Properties

Label 735.2.p.g.374.31
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.31
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.31

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10453 + 1.91310i) q^{2} +(0.216070 - 1.71852i) q^{3} +(-1.43998 + 2.49412i) q^{4} +(-2.22140 - 0.255732i) q^{5} +(3.52637 - 1.48480i) q^{6} -1.94389 q^{8} +(-2.90663 - 0.742640i) q^{9} +(-1.96436 - 4.53223i) q^{10} +(3.30554 + 1.90846i) q^{11} +(3.97506 + 3.01354i) q^{12} +6.50161 q^{13} +(-0.919457 + 3.76226i) q^{15} +(0.732874 + 1.26937i) q^{16} +(2.54654 + 1.47025i) q^{17} +(-1.78971 - 6.38095i) q^{18} +(1.76224 - 1.01743i) q^{19} +(3.83659 - 5.17218i) q^{20} +8.43180i q^{22} +(1.50029 + 2.59858i) q^{23} +(-0.420016 + 3.34061i) q^{24} +(4.86920 + 1.13616i) q^{25} +(7.18123 + 12.4383i) q^{26} +(-1.90428 + 4.83464i) q^{27} -2.25259i q^{29} +(-8.21317 + 2.39652i) q^{30} +(-5.77216 - 3.33256i) q^{31} +(-3.56285 + 6.17104i) q^{32} +(3.99395 - 5.26828i) q^{33} +6.49574i q^{34} +(6.03772 - 6.18009i) q^{36} +(2.91560 - 1.68332i) q^{37} +(3.89289 + 2.24756i) q^{38} +(1.40480 - 11.1732i) q^{39} +(4.31815 + 0.497115i) q^{40} -3.51094 q^{41} -7.03729i q^{43} +(-9.51983 + 5.49628i) q^{44} +(6.26685 + 2.39302i) q^{45} +(-3.31424 + 5.74043i) q^{46} +(4.34120 - 2.50639i) q^{47} +(2.33980 - 0.985185i) q^{48} +(3.20459 + 10.5702i) q^{50} +(3.07688 - 4.05861i) q^{51} +(-9.36219 + 16.2158i) q^{52} +(0.967113 - 1.67509i) q^{53} +(-11.3525 + 1.69693i) q^{54} +(-6.85487 - 5.08477i) q^{55} +(-1.36770 - 3.24827i) q^{57} +(4.30944 - 2.48806i) q^{58} +(-3.96509 + 6.86774i) q^{59} +(-8.05952 - 7.71082i) q^{60} +(-11.8342 + 6.83249i) q^{61} -14.7237i q^{62} -12.8096 q^{64} +(-14.4427 - 1.66267i) q^{65} +(14.4902 + 1.82186i) q^{66} +(9.34121 + 5.39315i) q^{67} +(-7.33395 + 4.23426i) q^{68} +(4.78988 - 2.01681i) q^{69} -10.9926i q^{71} +(5.65016 + 1.44361i) q^{72} +(-1.65449 + 2.86566i) q^{73} +(6.44074 + 3.71856i) q^{74} +(3.00461 - 8.12233i) q^{75} +5.86030i q^{76} +(22.9271 - 9.65357i) q^{78} +(2.92489 + 5.06605i) q^{79} +(-1.30338 - 3.00720i) q^{80} +(7.89697 + 4.31716i) q^{81} +(-3.87795 - 6.71680i) q^{82} +2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} +(13.4631 - 7.77291i) q^{86} +(-3.87112 - 0.486717i) q^{87} +(-6.42561 - 3.70983i) q^{88} +(-6.75793 - 11.7051i) q^{89} +(2.34385 + 14.6323i) q^{90} -8.64156 q^{92} +(-6.97425 + 9.19951i) q^{93} +(9.58999 + 5.53678i) q^{94} +(-4.17481 + 1.80945i) q^{95} +(9.83524 + 7.45621i) q^{96} +4.46688 q^{97} +(-8.19069 - 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10453 + 1.91310i 0.781022 + 1.35277i 0.931347 + 0.364133i \(0.118635\pi\)
−0.150325 + 0.988637i \(0.548032\pi\)
\(3\) 0.216070 1.71852i 0.124748 0.992188i
\(4\) −1.43998 + 2.49412i −0.719990 + 1.24706i
\(5\) −2.22140 0.255732i −0.993439 0.114367i
\(6\) 3.52637 1.48480i 1.43963 0.606166i
\(7\) 0 0
\(8\) −1.94389 −0.687269
\(9\) −2.90663 0.742640i −0.968876 0.247547i
\(10\) −1.96436 4.53223i −0.621185 1.43322i
\(11\) 3.30554 + 1.90846i 0.996659 + 0.575421i 0.907258 0.420575i \(-0.138172\pi\)
0.0894006 + 0.995996i \(0.471505\pi\)
\(12\) 3.97506 + 3.01354i 1.14750 + 0.869934i
\(13\) 6.50161 1.80322 0.901611 0.432548i \(-0.142385\pi\)
0.901611 + 0.432548i \(0.142385\pi\)
\(14\) 0 0
\(15\) −0.919457 + 3.76226i −0.237403 + 0.971411i
\(16\) 0.732874 + 1.26937i 0.183218 + 0.317344i
\(17\) 2.54654 + 1.47025i 0.617628 + 0.356587i 0.775945 0.630801i \(-0.217274\pi\)
−0.158317 + 0.987388i \(0.550607\pi\)
\(18\) −1.78971 6.38095i −0.421839 1.50401i
\(19\) 1.76224 1.01743i 0.404285 0.233414i −0.284046 0.958811i \(-0.591677\pi\)
0.688331 + 0.725397i \(0.258344\pi\)
\(20\) 3.83659 5.17218i 0.857888 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) 1.50029 + 2.59858i 0.312832 + 0.541842i 0.978974 0.203983i \(-0.0653888\pi\)
−0.666142 + 0.745825i \(0.732056\pi\)
\(24\) −0.420016 + 3.34061i −0.0857353 + 0.681900i
\(25\) 4.86920 + 1.13616i 0.973840 + 0.227233i
\(26\) 7.18123 + 12.4383i 1.40836 + 2.43934i
\(27\) −1.90428 + 4.83464i −0.366478 + 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i −0.977884 0.209148i \(-0.932931\pi\)
0.977884 0.209148i \(-0.0670690\pi\)
\(30\) −8.21317 + 2.39652i −1.49951 + 0.437542i
\(31\) −5.77216 3.33256i −1.03671 0.598545i −0.117810 0.993036i \(-0.537587\pi\)
−0.918900 + 0.394491i \(0.870921\pi\)
\(32\) −3.56285 + 6.17104i −0.629829 + 1.09090i
\(33\) 3.99395 5.26828i 0.695257 0.917091i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 6.18009i 1.00629 1.03001i
\(37\) 2.91560 1.68332i 0.479321 0.276736i −0.240812 0.970572i \(-0.577414\pi\)
0.720134 + 0.693835i \(0.244081\pi\)
\(38\) 3.89289 + 2.24756i 0.631510 + 0.364603i
\(39\) 1.40480 11.1732i 0.224948 1.78914i
\(40\) 4.31815 + 0.497115i 0.682759 + 0.0786008i
\(41\) −3.51094 −0.548317 −0.274158 0.961685i \(-0.588399\pi\)
−0.274158 + 0.961685i \(0.588399\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) −9.51983 + 5.49628i −1.43517 + 0.828595i
\(45\) 6.26685 + 2.39302i 0.934208 + 0.356730i
\(46\) −3.31424 + 5.74043i −0.488658 + 0.846380i
\(47\) 4.34120 2.50639i 0.633229 0.365595i −0.148772 0.988871i \(-0.547532\pi\)
0.782002 + 0.623276i \(0.214199\pi\)
\(48\) 2.33980 0.985185i 0.337721 0.142199i
\(49\) 0 0
\(50\) 3.20459 + 10.5702i 0.453197 + 1.49486i
\(51\) 3.07688 4.05861i 0.430850 0.568319i
\(52\) −9.36219 + 16.2158i −1.29830 + 2.24873i
\(53\) 0.967113 1.67509i 0.132843 0.230091i −0.791928 0.610614i \(-0.790923\pi\)
0.924771 + 0.380523i \(0.124256\pi\)
\(54\) −11.3525 + 1.69693i −1.54488 + 0.230923i
\(55\) −6.85487 5.08477i −0.924310 0.685630i
\(56\) 0 0
\(57\) −1.36770 3.24827i −0.181157 0.430244i
\(58\) 4.30944 2.48806i 0.565858 0.326698i
\(59\) −3.96509 + 6.86774i −0.516211 + 0.894104i 0.483612 + 0.875283i \(0.339325\pi\)
−0.999823 + 0.0188214i \(0.994009\pi\)
\(60\) −8.05952 7.71082i −1.04048 0.995462i
\(61\) −11.8342 + 6.83249i −1.51522 + 0.874810i −0.515375 + 0.856965i \(0.672347\pi\)
−0.999841 + 0.0178455i \(0.994319\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) −14.4427 1.66267i −1.79139 0.206229i
\(66\) 14.4902 + 1.82186i 1.78362 + 0.224255i
\(67\) 9.34121 + 5.39315i 1.14121 + 0.658878i 0.946730 0.322029i \(-0.104365\pi\)
0.194480 + 0.980906i \(0.437698\pi\)
\(68\) −7.33395 + 4.23426i −0.889372 + 0.513479i
\(69\) 4.78988 2.01681i 0.576634 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i −0.757971 0.652288i \(-0.773809\pi\)
0.757971 0.652288i \(-0.226191\pi\)
\(72\) 5.65016 + 1.44361i 0.665878 + 0.170131i
\(73\) −1.65449 + 2.86566i −0.193643 + 0.335400i −0.946455 0.322836i \(-0.895364\pi\)
0.752812 + 0.658236i \(0.228697\pi\)
\(74\) 6.44074 + 3.71856i 0.748721 + 0.432274i
\(75\) 3.00461 8.12233i 0.346942 0.937886i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 22.9271 9.65357i 2.59598 1.09305i
\(79\) 2.92489 + 5.06605i 0.329075 + 0.569975i 0.982329 0.187164i \(-0.0599296\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(80\) −1.30338 3.00720i −0.145723 0.336215i
\(81\) 7.89697 + 4.31716i 0.877441 + 0.479684i
\(82\) −3.87795 6.71680i −0.428248 0.741746i
\(83\) 2.66330i 0.292336i 0.989260 + 0.146168i \(0.0466939\pi\)
−0.989260 + 0.146168i \(0.953306\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) 13.4631 7.77291i 1.45176 0.838175i
\(87\) −3.87112 0.486717i −0.415028 0.0521815i
\(88\) −6.42561 3.70983i −0.684972 0.395469i
\(89\) −6.75793 11.7051i −0.716339 1.24074i −0.962441 0.271492i \(-0.912483\pi\)
0.246101 0.969244i \(-0.420850\pi\)
\(90\) 2.34385 + 14.6323i 0.247063 + 1.54238i
\(91\) 0 0
\(92\) −8.64156 −0.900945
\(93\) −6.97425 + 9.19951i −0.723196 + 0.953944i
\(94\) 9.58999 + 5.53678i 0.989132 + 0.571075i
\(95\) −4.17481 + 1.80945i −0.428327 + 0.185646i
\(96\) 9.83524 + 7.45621i 1.00381 + 0.760997i
\(97\) 4.46688 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(98\) 0 0
\(99\) −8.19069 8.00200i −0.823195 0.804231i
\(100\) −9.84529 + 10.5083i −0.984529 + 1.05083i
\(101\) 4.43523 7.68205i 0.441322 0.764392i −0.556466 0.830871i \(-0.687843\pi\)
0.997788 + 0.0664781i \(0.0211763\pi\)
\(102\) 11.1631 + 1.40353i 1.10531 + 0.138970i
\(103\) −0.661216 1.14526i −0.0651516 0.112846i 0.831610 0.555361i \(-0.187420\pi\)
−0.896761 + 0.442515i \(0.854086\pi\)
\(104\) −12.6384 −1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) −1.66222 2.87905i −0.160693 0.278328i 0.774425 0.632666i \(-0.218040\pi\)
−0.935117 + 0.354338i \(0.884706\pi\)
\(108\) −9.31604 11.7113i −0.896437 1.12692i
\(109\) −6.14927 + 10.6509i −0.588994 + 1.02017i 0.405371 + 0.914152i \(0.367142\pi\)
−0.994365 + 0.106015i \(0.966191\pi\)
\(110\) 2.15628 18.7304i 0.205593 1.78587i
\(111\) −2.26285 5.37423i −0.214780 0.510099i
\(112\) 0 0
\(113\) −20.4591 −1.92463 −0.962314 0.271941i \(-0.912334\pi\)
−0.962314 + 0.271941i \(0.912334\pi\)
\(114\) 4.70362 6.20438i 0.440534 0.581094i
\(115\) −2.66820 6.15615i −0.248811 0.574064i
\(116\) 5.61823 + 3.24369i 0.521640 + 0.301169i
\(117\) −18.8978 4.82836i −1.74710 0.446382i
\(118\) −17.5183 −1.61269
\(119\) 0 0
\(120\) 1.78732 7.31342i 0.163160 0.667620i
\(121\) 1.78441 + 3.09068i 0.162219 + 0.280971i
\(122\) −26.1425 15.0934i −2.36683 1.36649i
\(123\) −0.758608 + 6.03363i −0.0684014 + 0.544034i
\(124\) 16.6236 9.59763i 1.49284 0.861893i
\(125\) −10.5259 3.76908i −0.941463 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) −7.02295 12.1641i −0.620747 1.07517i
\(129\) −12.0937 1.52055i −1.06479 0.133877i
\(130\) −12.7715 29.4668i −1.12013 2.58441i
\(131\) 2.90591 + 5.03319i 0.253891 + 0.439752i 0.964594 0.263741i \(-0.0849563\pi\)
−0.710703 + 0.703492i \(0.751623\pi\)
\(132\) 7.38852 + 17.5476i 0.643088 + 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) 5.46653 10.2527i 0.470484 0.882409i
\(136\) −4.95020 2.85800i −0.424476 0.245071i
\(137\) −0.546844 + 0.947161i −0.0467200 + 0.0809215i −0.888440 0.458993i \(-0.848210\pi\)
0.841720 + 0.539915i \(0.181544\pi\)
\(138\) 9.14894 + 6.93592i 0.778810 + 0.590425i
\(139\) 7.35968i 0.624240i 0.950043 + 0.312120i \(0.101039\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(140\) 0 0
\(141\) −3.36929 8.00200i −0.283745 0.673890i
\(142\) 21.0299 12.1416i 1.76479 1.01890i
\(143\) 21.4913 + 12.4080i 1.79720 + 1.03761i
\(144\) −1.18750 4.23386i −0.0989585 0.352822i
\(145\) −0.576060 + 5.00390i −0.0478392 + 0.415551i
\(146\) −7.30973 −0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) 9.36993 5.40973i 0.767615 0.443183i −0.0644082 0.997924i \(-0.520516\pi\)
0.832023 + 0.554741i \(0.187183\pi\)
\(150\) 18.8576 3.22324i 1.53971 0.263177i
\(151\) 4.14799 7.18453i 0.337559 0.584669i −0.646414 0.762987i \(-0.723732\pi\)
0.983973 + 0.178318i \(0.0570655\pi\)
\(152\) −3.42559 + 1.97777i −0.277852 + 0.160418i
\(153\) −6.30999 6.16463i −0.510132 0.498381i
\(154\) 0 0
\(155\) 11.9700 + 8.87905i 0.961454 + 0.713183i
\(156\) 25.8443 + 19.5929i 2.06920 + 1.56868i
\(157\) 2.70593 4.68680i 0.215957 0.374048i −0.737612 0.675225i \(-0.764046\pi\)
0.953568 + 0.301178i \(0.0973797\pi\)
\(158\) −6.46126 + 11.1912i −0.514030 + 0.890326i
\(159\) −2.66971 2.02394i −0.211722 0.160509i
\(160\) 9.49264 12.7972i 0.750459 1.01171i
\(161\) 0 0
\(162\) 0.463276 + 19.8762i 0.0363984 + 1.56162i
\(163\) −14.8583 + 8.57846i −1.16379 + 0.671917i −0.952210 0.305443i \(-0.901195\pi\)
−0.211584 + 0.977360i \(0.567862\pi\)
\(164\) 5.05569 8.75671i 0.394783 0.683784i
\(165\) −10.2194 + 10.6816i −0.795580 + 0.831559i
\(166\) −5.09518 + 2.94170i −0.395463 + 0.228320i
\(167\) 9.60588i 0.743325i 0.928368 + 0.371663i \(0.121212\pi\)
−0.928368 + 0.371663i \(0.878788\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) 1.66117 14.4296i 0.127406 1.10670i
\(171\) −5.87775 + 1.64858i −0.449483 + 0.126070i
\(172\) 17.5518 + 10.1336i 1.33832 + 0.772677i
\(173\) −8.80967 + 5.08627i −0.669787 + 0.386702i −0.795996 0.605302i \(-0.793052\pi\)
0.126209 + 0.992004i \(0.459719\pi\)
\(174\) −3.34464 7.94346i −0.253556 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) 10.9456 + 8.29801i 0.822724 + 0.623716i
\(178\) 14.9287 25.8573i 1.11895 1.93808i
\(179\) −20.4854 11.8273i −1.53115 0.884011i −0.999309 0.0371678i \(-0.988166\pi\)
−0.531843 0.846843i \(-0.678500\pi\)
\(180\) −14.9926 + 12.1844i −1.11748 + 0.908170i
\(181\) 15.6330i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(182\) 0 0
\(183\) 9.18476 + 21.8136i 0.678957 + 1.61251i
\(184\) −2.91640 5.05135i −0.215000 0.372391i
\(185\) −6.90717 + 2.99371i −0.507826 + 0.220102i
\(186\) −25.3029 3.18134i −1.85530 0.233267i
\(187\) 5.61181 + 9.71993i 0.410376 + 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) −9.33503 + 5.38958i −0.675459 + 0.389976i −0.798142 0.602470i \(-0.794183\pi\)
0.122683 + 0.992446i \(0.460850\pi\)
\(192\) −2.76778 + 22.0136i −0.199747 + 1.58870i
\(193\) −1.59886 0.923104i −0.115089 0.0664465i 0.441351 0.897335i \(-0.354500\pi\)
−0.556439 + 0.830888i \(0.687833\pi\)
\(194\) 4.93381 + 8.54561i 0.354227 + 0.613539i
\(195\) −5.97795 + 24.4607i −0.428090 + 1.75167i
\(196\) 0 0
\(197\) 8.09941 0.577059 0.288530 0.957471i \(-0.406834\pi\)
0.288530 + 0.957471i \(0.406834\pi\)
\(198\) 6.26180 24.5081i 0.445006 1.74172i
\(199\) 8.74922 + 5.05137i 0.620216 + 0.358082i 0.776953 0.629559i \(-0.216764\pi\)
−0.156737 + 0.987640i \(0.550098\pi\)
\(200\) −9.46519 2.20858i −0.669290 0.156170i
\(201\) 11.2866 14.8878i 0.796094 1.05010i
\(202\) 19.5954 1.37873
\(203\) 0 0
\(204\) 5.69201 + 13.5184i 0.398521 + 0.946480i
\(205\) 7.79919 + 0.897861i 0.544719 + 0.0627093i
\(206\) 1.46067 2.52995i 0.101770 0.176270i
\(207\) −2.43098 8.66729i −0.168965 0.602418i
\(208\) 4.76486 + 8.25298i 0.330383 + 0.572241i
\(209\) 7.76686 0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) 2.78525 + 4.82419i 0.191292 + 0.331327i
\(213\) −18.8909 2.37516i −1.29439 0.162743i
\(214\) 3.67195 6.36000i 0.251009 0.434761i
\(215\) −1.79966 + 15.6326i −0.122736 + 1.06614i
\(216\) 3.70170 9.39800i 0.251869 0.639453i
\(217\) 0 0
\(218\) −27.1683 −1.84007
\(219\) 4.56720 + 3.46245i 0.308623 + 0.233971i
\(220\) 22.5529 9.77488i 1.52052 0.659023i
\(221\) 16.5566 + 9.55898i 1.11372 + 0.643006i
\(222\) 7.78207 10.2651i 0.522299 0.688947i
\(223\) −4.13183 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(224\) 0 0
\(225\) −13.3092 6.91848i −0.887280 0.461232i
\(226\) −22.5977 39.1404i −1.50318 2.60358i
\(227\) 6.21430 + 3.58783i 0.412458 + 0.238132i 0.691845 0.722046i \(-0.256798\pi\)
−0.279388 + 0.960178i \(0.590131\pi\)
\(228\) 10.0711 + 1.26623i 0.666972 + 0.0838584i
\(229\) 9.05093 5.22556i 0.598102 0.345315i −0.170192 0.985411i \(-0.554439\pi\)
0.768295 + 0.640096i \(0.221106\pi\)
\(230\) 8.83025 11.9042i 0.582250 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) −1.95072 3.37875i −0.127796 0.221349i 0.795026 0.606575i \(-0.207457\pi\)
−0.922822 + 0.385226i \(0.874124\pi\)
\(234\) −11.6360 41.4865i −0.760670 2.71206i
\(235\) −10.2845 + 4.45751i −0.670886 + 0.290776i
\(236\) −11.4193 19.7788i −0.743334 1.28749i
\(237\) 9.33810 3.93186i 0.606574 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i −0.638844 0.769336i \(-0.720587\pi\)
0.638844 0.769336i \(-0.279413\pi\)
\(240\) −5.44956 + 1.59013i −0.351768 + 0.102642i
\(241\) 11.5030 + 6.64126i 0.740974 + 0.427801i 0.822423 0.568876i \(-0.192622\pi\)
−0.0814495 + 0.996677i \(0.525955\pi\)
\(242\) −3.94187 + 6.82752i −0.253393 + 0.438889i
\(243\) 9.12542 12.6383i 0.585396 0.810747i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 + 5.21303i −0.789375 + 0.332371i
\(247\) 11.4574 6.61492i 0.729015 0.420897i
\(248\) 11.2204 + 6.47812i 0.712498 + 0.411361i
\(249\) 4.57694 + 0.575459i 0.290052 + 0.0364682i
\(250\) −4.41551 24.3002i −0.279261 1.53688i
\(251\) −9.12747 −0.576121 −0.288060 0.957612i \(-0.593010\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) 1.14275 0.659769i 0.0717027 0.0413976i
\(255\) −7.87289 + 8.22893i −0.493020 + 0.515315i
\(256\) 2.70450 4.68433i 0.169031 0.292770i
\(257\) −5.79051 + 3.34315i −0.361202 + 0.208540i −0.669608 0.742715i \(-0.733538\pi\)
0.308406 + 0.951255i \(0.400205\pi\)
\(258\) −10.4489 24.8161i −0.650523 1.54498i
\(259\) 0 0
\(260\) 24.9440 33.6275i 1.54696 2.08549i
\(261\) −1.67287 + 6.54744i −0.103548 + 0.405277i
\(262\) −6.41935 + 11.1186i −0.396588 + 0.686911i
\(263\) 12.0642 20.8958i 0.743908 1.28849i −0.206795 0.978384i \(-0.566303\pi\)
0.950703 0.310103i \(-0.100363\pi\)
\(264\) −7.76379 + 10.2410i −0.477828 + 0.630288i
\(265\) −2.57672 + 3.47371i −0.158286 + 0.213389i
\(266\) 0 0
\(267\) −21.5756 + 9.08453i −1.32041 + 0.555964i
\(268\) −26.9023 + 15.5321i −1.64332 + 0.948771i
\(269\) 9.50393 16.4613i 0.579465 1.00366i −0.416076 0.909330i \(-0.636595\pi\)
0.995541 0.0943328i \(-0.0300718\pi\)
\(270\) 25.6524 0.866351i 1.56115 0.0527244i
\(271\) −10.2612 + 5.92429i −0.623321 + 0.359875i −0.778161 0.628065i \(-0.783847\pi\)
0.154840 + 0.987940i \(0.450514\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) 13.9270 + 13.0483i 0.839832 + 0.786842i
\(276\) −1.86718 + 14.8507i −0.112391 + 0.893907i
\(277\) −14.3051 8.25906i −0.859511 0.496239i 0.00433762 0.999991i \(-0.498619\pi\)
−0.863848 + 0.503752i \(0.831953\pi\)
\(278\) −14.0798 + 8.12900i −0.844452 + 0.487545i
\(279\) 14.3026 + 13.9731i 0.856275 + 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i 0.953471 + 0.301484i \(0.0974820\pi\)
−0.953471 + 0.301484i \(0.902518\pi\)
\(282\) 11.5872 15.2843i 0.690007 0.910165i
\(283\) −3.00101 + 5.19791i −0.178392 + 0.308984i −0.941330 0.337488i \(-0.890423\pi\)
0.762938 + 0.646472i \(0.223756\pi\)
\(284\) 27.4167 + 15.8291i 1.62688 + 0.939282i
\(285\) 2.20753 + 7.56547i 0.130763 + 0.448140i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) 14.9388 15.2910i 0.880275 0.901031i
\(289\) −4.17674 7.23433i −0.245691 0.425549i
\(290\) −10.2093 + 4.42490i −0.599508 + 0.259839i
\(291\) 0.965157 7.67642i 0.0565785 0.450000i
\(292\) −4.76486 8.25298i −0.278842 0.482969i
\(293\) 3.55369i 0.207609i −0.994598 0.103805i \(-0.966898\pi\)
0.994598 0.103805i \(-0.0331016\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) −5.66760 + 3.27219i −0.329422 + 0.190192i
\(297\) −15.5214 + 12.3469i −0.900641 + 0.716438i
\(298\) 20.6988 + 11.9504i 1.19905 + 0.692271i
\(299\) 9.75431 + 16.8950i 0.564106 + 0.977061i
\(300\) 15.9315 + 19.1899i 0.919805 + 1.10793i
\(301\) 0 0
\(302\) 18.3264 1.05456
\(303\) −12.2434 9.28190i −0.703367 0.533231i
\(304\) 2.58299 + 1.49129i 0.148145 + 0.0855314i
\(305\) 28.0358 12.1513i 1.60532 0.695780i
\(306\) 4.82400 18.8807i 0.275770 1.07934i
\(307\) −29.0345 −1.65709 −0.828544 0.559923i \(-0.810831\pi\)
−0.828544 + 0.559923i \(0.810831\pi\)
\(308\) 0 0
\(309\) −2.11102 + 0.888858i −0.120092 + 0.0505654i
\(310\) −3.76531 + 32.7071i −0.213855 + 1.85764i
\(311\) −4.32216 + 7.48620i −0.245087 + 0.424503i −0.962156 0.272499i \(-0.912150\pi\)
0.717069 + 0.697002i \(0.245483\pi\)
\(312\) −2.73078 + 21.7194i −0.154600 + 1.22962i
\(313\) −5.42607 9.39824i −0.306700 0.531220i 0.670938 0.741513i \(-0.265891\pi\)
−0.977638 + 0.210293i \(0.932558\pi\)
\(314\) 11.9551 0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) −4.67046 8.08947i −0.262319 0.454350i 0.704539 0.709665i \(-0.251154\pi\)
−0.966858 + 0.255316i \(0.917821\pi\)
\(318\) 0.923229 7.34294i 0.0517721 0.411772i
\(319\) 4.29897 7.44604i 0.240696 0.416898i
\(320\) 28.4553 + 3.27584i 1.59070 + 0.183125i
\(321\) −5.30686 + 2.23448i −0.296200 + 0.124717i
\(322\) 0 0
\(323\) 5.98348 0.332930
\(324\) −22.1390 + 13.4794i −1.22994 + 0.748853i
\(325\) 31.6576 + 7.38690i 1.75605 + 0.409752i
\(326\) −32.8230 18.9504i −1.81790 1.04956i
\(327\) 16.9750 + 12.8690i 0.938722 + 0.711656i
\(328\) 6.82488 0.376841
\(329\) 0 0
\(330\) −31.7226 7.75268i −1.74627 0.426771i
\(331\) −1.45459 2.51942i −0.0799515 0.138480i 0.823277 0.567639i \(-0.192143\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(332\) −6.64260 3.83511i −0.364560 0.210479i
\(333\) −9.72466 + 2.72755i −0.532908 + 0.149469i
\(334\) −18.3771 + 10.6100i −1.00555 + 0.580553i
\(335\) −19.3713 14.3692i −1.05837 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) 32.3307 + 55.9983i 1.75856 + 3.04591i
\(339\) −4.42059 + 35.1593i −0.240093 + 1.90959i
\(340\) 17.3744 7.53043i 0.942261 0.408395i
\(341\) −12.7201 22.0318i −0.688830 1.19309i
\(342\) −9.64606 9.42384i −0.521599 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) −11.1560 + 3.25520i −0.600618 + 0.175254i
\(346\) −19.4611 11.2359i −1.04624 0.604045i
\(347\) −15.7892 + 27.3477i −0.847609 + 1.46810i 0.0357279 + 0.999362i \(0.488625\pi\)
−0.883336 + 0.468739i \(0.844708\pi\)
\(348\) 6.78827 8.95418i 0.363890 0.479995i
\(349\) 8.25024i 0.441625i 0.975316 + 0.220813i \(0.0708709\pi\)
−0.975316 + 0.220813i \(0.929129\pi\)
\(350\) 0 0
\(351\) −12.3809 + 31.4329i −0.660842 + 1.67777i
\(352\) −23.5543 + 13.5991i −1.25545 + 0.724834i
\(353\) −3.71360 2.14405i −0.197655 0.114116i 0.397906 0.917426i \(-0.369737\pi\)
−0.595561 + 0.803310i \(0.703070\pi\)
\(354\) −3.78517 + 30.1055i −0.201180 + 1.60009i
\(355\) −2.81115 + 24.4188i −0.149200 + 1.29602i
\(356\) 38.9252 2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) 6.17938 3.56767i 0.326135 0.188294i −0.327989 0.944682i \(-0.606371\pi\)
0.654124 + 0.756387i \(0.273037\pi\)
\(360\) −12.1821 4.65176i −0.642052 0.245169i
\(361\) −7.42968 + 12.8686i −0.391036 + 0.677294i
\(362\) 29.9076 17.2672i 1.57191 0.907542i
\(363\) 5.69696 2.39874i 0.299013 0.125901i
\(364\) 0 0
\(365\) 4.40811 5.94265i 0.230731 0.311053i
\(366\) −31.5869 + 41.6653i −1.65107 + 2.17788i
\(367\) −12.1957 + 21.1235i −0.636609 + 1.10264i 0.349563 + 0.936913i \(0.386330\pi\)
−0.986172 + 0.165726i \(0.947003\pi\)
\(368\) −2.19905 + 3.80886i −0.114633 + 0.198551i
\(369\) 10.2050 + 2.60737i 0.531251 + 0.135734i
\(370\) −13.3565 9.90750i −0.694370 0.515067i
\(371\) 0 0
\(372\) −12.9019 30.6417i −0.668931 1.58870i
\(373\) 19.0999 11.0273i 0.988956 0.570974i 0.0839940 0.996466i \(-0.473232\pi\)
0.904962 + 0.425492i \(0.139899\pi\)
\(374\) −12.3968 + 21.4719i −0.641025 + 1.11029i
\(375\) −8.75157 + 17.2745i −0.451929 + 0.892054i
\(376\) −8.43881 + 4.87215i −0.435199 + 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) 1.49867 13.0181i 0.0768800 0.667812i
\(381\) −1.02652 0.129065i −0.0525903 0.00661218i
\(382\) −20.6217 11.9059i −1.05510 0.609160i
\(383\) −1.84403 + 1.06465i −0.0942255 + 0.0544011i −0.546372 0.837542i \(-0.683992\pi\)
0.452147 + 0.891944i \(0.350658\pi\)
\(384\) −22.4217 + 9.44079i −1.14420 + 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) −5.22618 + 20.4548i −0.265662 + 1.03978i
\(388\) −6.43222 + 11.1409i −0.326546 + 0.565595i
\(389\) −20.9207 12.0785i −1.06072 0.612406i −0.135088 0.990834i \(-0.543132\pi\)
−0.925631 + 0.378427i \(0.876465\pi\)
\(390\) −53.3988 + 15.5812i −2.70395 + 0.788985i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) 9.27752 3.90635i 0.467989 0.197049i
\(394\) 8.94606 + 15.4950i 0.450696 + 0.780628i
\(395\) −5.20178 12.0017i −0.261730 0.603871i
\(396\) 31.7524 8.90582i 1.59562 0.447534i
\(397\) 6.00792 + 10.4060i 0.301529 + 0.522263i 0.976482 0.215597i \(-0.0691697\pi\)
−0.674954 + 0.737860i \(0.735836\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) −26.6997 + 15.4151i −1.33332 + 0.769792i −0.985807 0.167883i \(-0.946307\pi\)
−0.347513 + 0.937675i \(0.612974\pi\)
\(402\) 40.9482 + 5.14842i 2.04231 + 0.256780i
\(403\) −37.5283 21.6670i −1.86942 1.07931i
\(404\) 12.7733 + 22.1240i 0.635495 + 1.10071i
\(405\) −16.4383 11.6096i −0.816824 0.576887i
\(406\) 0 0
\(407\) 12.8502 0.636959
\(408\) −5.98112 + 7.88949i −0.296109 + 0.390588i
\(409\) −13.5699 7.83456i −0.670986 0.387394i 0.125464 0.992098i \(-0.459958\pi\)
−0.796450 + 0.604704i \(0.793291\pi\)
\(410\) 6.89675 + 15.9124i 0.340606 + 0.785857i
\(411\) 1.50956 + 1.14442i 0.0744611 + 0.0564498i
\(412\) 3.80855 0.187634
\(413\) 0 0
\(414\) 13.8963 14.2240i 0.682968 0.699072i
\(415\) 0.681092 5.91625i 0.0334335 0.290417i
\(416\) −23.1643 + 40.1217i −1.13572 + 1.96713i
\(417\) 12.6478 + 1.59020i 0.619363 + 0.0778726i
\(418\) 8.57874 + 14.8588i 0.419600 + 0.726769i
\(419\) 19.5975 0.957399 0.478699 0.877979i \(-0.341108\pi\)
0.478699 + 0.877979i \(0.341108\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) 11.7984 + 20.4355i 0.574338 + 0.994782i
\(423\) −14.4796 + 4.06120i −0.704023 + 0.197462i
\(424\) −1.87996 + 3.25619i −0.0912990 + 0.158134i
\(425\) 10.7292 + 10.0522i 0.520442 + 0.487605i
\(426\) −16.3217 38.7638i −0.790789 1.87811i
\(427\) 0 0
\(428\) 9.57425 0.462789
\(429\) 25.9671 34.2523i 1.25370 1.65372i
\(430\) −31.8946 + 13.8238i −1.53809 + 0.666642i
\(431\) −24.1528 13.9447i −1.16340 0.671690i −0.211285 0.977425i \(-0.567765\pi\)
−0.952117 + 0.305734i \(0.901098\pi\)
\(432\) −7.53256 + 1.12594i −0.362410 + 0.0541717i
\(433\) 3.47350 0.166926 0.0834629 0.996511i \(-0.473402\pi\)
0.0834629 + 0.996511i \(0.473402\pi\)
\(434\) 0 0
\(435\) 8.47483 + 2.07116i 0.406337 + 0.0993046i
\(436\) −17.7097 30.6740i −0.848139 1.46902i
\(437\) 5.28774 + 3.05288i 0.252947 + 0.146039i
\(438\) −1.57941 + 12.5619i −0.0754672 + 0.600232i
\(439\) 3.41910 1.97402i 0.163185 0.0942147i −0.416184 0.909281i \(-0.636633\pi\)
0.579368 + 0.815066i \(0.303299\pi\)
\(440\) 13.3251 + 9.88423i 0.635249 + 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) −8.01539 13.8831i −0.380823 0.659604i 0.610357 0.792126i \(-0.291026\pi\)
−0.991180 + 0.132522i \(0.957693\pi\)
\(444\) 16.6624 + 2.09497i 0.790764 + 0.0994227i
\(445\) 12.0187 + 27.7298i 0.569740 + 1.31452i
\(446\) −4.56373 7.90462i −0.216099 0.374295i
\(447\) −7.27218 17.2713i −0.343962 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i −0.867241 0.497889i \(-0.834109\pi\)
0.867241 0.497889i \(-0.165891\pi\)
\(450\) −1.46466 33.1036i −0.0690447 1.56052i
\(451\) −11.6056 6.70048i −0.546485 0.315513i
\(452\) 29.4607 51.0274i 1.38571 2.40013i
\(453\) −11.4505 8.68077i −0.537992 0.407858i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 + 6.31429i 0.124503 + 0.295694i
\(457\) −8.31969 + 4.80338i −0.389179 + 0.224692i −0.681804 0.731535i \(-0.738804\pi\)
0.292625 + 0.956227i \(0.405471\pi\)
\(458\) 19.9941 + 11.5436i 0.934262 + 0.539397i
\(459\) −11.9574 + 9.51186i −0.558126 + 0.443975i
\(460\) 19.1963 + 2.20993i 0.895034 + 0.103038i
\(461\) 24.5367 1.14279 0.571393 0.820676i \(-0.306403\pi\)
0.571393 + 0.820676i \(0.306403\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) 2.85938 1.65086i 0.132743 0.0766395i
\(465\) 17.8452 18.6522i 0.827551 0.864975i
\(466\) 4.30927 7.46387i 0.199623 0.345757i
\(467\) 15.5179 8.95926i 0.718083 0.414585i −0.0959639 0.995385i \(-0.530593\pi\)
0.814047 + 0.580800i \(0.197260\pi\)
\(468\) 39.2549 40.1805i 1.81456 1.85735i
\(469\) 0 0
\(470\) −19.8872 14.7519i −0.917330 0.680452i
\(471\) −7.46970 5.66287i −0.344186 0.260931i
\(472\) 7.70770 13.3501i 0.354776 0.614490i
\(473\) 13.4304 23.2621i 0.617529 1.06959i
\(474\) 17.8363 + 13.5219i 0.819247 + 0.621081i
\(475\) 9.73665 2.95187i 0.446748 0.135441i
\(476\) 0 0
\(477\) −4.05503 + 4.15064i −0.185667 + 0.190045i
\(478\) 45.5076 26.2738i 2.08147 1.20174i
\(479\) −1.48248 + 2.56774i −0.0677364 + 0.117323i −0.897905 0.440190i \(-0.854911\pi\)
0.830168 + 0.557513i \(0.188244\pi\)
\(480\) −19.9412 19.0784i −0.910186 0.870805i
\(481\) 18.9561 10.9443i 0.864322 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) −9.92271 1.14232i −0.450567 0.0518703i
\(486\) 34.2577 + 3.49849i 1.55396 + 0.158695i
\(487\) 28.8004 + 16.6279i 1.30507 + 0.753482i 0.981269 0.192644i \(-0.0617061\pi\)
0.323800 + 0.946125i \(0.395039\pi\)
\(488\) 23.0044 13.2816i 1.04136 0.601230i
\(489\) 11.5318 + 27.3879i 0.521487 + 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i 0.818043 + 0.575157i \(0.195059\pi\)
−0.818043 + 0.575157i \(0.804941\pi\)
\(492\) −13.9562 10.5804i −0.629194 0.477000i
\(493\) 3.31187 5.73632i 0.149159 0.258351i
\(494\) 25.3101 + 14.6128i 1.13875 + 0.657460i
\(495\) 16.1484 + 19.8702i 0.725816 + 0.893101i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) 3.95447 + 9.39179i 0.177204 + 0.420856i
\(499\) 16.8358 + 29.1604i 0.753673 + 1.30540i 0.946031 + 0.324076i \(0.105053\pi\)
−0.192358 + 0.981325i \(0.561613\pi\)
\(500\) 24.5576 20.8254i 1.09825 0.931339i
\(501\) 16.5079 + 2.07554i 0.737519 + 0.0927283i
\(502\) −10.0816 17.4618i −0.449963 0.779358i
\(503\) 35.2418i 1.57135i 0.618637 + 0.785677i \(0.287685\pi\)
−0.618637 + 0.785677i \(0.712315\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) −21.9107 + 12.6502i −0.974050 + 0.562368i
\(507\) 6.32456 50.3027i 0.280884 2.23402i
\(508\) 1.48981 + 0.860142i 0.0660996 + 0.0381626i
\(509\) −11.5914 20.0770i −0.513782 0.889896i −0.999872 0.0159875i \(-0.994911\pi\)
0.486090 0.873908i \(-0.338423\pi\)
\(510\) −24.4387 5.97256i −1.08216 0.264469i
\(511\) 0 0
\(512\) −16.1430 −0.713426
\(513\) 1.56311 + 10.4572i 0.0690129 + 0.461698i
\(514\) −12.7916 7.38523i −0.564213 0.325749i
\(515\) 1.17594 + 2.71317i 0.0518183 + 0.119557i
\(516\) 21.2072 27.9737i 0.933593 1.23147i
\(517\) 19.1334 0.841484
\(518\) 0 0
\(519\) 6.83735 + 16.2386i 0.300126 + 0.712795i
\(520\) 28.0749 + 3.23205i 1.23117 + 0.141735i
\(521\) 7.18762 12.4493i 0.314895 0.545415i −0.664520 0.747271i \(-0.731364\pi\)
0.979415 + 0.201856i \(0.0646972\pi\)
\(522\) −14.3737 + 4.03149i −0.629119 + 0.176454i
\(523\) −12.6242 21.8658i −0.552018 0.956124i −0.998129 0.0611461i \(-0.980524\pi\)
0.446110 0.894978i \(-0.352809\pi\)
\(524\) −16.7378 −0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) −9.79936 16.9730i −0.426867 0.739355i
\(528\) 9.61448 + 1.20883i 0.418417 + 0.0526075i
\(529\) 6.99825 12.1213i 0.304272 0.527014i
\(530\) −9.49164 1.09270i −0.412291 0.0474638i
\(531\) 16.6253 17.0173i 0.721477 0.738489i
\(532\) 0 0
\(533\) −22.8268 −0.988737
\(534\) −41.2106 31.2422i −1.78336 1.35198i
\(535\) 2.95618 + 6.82059i 0.127807 + 0.294880i
\(536\) −18.1583 10.4837i −0.784318 0.452826i
\(537\) −24.7517 + 32.6491i −1.06811 + 1.40891i
\(538\) 41.9896 1.81030
\(539\) 0 0
\(540\) 17.6997 + 28.3978i 0.761673 + 1.22205i
\(541\) −7.88973 13.6654i −0.339206 0.587522i 0.645078 0.764117i \(-0.276825\pi\)
−0.984284 + 0.176595i \(0.943492\pi\)
\(542\) −22.6676 13.0871i −0.973655 0.562140i
\(543\) −26.8657 3.37782i −1.15292 0.144956i
\(544\) −18.1459 + 10.4766i −0.778000 + 0.449179i
\(545\) 16.3837 22.0872i 0.701802 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) −1.57489 2.72779i −0.0672759 0.116525i
\(549\) 39.4717 11.0709i 1.68461 0.472496i
\(550\) −9.57991 + 41.0561i −0.408489 + 1.75064i
\(551\) −2.29185 3.96960i −0.0976360 0.169111i
\(552\) −9.31100 + 3.92045i −0.396303 + 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 3.65232 + 12.5170i 0.155032 + 0.531316i
\(556\) −18.3559 10.5978i −0.778464 0.449446i
\(557\) 14.4676 25.0586i 0.613011 1.06177i −0.377719 0.925920i \(-0.623292\pi\)
0.990730 0.135845i \(-0.0433750\pi\)
\(558\) −10.9344 + 42.7962i −0.462889 + 1.81171i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 7.54382i 0.756433 0.318500i
\(562\) −19.3369 + 11.1641i −0.815677 + 0.470931i
\(563\) −5.39368 3.11404i −0.227316 0.131241i 0.382017 0.924155i \(-0.375230\pi\)
−0.609333 + 0.792914i \(0.708563\pi\)
\(564\) 24.8097 + 3.11932i 1.04467 + 0.131347i
\(565\) 45.4477 + 5.23204i 1.91200 + 0.220114i
\(566\) −13.2589 −0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) −8.56862 + 4.94710i −0.359215 + 0.207393i −0.668736 0.743500i \(-0.733165\pi\)
0.309521 + 0.950893i \(0.399831\pi\)
\(570\) −12.0353 + 12.5795i −0.504102 + 0.526899i
\(571\) −9.60472 + 16.6359i −0.401945 + 0.696189i −0.993961 0.109737i \(-0.964999\pi\)
0.592015 + 0.805927i \(0.298332\pi\)
\(572\) −61.8942 + 35.7347i −2.58793 + 1.49414i
\(573\) 7.24509 + 17.2070i 0.302668 + 0.718831i
\(574\) 0 0
\(575\) 4.35281 + 14.3576i 0.181525 + 0.598753i
\(576\) 37.2329 + 9.51296i 1.55137 + 0.396373i
\(577\) 19.0377 32.9742i 0.792549 1.37273i −0.131835 0.991272i \(-0.542087\pi\)
0.924384 0.381463i \(-0.124580\pi\)
\(578\) 9.22669 15.9811i 0.383780 0.664726i
\(579\) −1.93184 + 2.54823i −0.0802845 + 0.105901i
\(580\) −11.6508 8.64228i −0.483773 0.358851i
\(581\) 0 0
\(582\) 15.7519 6.63241i 0.652935 0.274922i
\(583\) 6.39367 3.69139i 0.264799 0.152882i
\(584\) 3.21614 5.57052i 0.133085 0.230510i
\(585\) 40.7446 + 15.5585i 1.68458 + 0.643263i
\(586\) 6.79859 3.92517i 0.280847 0.162147i
\(587\) 11.9232i 0.492124i −0.969254 0.246062i \(-0.920863\pi\)
0.969254 0.246062i \(-0.0791367\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) 38.9151 + 4.47999i 1.60211 + 0.184438i
\(591\) 1.75004 13.9190i 0.0719869 0.572552i
\(592\) 4.27353 + 2.46732i 0.175641 + 0.101406i
\(593\) 14.5994 8.42896i 0.599525 0.346136i −0.169330 0.985559i \(-0.554160\pi\)
0.768855 + 0.639424i \(0.220827\pi\)
\(594\) −40.7647 16.0565i −1.67260 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) 10.5713 13.9443i 0.432655 0.570701i
\(598\) −21.5479 + 37.3220i −0.881159 + 1.52621i
\(599\) −11.7736 6.79751i −0.481058 0.277739i 0.239800 0.970822i \(-0.422918\pi\)
−0.720857 + 0.693084i \(0.756252\pi\)
\(600\) −5.84063 + 15.7889i −0.238443 + 0.644580i
\(601\) 46.2155i 1.88517i 0.333966 + 0.942585i \(0.391613\pi\)
−0.333966 + 0.942585i \(0.608387\pi\)
\(602\) 0 0
\(603\) −23.1462 22.6130i −0.942588 0.920874i
\(604\) 11.9461 + 20.6912i 0.486078 + 0.841912i
\(605\) −3.17349 7.32196i −0.129021 0.297680i
\(606\) 4.23398 33.6751i 0.171994 1.36796i
\(607\) −4.37164 7.57190i −0.177439 0.307334i 0.763563 0.645733i \(-0.223448\pi\)
−0.941003 + 0.338399i \(0.890115\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) 28.2248 16.2956i 1.14185 0.659249i
\(612\) 24.4616 6.86092i 0.988801 0.277336i
\(613\) 21.0938 + 12.1785i 0.851970 + 0.491885i 0.861315 0.508071i \(-0.169641\pi\)
−0.00934480 + 0.999956i \(0.502975\pi\)
\(614\) −32.0696 55.5461i −1.29422 2.24166i
\(615\) 3.22816 13.2091i 0.130172 0.532641i
\(616\) 0 0
\(617\) 25.3125 1.01904 0.509522 0.860458i \(-0.329822\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(618\) −4.03217 3.05684i −0.162198 0.122964i
\(619\) −26.2018 15.1276i −1.05314 0.608029i −0.129612 0.991565i \(-0.541373\pi\)
−0.923526 + 0.383535i \(0.874706\pi\)
\(620\) −39.3820 + 17.0690i −1.58162 + 0.685506i
\(621\) −15.4202 + 2.30495i −0.618790 + 0.0924944i
\(622\) −19.0958 −0.765673
\(623\) 0 0
\(624\) 15.2125 6.40529i 0.608986 0.256417i
\(625\) 22.4183 + 11.0644i 0.896730 + 0.442577i
\(626\) 11.9865 20.7613i 0.479079 0.829788i
\(627\) 1.67818 13.3475i 0.0670202 0.533048i
\(628\) 7.79296 + 13.4978i 0.310973 + 0.538621i
\(629\) 9.89959 0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) −5.68566 9.84784i −0.226163 0.391726i
\(633\) 2.30802 18.3569i 0.0917355 0.729623i
\(634\) 10.3173 17.8701i 0.409754 0.709714i
\(635\) −0.152756 + 1.32690i −0.00606194 + 0.0526566i
\(636\) 8.89228 3.74415i 0.352602 0.148465i
\(637\) 0 0
\(638\) 18.9934 0.751956
\(639\) −8.16352 + 31.9513i −0.322944 + 1.26397i
\(640\) 12.4900 + 28.8173i 0.493711 + 1.13910i
\(641\) 0.111457 + 0.0643495i 0.00440227 + 0.00254165i 0.502200 0.864752i \(-0.332524\pi\)
−0.497797 + 0.867293i \(0.665858\pi\)
\(642\) −10.1364 7.68452i −0.400052 0.303284i
\(643\) 0.150563 0.00593763 0.00296881 0.999996i \(-0.499055\pi\)
0.00296881 + 0.999996i \(0.499055\pi\)
\(644\) 0 0
\(645\) 26.4761 + 6.47049i 1.04250 + 0.254775i
\(646\) 6.60894 + 11.4470i 0.260025 + 0.450377i
\(647\) 35.8147 + 20.6776i 1.40802 + 0.812920i 0.995197 0.0978912i \(-0.0312097\pi\)
0.412822 + 0.910812i \(0.364543\pi\)
\(648\) −15.3508 8.39208i −0.603038 0.329672i
\(649\) −26.2136 + 15.1344i −1.02897 + 0.594078i
\(650\) 20.8350 + 68.7235i 0.817214 + 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) −14.7304 25.5138i −0.576446 0.998433i −0.995883 0.0906487i \(-0.971106\pi\)
0.419437 0.907784i \(-0.362227\pi\)
\(654\) −5.87024 + 46.6892i −0.229545 + 1.82569i
\(655\) −5.16804 11.9238i −0.201932 0.465903i
\(656\) −2.57308 4.45670i −0.100462 0.174005i
\(657\) 6.93713 7.10071i 0.270643 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i 0.899165 + 0.437610i \(0.144175\pi\)
−0.899165 + 0.437610i \(0.855825\pi\)
\(660\) −11.9253 40.8697i −0.464193 1.59085i
\(661\) −20.3164 11.7297i −0.790218 0.456233i 0.0498213 0.998758i \(-0.484135\pi\)
−0.840039 + 0.542526i \(0.817468\pi\)
\(662\) 3.21328 5.56557i 0.124888 0.216312i
\(663\) 20.0047 26.3875i 0.776918 1.02481i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 15.5916i −0.618409 0.604163i
\(667\) 5.85354 3.37954i 0.226650 0.130856i
\(668\) −23.9582 13.8323i −0.926971 0.535187i
\(669\) −0.892762 + 7.10063i −0.0345162 + 0.274526i
\(670\) 6.09349 52.9306i 0.235412 2.04489i
\(671\) −52.1580 −2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) 29.2533 16.8894i 1.12680 0.650555i
\(675\) −14.7653 + 21.3773i −0.568315 + 0.822811i
\(676\) −42.1496 + 73.0052i −1.62114 + 2.80789i
\(677\) 39.5783 22.8505i 1.52112 0.878217i 0.521427 0.853296i \(-0.325400\pi\)
0.999689 0.0249214i \(-0.00793355\pi\)
\(678\) −72.1462 + 30.3776i −2.77076 + 1.16664i
\(679\) 0 0
\(680\) 10.2655 + 7.61467i 0.393663 + 0.292009i
\(681\) 7.50848 9.90418i 0.287725 0.379529i
\(682\) 28.0994 48.6697i 1.07598 1.86366i
\(683\) −19.3444 + 33.5055i −0.740192 + 1.28205i 0.212215 + 0.977223i \(0.431932\pi\)
−0.952407 + 0.304828i \(0.901401\pi\)
\(684\) 4.35210 17.0337i 0.166407 0.651300i
\(685\) 1.45698 1.96418i 0.0556682 0.0750473i
\(686\) 0 0
\(687\) −7.02460 16.6833i −0.268005 0.636508i
\(688\) 8.93296 5.15745i 0.340566 0.196626i
\(689\) 6.28779 10.8908i 0.239546 0.414905i
\(690\) −18.5497 17.7471i −0.706175 0.675621i
\(691\) −16.6768 + 9.62834i −0.634415 + 0.366279i −0.782460 0.622701i \(-0.786035\pi\)
0.148045 + 0.988981i \(0.452702\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) 1.88211 16.3488i 0.0713923 0.620144i
\(696\) 7.52504 + 0.946123i 0.285236 + 0.0358627i
\(697\) −8.94077 5.16195i −0.338656 0.195523i
\(698\) −15.7836 + 9.11265i −0.597417 + 0.344919i
\(699\) −6.22794 + 2.62231i −0.235562 + 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i 0.991823 + 0.127619i \(0.0407334\pi\)
−0.991823 + 0.127619i \(0.959267\pi\)
\(702\) −73.8096 + 11.0328i −2.78576 + 0.416405i
\(703\) 3.42531 5.93282i 0.129188 0.223760i
\(704\) −42.3428 24.4466i −1.59586 0.921367i
\(705\) 5.43815 + 18.6372i 0.204813 + 0.701919i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) −36.4577 + 15.3507i −1.37016 + 0.576916i
\(709\) −2.44586 4.23635i −0.0918561 0.159099i 0.816436 0.577436i \(-0.195947\pi\)
−0.908292 + 0.418336i \(0.862613\pi\)
\(710\) −49.8208 + 21.5933i −1.86974 + 0.810384i
\(711\) −4.73930 16.8973i −0.177738 0.633697i
\(712\) 13.1367 + 22.7534i 0.492318 + 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) 58.9972 34.0620i 2.20483 1.27296i
\(717\) −40.8790 5.13971i −1.52665 0.191946i
\(718\) 13.6506 + 7.88121i 0.509438 + 0.294124i
\(719\) 19.0108 + 32.9277i 0.708985 + 1.22800i 0.965234 + 0.261387i \(0.0841798\pi\)
−0.256249 + 0.966611i \(0.582487\pi\)
\(720\) 1.55518 + 9.70876i 0.0579581 + 0.361824i
\(721\) 0 0
\(722\) −32.8253 −1.22163
\(723\) 13.8986 18.3332i 0.516894 0.681818i
\(724\) 38.9906 + 22.5112i 1.44907 + 0.836624i
\(725\) 2.55931 10.9683i 0.0950506 0.407353i
\(726\) 10.8815 + 8.24940i 0.403851 + 0.306164i
\(727\) 18.6502 0.691699 0.345849 0.938290i \(-0.387591\pi\)
0.345849 + 0.938290i \(0.387591\pi\)
\(728\) 0 0
\(729\) −19.7475 18.4130i −0.731387 0.681962i
\(730\) 16.2378 + 1.86933i 0.600988 + 0.0691872i
\(731\) 10.3466 17.9208i 0.382681 0.662824i
\(732\) −67.6317 8.50333i −2.49974 0.314292i
\(733\) −18.7967 32.5568i −0.694271 1.20251i −0.970426 0.241399i \(-0.922394\pi\)
0.276155 0.961113i \(-0.410940\pi\)
\(734\) −53.8821 −1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) 20.5852 + 35.6546i 0.758264 + 1.31335i
\(738\) 6.28358 + 22.4032i 0.231302 + 0.824672i
\(739\) 24.7189 42.8144i 0.909300 1.57495i 0.0942603 0.995548i \(-0.469951\pi\)
0.815039 0.579406i \(-0.196715\pi\)
\(740\) 2.47953 21.5382i 0.0911492 0.791760i
\(741\) −8.89228 21.1190i −0.326666 0.775826i
\(742\) 0 0
\(743\) 42.7477 1.56826 0.784131 0.620596i \(-0.213109\pi\)
0.784131 + 0.620596i \(0.213109\pi\)
\(744\) 13.5572 17.8828i 0.497030 0.655616i
\(745\) −22.1978 + 9.62097i −0.813264 + 0.352485i
\(746\) 42.1929 + 24.3601i 1.54479 + 0.891886i
\(747\) 1.97788 7.74123i 0.0723667 0.283237i
\(748\) −32.3236 −1.18187
\(749\) 0 0
\(750\) −42.7144 + 2.33761i −1.55971 + 0.0853575i
\(751\) −2.79526 4.84152i −0.102000 0.176670i 0.810508 0.585727i \(-0.199191\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(752\) 6.36310 + 3.67374i 0.232039 + 0.133968i
\(753\) −1.97217 + 15.6857i −0.0718698 + 0.571620i
\(754\) 28.0183 16.1764i 1.02037 0.589109i
\(755\) −11.0517 + 14.8989i −0.402211 + 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) 1.27906 + 2.21539i 0.0464574 + 0.0804666i
\(759\) 19.6822 + 2.47464i 0.714417 + 0.0898237i
\(760\) 8.11537 3.51737i 0.294376 0.127588i
\(761\) 24.5715 + 42.5591i 0.890716 + 1.54277i 0.839019 + 0.544102i \(0.183130\pi\)
0.0516970 + 0.998663i \(0.483537\pi\)
\(762\) −0.886912 2.10640i −0.0321294 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) 12.4405 + 15.3077i 0.449787 + 0.553453i
\(766\) −4.07358 2.35188i −0.147184 0.0849769i
\(767\) −25.7795 + 44.6514i −0.930843 + 1.61227i
\(768\) −7.46575 5.65988i −0.269397 0.204233i
\(769\) 27.0203i 0.974376i 0.873297 + 0.487188i \(0.161977\pi\)
−0.873297 + 0.487188i \(0.838023\pi\)
\(770\) 0 0
\(771\) 4.49412 + 10.6735i 0.161852 + 0.384395i
\(772\) 4.60466 2.65850i 0.165725 0.0956816i
\(773\) −45.8267 26.4581i −1.64827 0.951631i −0.977758 0.209735i \(-0.932740\pi\)
−0.670515 0.741896i \(-0.733927\pi\)
\(774\) −44.9046 + 12.5947i −1.61406 + 0.452708i
\(775\) −24.3195 22.7850i −0.873581 0.818462i
\(776\) −8.68312 −0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) −6.18711 + 3.57213i −0.221676 + 0.127985i
\(780\) −52.3999 50.1327i −1.87622 1.79504i
\(781\) 20.9788 36.3364i 0.750681 1.30022i
\(782\) −16.8797 + 9.74550i −0.603617 + 0.348499i
\(783\) 10.8905 + 4.28956i 0.389193 + 0.153296i
\(784\) 0 0
\(785\) −7.20950 + 9.71926i −0.257318 + 0.346895i
\(786\) 17.7206 + 13.4342i 0.632072 + 0.479181i
\(787\) −8.37879 + 14.5125i −0.298672 + 0.517315i −0.975832 0.218521i \(-0.929877\pi\)
0.677161 + 0.735835i \(0.263210\pi\)
\(788\) −11.6630 + 20.2009i −0.415477 + 0.719627i
\(789\) −33.3031 25.2475i −1.18562 0.898833i
\(790\) 17.2150 23.2078i 0.612481 0.825697i
\(791\) 0 0
\(792\) 15.9218 + 15.5550i 0.565756 + 0.552723i
\(793\) −76.9414 + 44.4222i −2.73227 + 1.57748i
\(794\) −13.2719 + 22.9876i −0.471001 + 0.815798i
\(795\) 5.41290 + 5.17870i 0.191976 + 0.183670i
\(796\) −25.1974 + 14.5477i −0.893099 + 0.515631i
\(797\) 55.9724i 1.98264i 0.131462 + 0.991321i \(0.458033\pi\)
−0.131462 + 0.991321i \(0.541967\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) −24.3596 + 26.0001i −0.861241 + 0.919241i
\(801\) 10.9501 + 39.0410i 0.386904 + 1.37945i
\(802\) −58.9813 34.0529i −2.08270 1.20245i
\(803\) −10.9380 + 6.31503i −0.385992 + 0.222853i
\(804\) 20.8794 + 49.5882i 0.736359 + 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) −26.2356 19.8895i −0.923536 0.700143i
\(808\) −8.62160 + 14.9331i −0.303307 + 0.525343i
\(809\) 36.4604 + 21.0504i 1.28188 + 0.740094i 0.977192 0.212358i \(-0.0681142\pi\)
0.304689 + 0.952452i \(0.401447\pi\)
\(810\) 4.05386 44.2713i 0.142438 1.55554i
\(811\) 1.35051i 0.0474227i 0.999719 + 0.0237113i \(0.00754826\pi\)
−0.999719 + 0.0237113i \(0.992452\pi\)
\(812\) 0 0
\(813\) 7.96388 + 18.9141i 0.279306 + 0.663346i
\(814\) 14.1934 + 24.5837i 0.497479 + 0.861659i
\(815\) 35.2000 15.2564i 1.23300 0.534409i
\(816\) 7.40686 + 0.931265i 0.259292 + 0.0326008i
\(817\) −7.15993 12.4014i −0.250494 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) 9.82457 5.67222i 0.342880 0.197962i −0.318665 0.947867i \(-0.603235\pi\)
0.661545 + 0.749906i \(0.269901\pi\)
\(822\) −0.522030 + 4.15199i −0.0182079 + 0.144817i
\(823\) 26.1348 + 15.0889i 0.911002 + 0.525967i 0.880754 0.473575i \(-0.157037\pi\)
0.0302488 + 0.999542i \(0.490370\pi\)
\(824\) 1.28533 + 2.22626i 0.0447766 + 0.0775554i
\(825\) 25.4330 21.1146i 0.885463 0.735114i
\(826\) 0 0
\(827\) 34.7911 1.20981 0.604903 0.796299i \(-0.293212\pi\)
0.604903 + 0.796299i \(0.293212\pi\)
\(828\) 25.1178 + 6.41757i 0.872904 + 0.223026i
\(829\) −3.50678 2.02464i −0.121796 0.0703187i 0.437864 0.899041i \(-0.355735\pi\)
−0.559660 + 0.828722i \(0.689068\pi\)
\(830\) 12.0707 5.23169i 0.418980 0.181595i
\(831\) −17.2843 + 22.7991i −0.599585 + 0.790892i
\(832\) −83.2833 −2.88733
\(833\) 0 0
\(834\) 10.9276 + 25.9529i 0.378393 + 0.898676i
\(835\) 2.45653 21.3385i 0.0850118 0.738448i
\(836\) −11.1841 + 19.3715i −0.386811 + 0.669977i
\(837\) 27.1035 21.5602i 0.936834 0.745229i
\(838\) 21.6460 + 37.4920i 0.747749 + 1.29514i
\(839\) 25.8653 0.892969 0.446485 0.894791i \(-0.352676\pi\)
0.446485 + 0.894791i \(0.352676\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) −35.9846 62.3272i −1.24011 2.14794i
\(843\) 17.3701 + 2.18394i 0.598258 + 0.0752190i
\(844\) −15.3816 + 26.6417i −0.529457 + 0.917047i
\(845\) −65.0223 7.48552i −2.23684 0.257510i
\(846\) −23.7627 23.2153i −0.816978 0.798158i
\(847\) 0 0
\(848\) 2.83509 0.0973573
\(849\) 8.28429 + 6.28042i 0.284316 + 0.215543i
\(850\) −7.38023 + 31.6291i −0.253140 + 1.08487i
\(851\) 8.74849 + 5.05094i 0.299894 + 0.173144i
\(852\) 33.1265 43.6961i 1.13490 1.49700i
\(853\) −37.5709 −1.28640 −0.643201 0.765697i \(-0.722394\pi\)
−0.643201 + 0.765697i \(0.722394\pi\)
\(854\) 0 0
\(855\) 13.4784 2.15901i 0.460952 0.0738366i
\(856\) 3.23117 + 5.59655i 0.110439 + 0.191286i
\(857\) 19.8563 + 11.4640i 0.678278 + 0.391604i 0.799206 0.601057i \(-0.205254\pi\)
−0.120928 + 0.992661i \(0.538587\pi\)
\(858\) 94.2098 + 11.8450i 3.21627 + 0.404382i
\(859\) 16.2512 9.38264i 0.554484 0.320132i −0.196444 0.980515i \(-0.562940\pi\)
0.750929 + 0.660383i \(0.229606\pi\)
\(860\) −36.3981 26.9992i −1.24117 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) 4.23086 + 7.32807i 0.144020 + 0.249450i 0.929007 0.370062i \(-0.120664\pi\)
−0.784987 + 0.619512i \(0.787330\pi\)
\(864\) −23.0501 28.9765i −0.784180 0.985800i
\(865\) 20.8705 9.04569i 0.709618 0.307563i
\(866\) 3.83659 + 6.64517i 0.130373 + 0.225812i
\(867\) −13.3348 + 5.61470i −0.452874 + 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 5.39837 + 18.5009i 0.183022 + 0.627240i
\(871\) 60.7329 + 35.0641i 2.05785 + 1.18810i
\(872\) 11.9535 20.7041i 0.404797 0.701129i
\(873\) −12.9836 3.31728i −0.439427 0.112273i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 + 6.40529i −0.513981 + 0.216415i
\(877\) −3.27867 + 1.89294i −0.110713 + 0.0639201i −0.554334 0.832294i \(-0.687027\pi\)
0.443621 + 0.896214i \(0.353694\pi\)
\(878\) 7.55301 + 4.36073i 0.254902 + 0.147168i
\(879\) −6.10710 0.767845i −0.205987 0.0258988i
\(880\) 1.43073 12.4279i 0.0482298 0.418944i
\(881\) 54.6531 1.84131 0.920654 0.390379i \(-0.127656\pi\)
0.920654 + 0.390379i \(0.127656\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) −47.6824 + 27.5295i −1.60373 + 0.925916i
\(885\) −22.1925 21.2323i −0.745993 0.713716i
\(886\) 17.7065 30.6686i 0.594862 1.03033i
\(887\) −26.0011 + 15.0117i −0.873032 + 0.504045i −0.868355 0.495944i \(-0.834822\pi\)
−0.00467726 + 0.999989i \(0.501489\pi\)
\(888\) 4.39873 + 10.4469i 0.147612 + 0.350575i
\(889\) 0 0
\(890\) −39.7751 + 53.6215i −1.33326 + 1.79740i
\(891\) 17.8647 + 29.3416i 0.598489 + 0.982980i
\(892\) 5.94975 10.3053i 0.199212 0.345046i
\(893\) 5.10015 8.83371i 0.170670 0.295609i
\(894\) 25.0095 32.9892i 0.836442 1.10332i
\(895\) 42.4816 + 31.5118i 1.42000 + 1.05332i
\(896\) 0 0
\(897\) 31.1420 13.1125i 1.03980 0.437814i
\(898\) 40.3668 23.3058i 1.34706 0.777724i
\(899\) −7.50689 + 13.0023i −0.250369 + 0.433651i
\(900\) 36.4205 23.2323i 1.21402 0.774408i
\(901\) 4.92559 2.84379i 0.164095 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) −3.99787 + 34.7271i −0.132894 + 1.15437i
\(906\) 3.95977 31.4942i 0.131555 1.04633i
\(907\) −16.8295 9.71653i −0.558815 0.322632i 0.193855 0.981030i \(-0.437901\pi\)
−0.752670 + 0.658398i \(0.771234\pi\)
\(908\) −17.8969 + 10.3328i −0.593931 + 0.342906i
\(909\) −18.5966 + 19.0351i −0.616809 + 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i −0.469982 0.882676i \(-0.655739\pi\)
0.469982 0.882676i \(-0.344261\pi\)
\(912\) 3.12092 4.11670i 0.103344 0.136318i
\(913\) −5.08280 + 8.80366i −0.168216 + 0.291359i
\(914\) −18.3787 10.6110i −0.607914 0.350979i
\(915\) −14.8245 50.8056i −0.490084 1.67958i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) −31.4046 12.3697i −1.03650 0.408261i
\(919\) −22.5064 38.9822i −0.742416 1.28590i −0.951392 0.307982i \(-0.900346\pi\)
0.208976 0.977921i \(-0.432987\pi\)
\(920\) 5.18669 + 11.9669i 0.171000 + 0.394536i
\(921\) −6.27348 + 49.8965i −0.206718 + 1.64414i
\(922\) 27.1015 + 46.9412i 0.892541 + 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) −27.9073 + 16.1123i −0.917092 + 0.529483i
\(927\) 1.07139 + 3.81989i 0.0351892 + 0.125462i
\(928\) 13.9008 + 8.02565i 0.456317 + 0.263455i
\(929\) −21.3495 36.9785i −0.700455 1.21322i −0.968307 0.249764i \(-0.919647\pi\)
0.267852 0.963460i \(-0.413686\pi\)
\(930\) 55.3942 + 13.5378i 1.81645 + 0.443921i
\(931\) 0 0
\(932\) 11.2360 0.368048
\(933\) 11.9313 + 9.04526i 0.390613 + 0.296128i
\(934\) 34.2800 + 19.7916i 1.12168 + 0.647600i
\(935\) −9.98034 23.0269i −0.326392 0.753061i
\(936\) 36.7351 + 9.38579i 1.20073 + 0.306784i
\(937\) 26.4685 0.864688 0.432344 0.901709i \(-0.357687\pi\)
0.432344 + 0.901709i \(0.357687\pi\)
\(938\) 0 0
\(939\) −17.3235 + 7.29415i −0.565330 + 0.238036i
\(940\) 3.69191 32.0695i 0.120417 1.04599i
\(941\) 15.8545 27.4609i 0.516843 0.895199i −0.482965 0.875640i \(-0.660440\pi\)
0.999809 0.0195596i \(-0.00622642\pi\)
\(942\) 2.58314 20.5451i 0.0841633 0.669397i
\(943\) −5.26744 9.12347i −0.171531 0.297101i
\(944\) −11.6237 −0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) 5.97276 + 10.3451i 0.194089 + 0.336171i 0.946601 0.322406i \(-0.104492\pi\)
−0.752513 + 0.658578i \(0.771158\pi\)
\(948\) −3.64015 + 28.9521i −0.118227 + 0.940321i
\(949\) −10.7568 + 18.6314i −0.349181 + 0.604800i
\(950\) 16.4017 + 15.3668i 0.532141 + 0.498565i
\(951\) −14.9111 + 6.27839i −0.483524 + 0.203591i
\(952\) 0 0
\(953\) 1.76384 0.0571364 0.0285682 0.999592i \(-0.490905\pi\)
0.0285682 + 0.999592i \(0.490905\pi\)
\(954\) −12.4195 3.17318i −0.402097 0.102735i
\(955\) 22.1151 9.58513i 0.715627 0.310167i
\(956\) 59.3284 + 34.2532i 1.91882 + 1.10783i
\(957\) −11.8673 8.99673i −0.383615 0.290823i
\(958\) −6.54980 −0.211614
\(959\) 0 0
\(960\) 11.7779 48.1932i 0.380131 1.55543i
\(961\) 6.71186 + 11.6253i 0.216511 + 0.375009i
\(962\) 41.8752 + 24.1766i 1.35011 + 0.779486i
\(963\) 2.69336 + 9.60275i 0.0867922 + 0.309444i
\(964\) −33.1282 + 19.1266i −1.06699 + 0.616026i
\(965\) 3.31564 + 2.45946i 0.106734 + 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) −3.46869 6.00795i −0.111488 0.193103i
\(969\) 1.29285 10.2827i 0.0415323 0.330329i
\(970\) −8.77456 20.2449i −0.281734 0.650025i
\(971\) 23.9577 + 41.4959i 0.768838 + 1.33167i 0.938193 + 0.346111i \(0.112498\pi\)
−0.169356 + 0.985555i \(0.554169\pi\)
\(972\) 18.3810 + 40.9588i 0.589571 + 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) 19.5348 52.8082i 0.625614 1.69122i
\(976\) −17.3460 10.0147i −0.555231 0.320563i
\(977\) −4.07411 + 7.05657i −0.130342 + 0.225760i −0.923809 0.382855i \(-0.874941\pi\)
0.793466 + 0.608614i \(0.208274\pi\)
\(978\) −39.6586 + 52.3124i −1.26814 + 1.67277i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 26.3914i 0.823201 0.842612i
\(982\) −48.7636 + 28.1537i −1.55611 + 0.898420i
\(983\) −12.6460 7.30116i −0.403344 0.232871i 0.284582 0.958652i \(-0.408145\pi\)
−0.687926 + 0.725781i \(0.741479\pi\)
\(984\) 1.47465 11.7287i 0.0470101 0.373897i
\(985\) −17.9920 2.07128i −0.573273 0.0659965i
\(986\) 14.6322 0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) 18.2870 10.5580i 0.581492 0.335725i
\(990\) −20.1774 + 52.8409i −0.641281 + 1.67939i
\(991\) −7.84118 + 13.5813i −0.249083 + 0.431425i −0.963272 0.268529i \(-0.913463\pi\)
0.714188 + 0.699953i \(0.246796\pi\)
\(992\) 41.1307 23.7468i 1.30590 0.753962i
\(993\) −4.64398 + 1.95537i −0.147372 + 0.0620519i
\(994\) 0 0
\(995\) −18.1437 13.4585i −0.575194 0.426664i
\(996\) −8.02597 + 10.5868i −0.254313 + 0.335455i
\(997\) 13.5211 23.4192i 0.428218 0.741695i −0.568497 0.822685i \(-0.692475\pi\)
0.996715 + 0.0809903i \(0.0258083\pi\)
\(998\) −37.1913 + 64.4173i −1.17727 + 2.03909i
\(999\) 2.58614 + 17.3014i 0.0818219 + 0.547391i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.31 64
3.2 odd 2 inner 735.2.p.g.374.4 64
5.4 even 2 inner 735.2.p.g.374.2 64
7.2 even 3 inner 735.2.p.g.509.32 64
7.3 odd 6 735.2.g.c.734.3 yes 32
7.4 even 3 735.2.g.c.734.2 yes 32
7.5 odd 6 inner 735.2.p.g.509.29 64
7.6 odd 2 inner 735.2.p.g.374.30 64
15.14 odd 2 inner 735.2.p.g.374.29 64
21.2 odd 6 inner 735.2.p.g.509.3 64
21.5 even 6 inner 735.2.p.g.509.2 64
21.11 odd 6 735.2.g.c.734.29 yes 32
21.17 even 6 735.2.g.c.734.32 yes 32
21.20 even 2 inner 735.2.p.g.374.1 64
35.4 even 6 735.2.g.c.734.31 yes 32
35.9 even 6 inner 735.2.p.g.509.1 64
35.19 odd 6 inner 735.2.p.g.509.4 64
35.24 odd 6 735.2.g.c.734.30 yes 32
35.34 odd 2 inner 735.2.p.g.374.3 64
105.44 odd 6 inner 735.2.p.g.509.30 64
105.59 even 6 735.2.g.c.734.1 32
105.74 odd 6 735.2.g.c.734.4 yes 32
105.89 even 6 inner 735.2.p.g.509.31 64
105.104 even 2 inner 735.2.p.g.374.32 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 105.59 even 6
735.2.g.c.734.2 yes 32 7.4 even 3
735.2.g.c.734.3 yes 32 7.3 odd 6
735.2.g.c.734.4 yes 32 105.74 odd 6
735.2.g.c.734.29 yes 32 21.11 odd 6
735.2.g.c.734.30 yes 32 35.24 odd 6
735.2.g.c.734.31 yes 32 35.4 even 6
735.2.g.c.734.32 yes 32 21.17 even 6
735.2.p.g.374.1 64 21.20 even 2 inner
735.2.p.g.374.2 64 5.4 even 2 inner
735.2.p.g.374.3 64 35.34 odd 2 inner
735.2.p.g.374.4 64 3.2 odd 2 inner
735.2.p.g.374.29 64 15.14 odd 2 inner
735.2.p.g.374.30 64 7.6 odd 2 inner
735.2.p.g.374.31 64 1.1 even 1 trivial
735.2.p.g.374.32 64 105.104 even 2 inner
735.2.p.g.509.1 64 35.9 even 6 inner
735.2.p.g.509.2 64 21.5 even 6 inner
735.2.p.g.509.3 64 21.2 odd 6 inner
735.2.p.g.509.4 64 35.19 odd 6 inner
735.2.p.g.509.29 64 7.5 odd 6 inner
735.2.p.g.509.30 64 105.44 odd 6 inner
735.2.p.g.509.31 64 105.89 even 6 inner
735.2.p.g.509.32 64 7.2 even 3 inner