\(802\) −58.9813 34.0529i −2.08270 1.20245i
\(803\) −10.9380 + 6.31503i −0.385992 + 0.222853i
\(804\) 20.8794 49.5882i 0.736359 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) 4.10702 + 32.6654i 0.144574 + 1.14988i
\(808\) 8.62160 14.9331i 0.303307 0.525343i
\(809\) −36.4604 21.0504i −1.28188 0.740094i −0.304689 0.952452i \(-0.598553\pi\)
−0.977192 + 0.212358i \(0.931886\pi\)
\(810\) 6.11209 44.0344i 0.214757 1.54721i
\(811\) 1.35051i 0.0474227i −0.999719 0.0237113i \(-0.992452\pi\)
0.999719 0.0237113i \(-0.00754826\pi\)
\(812\) 0 0
\(813\) −7.96388 + 18.9141i −0.279306 + 0.663346i
\(814\) 14.1934 + 24.5837i 0.497479 + 0.861659i
\(815\) 35.2000 15.2564i 1.23300 0.534409i
\(816\) −4.50993 5.94890i −0.157879 0.208253i
\(817\) 7.15993 + 12.4014i 0.250494 + 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) −9.82457 + 5.67222i −0.342880 + 0.197962i −0.661545 0.749906i \(-0.730099\pi\)
0.318665 + 0.947867i \(0.396765\pi\)
\(822\) 3.33471 2.52809i 0.116312 0.0881771i
\(823\) 26.1348 + 15.0889i 0.911002 + 0.525967i 0.880754 0.473575i \(-0.157037\pi\)
0.0302488 + 0.999542i \(0.490370\pi\)
\(824\) 1.28533 + 2.22626i 0.0447766 + 0.0775554i
\(825\) 32.8763 + 3.43689i 1.14460 + 0.119657i
\(826\) 0 0
\(827\) −34.7911 −1.20981 −0.604903 0.796299i \(-0.706788\pi\)
−0.604903 + 0.796299i \(0.706788\pi\)
\(828\) 7.00112 24.9614i 0.243306 0.867470i
\(829\) 3.50678 + 2.02464i 0.121796 + 0.0703187i 0.559660 0.828722i \(-0.310932\pi\)
−0.437864 + 0.899041i \(0.644265\pi\)
\(830\) −12.0707 + 5.23169i −0.418980 + 0.181595i
\(831\) 28.3867 3.56906i 0.984725 0.123809i
\(832\) 83.2833 2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) 2.45653 21.3385i 0.0850118 0.738448i
\(836\) −11.1841 + 19.3715i −0.386811 + 0.669977i
\(837\) −5.11992 + 34.2524i −0.176970 + 1.18394i
\(838\) −21.6460 37.4920i −0.747749 1.29514i
\(839\) 25.8653 0.892969 0.446485 0.894791i \(-0.352676\pi\)
0.446485 + 0.894791i \(0.352676\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) 35.9846 + 62.3272i 1.24011 + 2.14794i
\(843\) 10.5764 + 13.9510i 0.364271 + 0.480497i
\(844\) −15.3816 + 26.6417i −0.529457 + 0.917047i
\(845\) −65.0223 7.48552i −2.23684 0.257510i
\(846\) −23.7627 + 23.2153i −0.816978 + 0.798158i
\(847\) 0 0
\(848\) −2.83509 −0.0973573
\(849\) 1.29686 + 10.3146i 0.0445080 + 0.353997i
\(850\) 7.38023 31.6291i 0.253140 1.08487i
\(851\) −8.74849 5.05094i −0.299894 0.173144i
\(852\) 54.4052 6.84036i 1.86389 0.234347i
\(853\) 37.5709 1.28640 0.643201 0.765697i \(-0.277606\pi\)
0.643201 + 0.765697i \(0.277606\pi\)
\(854\) 0 0
\(855\) −1.84435 13.5250i −0.0630755 0.462547i
\(856\) 3.23117 + 5.59655i 0.110439 + 0.191286i
\(857\) 19.8563 + 11.4640i 0.678278 + 0.391604i 0.799206 0.601057i \(-0.205254\pi\)
−0.120928 + 0.992661i \(0.538587\pi\)
\(858\) 57.3630 + 75.6656i 1.95834 + 2.58318i
\(859\) −16.2512 + 9.38264i −0.554484 + 0.320132i −0.750929 0.660383i \(-0.770394\pi\)
0.196444 + 0.980515i \(0.437060\pi\)
\(860\) −36.3981 26.9992i −1.24117 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) −4.23086 7.32807i −0.144020 0.249450i 0.784987 0.619512i \(-0.212670\pi\)
−0.929007 + 0.370062i \(0.879336\pi\)
\(864\) 36.6194 + 5.47373i 1.24582 + 0.186220i
\(865\) 20.8705 9.04569i 0.709618 0.307563i
\(866\) 3.83659 + 6.64517i 0.130373 + 0.225812i
\(867\) 13.3348 + 5.61470i 0.452874 + 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 9.46117 16.7902i 0.320764 0.569243i
\(871\) −60.7329 35.0641i −2.05785 1.18810i
\(872\) −11.9535 + 20.7041i −0.404797 + 0.701129i
\(873\) −3.61892 + 12.9027i −0.122482 + 0.436691i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) −3.27867 + 1.89294i −0.110713 + 0.0639201i −0.554334 0.832294i \(-0.687027\pi\)
0.443621 + 0.896214i \(0.353694\pi\)
\(878\) 7.55301 + 4.36073i 0.254902 + 0.147168i
\(879\) 3.71852 + 4.90498i 0.125423 + 0.165441i
\(880\) −1.43073 + 12.4279i −0.0482298 + 0.418944i
\(881\) 54.6531 1.84131 0.920654 0.390379i \(-0.127656\pi\)
0.920654 + 0.390379i \(0.127656\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) 47.6824 27.5295i 1.60373 0.925916i
\(885\) 0.321135 + 30.7118i 0.0107948 + 1.03237i
\(886\) 17.7065 30.6686i 0.594862 1.03033i
\(887\) −26.0011 + 15.0117i −0.873032 + 0.504045i −0.868355 0.495944i \(-0.834822\pi\)
−0.00467726 + 0.999989i \(0.501489\pi\)
\(888\) −4.39873 + 10.4469i −0.147612 + 0.350575i
\(889\) 0 0
\(890\) 39.7751 53.6215i 1.33326 1.79740i
\(891\) 16.4782 + 30.1420i 0.552041 + 1.00980i
\(892\) −5.94975 + 10.3053i −0.199212 + 0.345046i
\(893\) −5.10015 + 8.83371i −0.170670 + 0.295609i
\(894\) −41.0742 + 5.16426i −1.37373 + 0.172719i
\(895\) −42.4816 31.5118i −1.42000 1.05332i
\(896\) 0 0
\(897\) −31.1420 13.1125i −1.03980 0.437814i
\(898\) 40.3668 23.3058i 1.34706 0.777724i
\(899\) −7.50689 + 13.0023i −0.250369 + 0.433651i
\(900\) 22.3773 + 36.9519i 0.745909 + 1.23173i
\(901\) −4.92559 + 2.84379i −0.164095 + 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) 3.99787 34.7271i 0.132894 1.15437i
\(906\) 25.2949 19.1764i 0.840367 0.637092i
\(907\) −16.8295 9.71653i −0.558815 0.322632i 0.193855 0.981030i \(-0.437901\pi\)
−0.752670 + 0.658398i \(0.771234\pi\)
\(908\) −17.8969 + 10.3328i −0.593931 + 0.342906i
\(909\) −18.5966 19.0351i −0.616809 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) 5.12563 0.644446i 0.169727 0.0213397i
\(913\) 5.08280 8.80366i 0.168216 0.291359i
\(914\) 18.3787 + 10.6110i 0.607914 + 0.350979i
\(915\) 25.9814 46.1079i 0.858920 1.52428i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) 31.4046 12.3697i 1.03650 0.408261i
\(919\) −22.5064 38.9822i −0.742416 1.28590i −0.951392 0.307982i \(-0.900346\pi\)
0.208976 0.977921i \(-0.432987\pi\)
\(920\) 5.18669 + 11.9669i 0.171000 + 0.394536i
\(921\) −40.0749 + 30.3812i −1.32051 + 1.00110i
\(922\) −27.1015 46.9412i −0.892541 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) 27.9073 16.1123i 0.917092 0.529483i
\(927\) 3.84382 0.982092i 0.126248 0.0322561i
\(928\) 13.9008 + 8.02565i 0.456317 + 0.263455i
\(929\) −21.3495 36.9785i −0.700455 1.21322i −0.968307 0.249764i \(-0.919647\pi\)
0.267852 0.963460i \(-0.413686\pi\)
\(930\) −29.0270 49.0838i −0.951834 1.60952i
\(931\) 0 0
\(932\) −11.2360 −0.368048
\(933\) −1.86777 14.8554i −0.0611482 0.486345i
\(934\) −34.2800 19.7916i −1.12168 0.647600i
\(935\) 9.98034 + 23.0269i 0.326392 + 0.753061i
\(936\) −10.2392 + 36.5065i −0.334680 + 1.19325i
\(937\) −26.4685 −0.864688 −0.432344 0.901709i \(-0.642313\pi\)
−0.432344 + 0.901709i \(0.642313\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) 3.69191 32.0695i 0.120417 1.04599i
\(941\) 15.8545 27.4609i 0.516843 0.895199i −0.482965 0.875640i \(-0.660440\pi\)
0.999809 0.0195596i \(-0.00622642\pi\)
\(942\) −16.5010 + 12.5096i −0.537633 + 0.407586i
\(943\) 5.26744 + 9.12347i 0.171531 + 0.297101i
\(944\) −11.6237 −0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) −5.97276 10.3451i −0.194089 0.336171i 0.752513 0.658578i \(-0.228842\pi\)
−0.946601 + 0.322406i \(0.895508\pi\)
\(948\) 23.2532 17.6285i 0.755229 0.572548i
\(949\) −10.7568 + 18.6314i −0.349181 + 0.604800i
\(950\) 16.4017 + 15.3668i 0.532141 + 0.498565i
\(951\) −14.9111 6.27839i −0.483524 0.203591i
\(952\) 0 0
\(953\) −1.76384 −0.0571364 −0.0285682 0.999592i \(-0.509095\pi\)
−0.0285682 + 0.999592i \(0.509095\pi\)
\(954\) 3.46171 12.3422i 0.112077 0.399594i
\(955\) −22.1151 + 9.58513i −0.715627 + 0.310167i
\(956\) −59.3284 34.2532i −1.91882 1.10783i
\(957\) 1.85775 + 14.7757i 0.0600527 + 0.477632i
\(958\) 6.54980 0.211614
\(959\) 0 0
\(960\) −42.7031 + 25.2536i −1.37824 + 0.815058i
\(961\) 6.71186 + 11.6253i 0.216511 + 0.375009i
\(962\) 41.8752 + 24.1766i 1.35011 + 0.779486i
\(963\) 9.66291 2.46886i 0.311383 0.0795580i
\(964\) 33.1282 19.1266i 1.06699 0.616026i
\(965\) 3.31564 + 2.45946i 0.106734 + 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) 3.46869 + 6.00795i 0.111488 + 0.193103i
\(969\) 8.25869 6.26101i 0.265307 0.201133i
\(970\) −8.77456 20.2449i −0.281734 0.650025i
\(971\) 23.9577 + 41.4959i 0.768838 + 1.33167i 0.938193 + 0.346111i \(0.112498\pi\)
−0.169356 + 0.985555i \(0.554169\pi\)
\(972\) −18.3810 + 40.9588i −0.589571 + 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) 51.4249 22.9302i 1.64692 0.734356i
\(976\) 17.3460 + 10.0147i 0.555231 + 0.320563i
\(977\) 4.07411 7.05657i 0.130342 0.225760i −0.793466 0.608614i \(-0.791726\pi\)
0.923809 + 0.382855i \(0.125059\pi\)
\(978\) −65.1332 + 8.18920i −2.08273 + 0.261862i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) −48.7636 + 28.1537i −1.55611 + 0.898420i
\(983\) −12.6460 7.30116i −0.403344 0.232871i 0.284582 0.958652i \(-0.408145\pi\)
−0.687926 + 0.725781i \(0.741479\pi\)
\(984\) 9.42003 7.14143i 0.300300 0.227661i
\(985\) 17.9920 + 2.07128i 0.573273 + 0.0659965i
\(986\) 14.6322 0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) −18.2870 + 10.5580i −0.581492 + 0.335725i
\(990\) −52.3563 21.4032i −1.66399 0.680240i
\(991\) −7.84118 + 13.5813i −0.249083 + 0.431425i −0.963272 0.268529i \(-0.913463\pi\)
0.714188 + 0.699953i \(0.246796\pi\)
\(992\) 41.1307 23.7468i 1.30590 0.753962i
\(993\) 4.64398 + 1.95537i 0.147372 + 0.0620519i
\(994\) 0 0
\(995\) 18.1437 + 13.4585i 0.575194 + 0.426664i
\(996\) 13.1814 1.65730i 0.417669 0.0525136i
\(997\) −13.5211 + 23.4192i −0.428218 + 0.741695i −0.996715 0.0809903i \(-0.974192\pi\)
0.568497 + 0.822685i \(0.307525\pi\)
\(998\) 37.1913 64.4173i 1.17727 2.03909i
\(999\) 13.6904 + 10.8903i 0.433144 + 0.344555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.1 64
3.2 odd 2 inner 735.2.p.g.374.30 64
5.4 even 2 inner 735.2.p.g.374.32 64
7.2 even 3 inner 735.2.p.g.509.2 64
7.3 odd 6 735.2.g.c.734.29 yes 32
7.4 even 3 735.2.g.c.734.32 yes 32
7.5 odd 6 inner 735.2.p.g.509.3 64
7.6 odd 2 inner 735.2.p.g.374.4 64
15.14 odd 2 inner 735.2.p.g.374.3 64
21.2 odd 6 inner 735.2.p.g.509.29 64
21.5 even 6 inner 735.2.p.g.509.32 64
21.11 odd 6 735.2.g.c.734.3 yes 32
21.17 even 6 735.2.g.c.734.2 yes 32
21.20 even 2 inner 735.2.p.g.374.31 64
35.4 even 6 735.2.g.c.734.1 32
35.9 even 6 inner 735.2.p.g.509.31 64
35.19 odd 6 inner 735.2.p.g.509.30 64
35.24 odd 6 735.2.g.c.734.4 yes 32
35.34 odd 2 inner 735.2.p.g.374.29 64
105.44 odd 6 inner 735.2.p.g.509.4 64
105.59 even 6 735.2.g.c.734.31 yes 32
105.74 odd 6 735.2.g.c.734.30 yes 32
105.89 even 6 inner 735.2.p.g.509.1 64
105.104 even 2 inner 735.2.p.g.374.2 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 35.4 even 6
735.2.g.c.734.2 yes 32 21.17 even 6
735.2.g.c.734.3 yes 32 21.11 odd 6
735.2.g.c.734.4 yes 32 35.24 odd 6
735.2.g.c.734.29 yes 32 7.3 odd 6
735.2.g.c.734.30 yes 32 105.74 odd 6
735.2.g.c.734.31 yes 32 105.59 even 6
735.2.g.c.734.32 yes 32 7.4 even 3
735.2.p.g.374.1 64 1.1 even 1 trivial
735.2.p.g.374.2 64 105.104 even 2 inner
735.2.p.g.374.3 64 15.14 odd 2 inner
735.2.p.g.374.4 64 7.6 odd 2 inner
735.2.p.g.374.29 64 35.34 odd 2 inner
735.2.p.g.374.30 64 3.2 odd 2 inner
735.2.p.g.374.31 64 21.20 even 2 inner
735.2.p.g.374.32 64 5.4 even 2 inner
735.2.p.g.509.1 64 105.89 even 6 inner
735.2.p.g.509.2 64 7.2 even 3 inner
735.2.p.g.509.3 64 7.5 odd 6 inner
735.2.p.g.509.4 64 105.44 odd 6 inner
735.2.p.g.509.29 64 21.2 odd 6 inner
735.2.p.g.509.30 64 35.19 odd 6 inner
735.2.p.g.509.31 64 35.9 even 6 inner
735.2.p.g.509.32 64 21.5 even 6 inner