Properties

Label 735.2.p.g.374.4
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.4
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10453 - 1.91310i) q^{2} +(1.38025 - 1.04638i) q^{3} +(-1.43998 + 2.49412i) q^{4} +(2.22140 + 0.255732i) q^{5} +(-3.52637 - 1.48480i) q^{6} +1.94389 q^{8} +(0.810168 - 2.88853i) q^{9} +(-1.96436 - 4.53223i) q^{10} +(-3.30554 - 1.90846i) q^{11} +(0.622272 + 4.94927i) q^{12} +6.50161 q^{13} +(3.33367 - 1.97146i) q^{15} +(0.732874 + 1.26937i) q^{16} +(-2.54654 - 1.47025i) q^{17} +(-6.42092 + 1.64054i) q^{18} +(1.76224 - 1.01743i) q^{19} +(-3.83659 + 5.17218i) q^{20} +8.43180i q^{22} +(-1.50029 - 2.59858i) q^{23} +(2.68305 - 2.03405i) q^{24} +(4.86920 + 1.13616i) q^{25} +(-7.18123 - 12.4383i) q^{26} +(-1.90428 - 4.83464i) q^{27} +2.25259i q^{29} +(-7.45375 - 4.20013i) q^{30} +(-5.77216 - 3.33256i) q^{31} +(3.56285 - 6.17104i) q^{32} +(-6.55944 + 0.824719i) q^{33} +6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} +(2.91560 - 1.68332i) q^{37} +(-3.89289 - 2.24756i) q^{38} +(8.97383 - 6.80317i) q^{39} +(4.31815 + 0.497115i) q^{40} +3.51094 q^{41} -7.03729i q^{43} +(9.51983 - 5.49628i) q^{44} +(2.53840 - 6.20939i) q^{45} +(-3.31424 + 5.74043i) q^{46} +(-4.34120 + 2.50639i) q^{47} +(2.33980 + 0.985185i) q^{48} +(-3.20459 - 10.5702i) q^{50} +(-5.05330 + 0.635352i) q^{51} +(-9.36219 + 16.2158i) q^{52} +(-0.967113 + 1.67509i) q^{53} +(-7.14584 + 8.98309i) q^{54} +(-6.85487 - 5.08477i) q^{55} +(1.36770 - 3.24827i) q^{57} +(4.30944 - 2.48806i) q^{58} +(3.96509 - 6.86774i) q^{59} +(0.116625 + 11.1534i) q^{60} +(-11.8342 + 6.83249i) q^{61} +14.7237i q^{62} -12.8096 q^{64} +(14.4427 + 1.66267i) q^{65} +(8.82289 + 11.6380i) q^{66} +(9.34121 + 5.39315i) q^{67} +(7.33395 - 4.23426i) q^{68} +(-4.78988 - 2.01681i) q^{69} +10.9926i q^{71} +(1.57488 - 5.61499i) q^{72} +(-1.65449 + 2.86566i) q^{73} +(-6.44074 - 3.71856i) q^{74} +(7.90957 - 3.52686i) q^{75} +5.86030i q^{76} +(-22.9271 - 9.65357i) q^{78} +(2.92489 + 5.06605i) q^{79} +(1.30338 + 3.00720i) q^{80} +(-7.68725 - 4.68040i) q^{81} +(-3.87795 - 6.71680i) q^{82} -2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} +(-13.4631 + 7.77291i) q^{86} +(2.35707 + 3.10913i) q^{87} +(-6.42561 - 3.70983i) q^{88} +(6.75793 + 11.7051i) q^{89} +(-14.6830 + 2.00225i) q^{90} +8.64156 q^{92} +(-11.4541 + 1.44013i) q^{93} +(9.58999 + 5.53678i) q^{94} +(4.17481 - 1.80945i) q^{95} +(-1.53965 - 12.2457i) q^{96} +4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10453 1.91310i −0.781022 1.35277i −0.931347 0.364133i \(-0.881365\pi\)
0.150325 0.988637i \(-0.451968\pi\)
\(3\) 1.38025 1.04638i 0.796886 0.604129i
\(4\) −1.43998 + 2.49412i −0.719990 + 1.24706i
\(5\) 2.22140 + 0.255732i 0.993439 + 0.114367i
\(6\) −3.52637 1.48480i −1.43963 0.606166i
\(7\) 0 0
\(8\) 1.94389 0.687269
\(9\) 0.810168 2.88853i 0.270056 0.962845i
\(10\) −1.96436 4.53223i −0.621185 1.43322i
\(11\) −3.30554 1.90846i −0.996659 0.575421i −0.0894006 0.995996i \(-0.528495\pi\)
−0.907258 + 0.420575i \(0.861828\pi\)
\(12\) 0.622272 + 4.94927i 0.179635 + 1.42873i
\(13\) 6.50161 1.80322 0.901611 0.432548i \(-0.142385\pi\)
0.901611 + 0.432548i \(0.142385\pi\)
\(14\) 0 0
\(15\) 3.33367 1.97146i 0.860750 0.509028i
\(16\) 0.732874 + 1.26937i 0.183218 + 0.317344i
\(17\) −2.54654 1.47025i −0.617628 0.356587i 0.158317 0.987388i \(-0.449393\pi\)
−0.775945 + 0.630801i \(0.782726\pi\)
\(18\) −6.42092 + 1.64054i −1.51343 + 0.386679i
\(19\) 1.76224 1.01743i 0.404285 0.233414i −0.284046 0.958811i \(-0.591677\pi\)
0.688331 + 0.725397i \(0.258344\pi\)
\(20\) −3.83659 + 5.17218i −0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) −1.50029 2.59858i −0.312832 0.541842i 0.666142 0.745825i \(-0.267944\pi\)
−0.978974 + 0.203983i \(0.934611\pi\)
\(24\) 2.68305 2.03405i 0.547675 0.415199i
\(25\) 4.86920 + 1.13616i 0.973840 + 0.227233i
\(26\) −7.18123 12.4383i −1.40836 2.43934i
\(27\) −1.90428 4.83464i −0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) −7.45375 4.20013i −1.36086 0.766835i
\(31\) −5.77216 3.33256i −1.03671 0.598545i −0.117810 0.993036i \(-0.537587\pi\)
−0.918900 + 0.394491i \(0.870921\pi\)
\(32\) 3.56285 6.17104i 0.629829 1.09090i
\(33\) −6.55944 + 0.824719i −1.14185 + 0.143565i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) 2.91560 1.68332i 0.479321 0.276736i −0.240812 0.970572i \(-0.577414\pi\)
0.720134 + 0.693835i \(0.244081\pi\)
\(38\) −3.89289 2.24756i −0.631510 0.364603i
\(39\) 8.97383 6.80317i 1.43696 1.08938i
\(40\) 4.31815 + 0.497115i 0.682759 + 0.0786008i
\(41\) 3.51094 0.548317 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) 9.51983 5.49628i 1.43517 0.828595i
\(45\) 2.53840 6.20939i 0.378402 0.925641i
\(46\) −3.31424 + 5.74043i −0.488658 + 0.846380i
\(47\) −4.34120 + 2.50639i −0.633229 + 0.365595i −0.782002 0.623276i \(-0.785801\pi\)
0.148772 + 0.988871i \(0.452468\pi\)
\(48\) 2.33980 + 0.985185i 0.337721 + 0.142199i
\(49\) 0 0
\(50\) −3.20459 10.5702i −0.453197 1.49486i
\(51\) −5.05330 + 0.635352i −0.707604 + 0.0889671i
\(52\) −9.36219 + 16.2158i −1.29830 + 2.24873i
\(53\) −0.967113 + 1.67509i −0.132843 + 0.230091i −0.924771 0.380523i \(-0.875744\pi\)
0.791928 + 0.610614i \(0.209077\pi\)
\(54\) −7.14584 + 8.98309i −0.972425 + 1.22244i
\(55\) −6.85487 5.08477i −0.924310 0.685630i
\(56\) 0 0
\(57\) 1.36770 3.24827i 0.181157 0.430244i
\(58\) 4.30944 2.48806i 0.565858 0.326698i
\(59\) 3.96509 6.86774i 0.516211 0.894104i −0.483612 0.875283i \(-0.660675\pi\)
0.999823 0.0188214i \(-0.00599139\pi\)
\(60\) 0.116625 + 11.1534i 0.0150562 + 1.43990i
\(61\) −11.8342 + 6.83249i −1.51522 + 0.874810i −0.515375 + 0.856965i \(0.672347\pi\)
−0.999841 + 0.0178455i \(0.994319\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) 14.4427 + 1.66267i 1.79139 + 0.206229i
\(66\) 8.82289 + 11.6380i 1.08602 + 1.43254i
\(67\) 9.34121 + 5.39315i 1.14121 + 0.658878i 0.946730 0.322029i \(-0.104365\pi\)
0.194480 + 0.980906i \(0.437698\pi\)
\(68\) 7.33395 4.23426i 0.889372 0.513479i
\(69\) −4.78988 2.01681i −0.576634 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) 1.57488 5.61499i 0.185601 0.661733i
\(73\) −1.65449 + 2.86566i −0.193643 + 0.335400i −0.946455 0.322836i \(-0.895364\pi\)
0.752812 + 0.658236i \(0.228697\pi\)
\(74\) −6.44074 3.71856i −0.748721 0.432274i
\(75\) 7.90957 3.52686i 0.913318 0.407246i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) −22.9271 9.65357i −2.59598 1.09305i
\(79\) 2.92489 + 5.06605i 0.329075 + 0.569975i 0.982329 0.187164i \(-0.0599296\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(80\) 1.30338 + 3.00720i 0.145723 + 0.336215i
\(81\) −7.68725 4.68040i −0.854139 0.520044i
\(82\) −3.87795 6.71680i −0.428248 0.741746i
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) −13.4631 + 7.77291i −1.45176 + 0.838175i
\(87\) 2.35707 + 3.10913i 0.252705 + 0.333334i
\(88\) −6.42561 3.70983i −0.684972 0.395469i
\(89\) 6.75793 + 11.7051i 0.716339 + 1.24074i 0.962441 + 0.271492i \(0.0875170\pi\)
−0.246101 + 0.969244i \(0.579150\pi\)
\(90\) −14.6830 + 2.00225i −1.54772 + 0.211056i
\(91\) 0 0
\(92\) 8.64156 0.900945
\(93\) −11.4541 + 1.44013i −1.18774 + 0.149334i
\(94\) 9.58999 + 5.53678i 0.989132 + 0.571075i
\(95\) 4.17481 1.80945i 0.428327 0.185646i
\(96\) −1.53965 12.2457i −0.157140 1.24982i
\(97\) 4.46688 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) −9.84529 + 10.5083i −0.984529 + 1.05083i
\(101\) −4.43523 + 7.68205i −0.441322 + 0.764392i −0.997788 0.0664781i \(-0.978824\pi\)
0.556466 + 0.830871i \(0.312157\pi\)
\(102\) 6.79703 + 8.96573i 0.673006 + 0.887740i
\(103\) −0.661216 1.14526i −0.0651516 0.112846i 0.831610 0.555361i \(-0.187420\pi\)
−0.896761 + 0.442515i \(0.854086\pi\)
\(104\) 12.6384 1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) 1.66222 + 2.87905i 0.160693 + 0.278328i 0.935117 0.354338i \(-0.115294\pi\)
−0.774425 + 0.632666i \(0.781960\pi\)
\(108\) 14.8003 + 2.21229i 1.42416 + 0.212878i
\(109\) −6.14927 + 10.6509i −0.588994 + 1.02017i 0.405371 + 0.914152i \(0.367142\pi\)
−0.994365 + 0.106015i \(0.966191\pi\)
\(110\) −2.15628 + 18.7304i −0.205593 + 1.78587i
\(111\) 2.26285 5.37423i 0.214780 0.510099i
\(112\) 0 0
\(113\) 20.4591 1.92463 0.962314 0.271941i \(-0.0876657\pi\)
0.962314 + 0.271941i \(0.0876657\pi\)
\(114\) −7.72496 + 0.971260i −0.723509 + 0.0909668i
\(115\) −2.66820 6.15615i −0.248811 0.574064i
\(116\) −5.61823 3.24369i −0.521640 0.301169i
\(117\) 5.26740 18.7801i 0.486971 1.73622i
\(118\) −17.5183 −1.61269
\(119\) 0 0
\(120\) 6.48029 3.83229i 0.591567 0.349839i
\(121\) 1.78441 + 3.09068i 0.162219 + 0.280971i
\(122\) 26.1425 + 15.0934i 2.36683 + 1.36649i
\(123\) 4.84597 3.67379i 0.436946 0.331254i
\(124\) 16.6236 9.59763i 1.49284 0.861893i
\(125\) 10.5259 + 3.76908i 0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) 7.02295 + 12.1641i 0.620747 + 1.07517i
\(129\) −7.36370 9.71321i −0.648337 0.855200i
\(130\) −12.7715 29.4668i −1.12013 2.58441i
\(131\) −2.90591 5.03319i −0.253891 0.439752i 0.710703 0.703492i \(-0.248377\pi\)
−0.964594 + 0.263741i \(0.915044\pi\)
\(132\) 7.38852 17.5476i 0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) −2.99378 11.2266i −0.257664 0.966235i
\(136\) −4.95020 2.85800i −0.424476 0.245071i
\(137\) 0.546844 0.947161i 0.0467200 0.0809215i −0.841720 0.539915i \(-0.818456\pi\)
0.888440 + 0.458993i \(0.151790\pi\)
\(138\) 1.43221 + 11.3912i 0.121918 + 0.969681i
\(139\) 7.35968i 0.624240i 0.950043 + 0.312120i \(0.101039\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) 21.0299 12.1416i 1.76479 1.01890i
\(143\) −21.4913 12.4080i −1.79720 1.03761i
\(144\) 4.26038 1.08852i 0.355032 0.0907103i
\(145\) −0.576060 + 5.00390i −0.0478392 + 0.415551i
\(146\) 7.30973 0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) −9.36993 + 5.40973i −0.767615 + 0.443183i −0.832023 0.554741i \(-0.812817\pi\)
0.0644082 + 0.997924i \(0.479484\pi\)
\(150\) −15.4836 11.2363i −1.26423 0.917441i
\(151\) 4.14799 7.18453i 0.337559 0.584669i −0.646414 0.762987i \(-0.723732\pi\)
0.983973 + 0.178318i \(0.0570655\pi\)
\(152\) 3.42559 1.97777i 0.277852 0.160418i
\(153\) −6.30999 + 6.16463i −0.510132 + 0.498381i
\(154\) 0 0
\(155\) −11.9700 8.87905i −0.961454 0.713183i
\(156\) 4.04577 + 32.1782i 0.323921 + 2.57632i
\(157\) 2.70593 4.68680i 0.215957 0.374048i −0.737612 0.675225i \(-0.764046\pi\)
0.953568 + 0.301178i \(0.0973797\pi\)
\(158\) 6.46126 11.1912i 0.514030 0.890326i
\(159\) 0.417928 + 3.32401i 0.0331438 + 0.263611i
\(160\) 9.49264 12.7972i 0.750459 1.01171i
\(161\) 0 0
\(162\) −0.463276 + 19.8762i −0.0363984 + 1.56162i
\(163\) −14.8583 + 8.57846i −1.16379 + 0.671917i −0.952210 0.305443i \(-0.901195\pi\)
−0.211584 + 0.977360i \(0.567862\pi\)
\(164\) −5.05569 + 8.75671i −0.394783 + 0.683784i
\(165\) −14.7820 + 0.154567i −1.15078 + 0.0120330i
\(166\) −5.09518 + 2.94170i −0.395463 + 0.228320i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) −1.66117 + 14.4296i −0.127406 + 1.10670i
\(171\) −1.51117 5.91457i −0.115562 0.452298i
\(172\) 17.5518 + 10.1336i 1.33832 + 0.772677i
\(173\) 8.80967 5.08627i 0.669787 0.386702i −0.126209 0.992004i \(-0.540281\pi\)
0.795996 + 0.605302i \(0.206948\pi\)
\(174\) 3.34464 7.94346i 0.253556 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) −1.71347 13.6282i −0.128793 1.02436i
\(178\) 14.9287 25.8573i 1.11895 1.93808i
\(179\) 20.4854 + 11.8273i 1.53115 + 0.884011i 0.999309 + 0.0371678i \(0.0118336\pi\)
0.531843 + 0.846843i \(0.321500\pi\)
\(180\) 11.8317 + 15.2725i 0.881885 + 1.13834i
\(181\) 15.6330i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(182\) 0 0
\(183\) −9.18476 + 21.8136i −0.678957 + 1.61251i
\(184\) −2.91640 5.05135i −0.215000 0.372391i
\(185\) 6.90717 2.99371i 0.507826 0.220102i
\(186\) 15.4066 + 20.3223i 1.12966 + 1.49010i
\(187\) 5.61181 + 9.71993i 0.410376 + 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) 9.33503 5.38958i 0.675459 0.389976i −0.122683 0.992446i \(-0.539150\pi\)
0.798142 + 0.602470i \(0.205817\pi\)
\(192\) −17.6805 + 13.4038i −1.27598 + 0.967335i
\(193\) −1.59886 0.923104i −0.115089 0.0664465i 0.441351 0.897335i \(-0.354500\pi\)
−0.556439 + 0.830888i \(0.687833\pi\)
\(194\) −4.93381 8.54561i −0.354227 0.613539i
\(195\) 21.6742 12.8176i 1.55212 0.917890i
\(196\) 0 0
\(197\) −8.09941 −0.577059 −0.288530 0.957471i \(-0.593166\pi\)
−0.288530 + 0.957471i \(0.593166\pi\)
\(198\) 24.3555 + 6.83118i 1.73087 + 0.485471i
\(199\) 8.74922 + 5.05137i 0.620216 + 0.358082i 0.776953 0.629559i \(-0.216764\pi\)
−0.156737 + 0.987640i \(0.550098\pi\)
\(200\) 9.46519 + 2.20858i 0.669290 + 0.156170i
\(201\) 18.5365 2.33059i 1.30746 0.164387i
\(202\) 19.5954 1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) 7.79919 + 0.897861i 0.544719 + 0.0627093i
\(206\) −1.46067 + 2.52995i −0.101770 + 0.176270i
\(207\) −8.72158 + 2.22835i −0.606192 + 0.154881i
\(208\) 4.76486 + 8.25298i 0.330383 + 0.572241i
\(209\) −7.76686 −0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) −2.78525 4.82419i −0.191292 0.331327i
\(213\) 11.5024 + 15.1725i 0.788133 + 1.03960i
\(214\) 3.67195 6.36000i 0.251009 0.434761i
\(215\) 1.79966 15.6326i 0.122736 1.06614i
\(216\) −3.70170 9.39800i −0.251869 0.639453i
\(217\) 0 0
\(218\) 27.1683 1.84007
\(219\) 0.714969 + 5.68654i 0.0483131 + 0.384261i
\(220\) 22.5529 9.77488i 1.52052 0.659023i
\(221\) −16.5566 9.55898i −1.11372 0.643006i
\(222\) −12.7809 + 1.60694i −0.857795 + 0.107851i
\(223\) −4.13183 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(224\) 0 0
\(225\) 7.22672 13.1444i 0.481782 0.876291i
\(226\) −22.5977 39.1404i −1.50318 2.60358i
\(227\) −6.21430 3.58783i −0.412458 0.238132i 0.279388 0.960178i \(-0.409869\pi\)
−0.691845 + 0.722046i \(0.743202\pi\)
\(228\) 6.13212 + 8.08867i 0.406109 + 0.535685i
\(229\) 9.05093 5.22556i 0.598102 0.345315i −0.170192 0.985411i \(-0.554439\pi\)
0.768295 + 0.640096i \(0.221106\pi\)
\(230\) −8.83025 + 11.9042i −0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) 1.95072 + 3.37875i 0.127796 + 0.221349i 0.922822 0.385226i \(-0.125876\pi\)
−0.795026 + 0.606575i \(0.792543\pi\)
\(234\) −41.7463 + 10.6661i −2.72904 + 0.697268i
\(235\) −10.2845 + 4.45751i −0.670886 + 0.290776i
\(236\) 11.4193 + 19.7788i 0.743334 + 1.28749i
\(237\) 9.33810 + 3.93186i 0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) 4.94567 + 2.78685i 0.319242 + 0.179890i
\(241\) 11.5030 + 6.64126i 0.740974 + 0.427801i 0.822423 0.568876i \(-0.192622\pi\)
−0.0814495 + 0.996677i \(0.525955\pi\)
\(242\) 3.94187 6.82752i 0.253393 0.438889i
\(243\) −15.5078 + 1.58370i −0.994826 + 0.101594i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) 11.4574 6.61492i 0.729015 0.420897i
\(248\) −11.2204 6.47812i −0.712498 0.411361i
\(249\) −2.78683 3.67602i −0.176608 0.232958i
\(250\) −4.41551 24.3002i −0.279261 1.53688i
\(251\) 9.12747 0.576121 0.288060 0.957612i \(-0.406990\pi\)
0.288060 + 0.957612i \(0.406990\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) −1.14275 + 0.659769i −0.0717027 + 0.0413976i
\(255\) −11.3879 + 0.119076i −0.713136 + 0.00745684i
\(256\) 2.70450 4.68433i 0.169031 0.292770i
\(257\) 5.79051 3.34315i 0.361202 0.208540i −0.308406 0.951255i \(-0.599795\pi\)
0.669608 + 0.742715i \(0.266462\pi\)
\(258\) −10.4489 + 24.8161i −0.650523 + 1.54498i
\(259\) 0 0
\(260\) −24.9440 + 33.6275i −1.54696 + 2.08549i
\(261\) 6.50669 + 1.82498i 0.402754 + 0.112963i
\(262\) −6.41935 + 11.1186i −0.396588 + 0.686911i
\(263\) −12.0642 + 20.8958i −0.743908 + 1.28849i 0.206795 + 0.978384i \(0.433697\pi\)
−0.950703 + 0.310103i \(0.899637\pi\)
\(264\) −12.7508 + 1.60316i −0.784759 + 0.0986678i
\(265\) −2.57672 + 3.47371i −0.158286 + 0.213389i
\(266\) 0 0
\(267\) 21.5756 + 9.08453i 1.32041 + 0.555964i
\(268\) −26.9023 + 15.5321i −1.64332 + 0.948771i
\(269\) −9.50393 + 16.4613i −0.579465 + 1.00366i 0.416076 + 0.909330i \(0.363405\pi\)
−0.995541 + 0.0943328i \(0.969928\pi\)
\(270\) −18.1710 + 18.1276i −1.10585 + 1.10321i
\(271\) −10.2612 + 5.92429i −0.623321 + 0.359875i −0.778161 0.628065i \(-0.783847\pi\)
0.154840 + 0.987940i \(0.450514\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) −13.9270 13.0483i −0.839832 0.786842i
\(276\) 11.9275 9.04238i 0.717951 0.544287i
\(277\) −14.3051 8.25906i −0.859511 0.496239i 0.00433762 0.999991i \(-0.498619\pi\)
−0.863848 + 0.503752i \(0.831953\pi\)
\(278\) 14.0798 8.12900i 0.844452 0.487545i
\(279\) −14.3026 + 13.9731i −0.856275 + 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) 19.0302 2.39266i 1.13323 0.142481i
\(283\) −3.00101 + 5.19791i −0.178392 + 0.308984i −0.941330 0.337488i \(-0.890423\pi\)
0.762938 + 0.646472i \(0.223756\pi\)
\(284\) −27.4167 15.8291i −1.62688 0.939282i
\(285\) 3.86890 6.86594i 0.229174 0.406703i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) −14.9388 15.2910i −0.880275 0.901031i
\(289\) −4.17674 7.23433i −0.245691 0.425549i
\(290\) 10.2093 4.42490i 0.599508 0.259839i
\(291\) 6.16540 4.67406i 0.361422 0.273998i
\(292\) −4.76486 8.25298i −0.278842 0.482969i
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) 5.66760 3.27219i 0.329422 0.190192i
\(297\) −2.93202 + 19.6153i −0.170133 + 1.13820i
\(298\) 20.6988 + 11.9504i 1.19905 + 0.692271i
\(299\) −9.75431 16.8950i −0.564106 0.977061i
\(300\) −2.59322 + 24.8060i −0.149720 + 1.43218i
\(301\) 0 0
\(302\) −18.3264 −1.05456
\(303\) 1.91664 + 15.2441i 0.110108 + 0.875750i
\(304\) 2.58299 + 1.49129i 0.148145 + 0.0855314i
\(305\) −28.0358 + 12.1513i −1.60532 + 0.695780i
\(306\) 18.7632 + 5.26264i 1.07262 + 0.300845i
\(307\) −29.0345 −1.65709 −0.828544 0.559923i \(-0.810831\pi\)
−0.828544 + 0.559923i \(0.810831\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) −3.76531 + 32.7071i −0.213855 + 1.85764i
\(311\) 4.32216 7.48620i 0.245087 0.424503i −0.717069 0.697002i \(-0.754517\pi\)
0.962156 + 0.272499i \(0.0878501\pi\)
\(312\) 17.4441 13.2246i 0.987580 0.748696i
\(313\) −5.42607 9.39824i −0.306700 0.531220i 0.670938 0.741513i \(-0.265891\pi\)
−0.977638 + 0.210293i \(0.932558\pi\)
\(314\) −11.9551 −0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) 4.67046 + 8.08947i 0.262319 + 0.454350i 0.966858 0.255316i \(-0.0821794\pi\)
−0.704539 + 0.709665i \(0.748846\pi\)
\(318\) 5.89756 4.47101i 0.330719 0.250722i
\(319\) 4.29897 7.44604i 0.240696 0.416898i
\(320\) −28.4553 3.27584i −1.59070 0.183125i
\(321\) 5.30686 + 2.23448i 0.296200 + 0.124717i
\(322\) 0 0
\(323\) −5.98348 −0.332930
\(324\) 22.7430 12.4332i 1.26350 0.690736i
\(325\) 31.6576 + 7.38690i 1.75605 + 0.409752i
\(326\) 32.8230 + 18.9504i 1.81790 + 1.04956i
\(327\) 2.65734 + 21.1353i 0.146951 + 1.16879i
\(328\) 6.82488 0.376841
\(329\) 0 0
\(330\) 16.6229 + 28.1088i 0.915062 + 1.54734i
\(331\) −1.45459 2.51942i −0.0799515 0.138480i 0.823277 0.567639i \(-0.192143\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(332\) 6.64260 + 3.83511i 0.364560 + 0.210479i
\(333\) −2.50020 9.78557i −0.137010 0.536246i
\(334\) −18.3771 + 10.6100i −1.00555 + 0.580553i
\(335\) 19.3713 + 14.3692i 1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) −32.3307 55.9983i −1.75856 3.04591i
\(339\) 28.2386 21.4080i 1.53371 1.16272i
\(340\) 17.3744 7.53043i 0.942261 0.408395i
\(341\) 12.7201 + 22.0318i 0.688830 + 1.19309i
\(342\) −9.64606 + 9.42384i −0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) −10.1245 5.70506i −0.545083 0.307150i
\(346\) −19.4611 11.2359i −1.04624 0.604045i
\(347\) 15.7892 27.3477i 0.847609 1.46810i −0.0357279 0.999362i \(-0.511375\pi\)
0.883336 0.468739i \(-0.155292\pi\)
\(348\) −11.1487 + 1.40172i −0.597632 + 0.0751403i
\(349\) 8.25024i 0.441625i 0.975316 + 0.220813i \(0.0708709\pi\)
−0.975316 + 0.220813i \(0.929129\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) −23.5543 + 13.5991i −1.25545 + 0.724834i
\(353\) 3.71360 + 2.14405i 0.197655 + 0.114116i 0.595561 0.803310i \(-0.296930\pi\)
−0.397906 + 0.917426i \(0.630263\pi\)
\(354\) −24.1796 + 18.3308i −1.28513 + 0.974272i
\(355\) −2.81115 + 24.4188i −0.149200 + 1.29602i
\(356\) −38.9252 −2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) −6.17938 + 3.56767i −0.326135 + 0.188294i −0.654124 0.756387i \(-0.726963\pi\)
0.327989 + 0.944682i \(0.393629\pi\)
\(360\) 4.93436 12.0704i 0.260064 0.636164i
\(361\) −7.42968 + 12.8686i −0.391036 + 0.677294i
\(362\) −29.9076 + 17.2672i −1.57191 + 0.907542i
\(363\) 5.69696 + 2.39874i 0.299013 + 0.125901i
\(364\) 0 0
\(365\) −4.40811 + 5.94265i −0.230731 + 0.311053i
\(366\) 51.8766 6.52245i 2.71163 0.340934i
\(367\) −12.1957 + 21.1235i −0.636609 + 1.10264i 0.349563 + 0.936913i \(0.386330\pi\)
−0.986172 + 0.165726i \(0.947003\pi\)
\(368\) 2.19905 3.80886i 0.114633 0.198551i
\(369\) 2.84445 10.1415i 0.148076 0.527944i
\(370\) −13.3565 9.90750i −0.694370 0.515067i
\(371\) 0 0
\(372\) 12.9019 30.6417i 0.668931 1.58870i
\(373\) 19.0999 11.0273i 0.988956 0.570974i 0.0839940 0.996466i \(-0.473232\pi\)
0.904962 + 0.425492i \(0.139899\pi\)
\(374\) 12.3968 21.4719i 0.641025 1.11029i
\(375\) 18.4722 5.81182i 0.953901 0.300121i
\(376\) −8.43881 + 4.87215i −0.435199 + 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) −1.49867 + 13.0181i −0.0768800 + 0.667812i
\(381\) −0.625034 0.824462i −0.0320215 0.0422385i
\(382\) −20.6217 11.9059i −1.05510 0.609160i
\(383\) 1.84403 1.06465i 0.0942255 0.0544011i −0.452147 0.891944i \(-0.649342\pi\)
0.546372 + 0.837542i \(0.316008\pi\)
\(384\) 22.4217 + 9.44079i 1.14420 + 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) −20.3275 5.70139i −1.03330 0.289818i
\(388\) −6.43222 + 11.1409i −0.326546 + 0.565595i
\(389\) 20.9207 + 12.0785i 1.06072 + 0.612406i 0.925631 0.378427i \(-0.123535\pi\)
0.135088 + 0.990834i \(0.456868\pi\)
\(390\) −48.4614 27.3076i −2.45394 1.38277i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) −9.27752 3.90635i −0.467989 0.197049i
\(394\) 8.94606 + 15.4950i 0.450696 + 0.780628i
\(395\) 5.20178 + 12.0017i 0.261730 + 0.603871i
\(396\) −8.16352 31.9513i −0.410232 1.60561i
\(397\) 6.00792 + 10.4060i 0.301529 + 0.522263i 0.976482 0.215597i \(-0.0691697\pi\)
−0.674954 + 0.737860i \(0.735836\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) 26.6997 15.4151i 1.33332 0.769792i 0.347513 0.937675i \(-0.387026\pi\)
0.985807 + 0.167883i \(0.0536930\pi\)
\(402\) −24.9328 32.8880i −1.24353 1.64030i
\(403\) −37.5283 21.6670i −1.86942 1.07931i
\(404\) −12.7733 22.1240i −0.635495 1.10071i
\(405\) −15.8795 12.3629i −0.789059 0.614317i
\(406\) 0 0
\(407\) −12.8502 −0.636959
\(408\) −9.82306 + 1.23505i −0.486314 + 0.0611443i
\(409\) −13.5699 7.83456i −0.670986 0.387394i 0.125464 0.992098i \(-0.459958\pi\)
−0.796450 + 0.604704i \(0.793291\pi\)
\(410\) −6.89675 15.9124i −0.340606 0.785857i
\(411\) −0.236313 1.87953i −0.0116564 0.0927101i
\(412\) 3.80855 0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) 0.681092 5.91625i 0.0334335 0.290417i
\(416\) 23.1643 40.1217i 1.13572 1.96713i
\(417\) 7.70103 + 10.1582i 0.377121 + 0.497448i
\(418\) 8.57874 + 14.8588i 0.419600 + 0.726769i
\(419\) −19.5975 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) −11.7984 20.4355i −0.574338 0.994782i
\(423\) 3.72270 + 14.5703i 0.181004 + 0.708433i
\(424\) −1.87996 + 3.25619i −0.0912990 + 0.158134i
\(425\) −10.7292 10.0522i −0.520442 0.487605i
\(426\) 16.3217 38.7638i 0.790789 1.87811i
\(427\) 0 0
\(428\) −9.57425 −0.462789
\(429\) −42.6469 + 5.36200i −2.05901 + 0.258880i
\(430\) −31.8946 + 13.8238i −1.53809 + 0.666642i
\(431\) 24.1528 + 13.9447i 1.16340 + 0.671690i 0.952117 0.305734i \(-0.0989019\pi\)
0.211285 + 0.977425i \(0.432235\pi\)
\(432\) 4.74137 5.96042i 0.228119 0.286771i
\(433\) 3.47350 0.166926 0.0834629 0.996511i \(-0.473402\pi\)
0.0834629 + 0.996511i \(0.473402\pi\)
\(434\) 0 0
\(435\) 4.44088 + 7.50940i 0.212924 + 0.360048i
\(436\) −17.7097 30.6740i −0.848139 1.46902i
\(437\) −5.28774 3.05288i −0.252947 0.146039i
\(438\) 10.0892 7.64878i 0.482083 0.365473i
\(439\) 3.41910 1.97402i 0.163185 0.0942147i −0.416184 0.909281i \(-0.636633\pi\)
0.579368 + 0.815066i \(0.303299\pi\)
\(440\) −13.3251 9.88423i −0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) 8.01539 + 13.8831i 0.380823 + 0.659604i 0.991180 0.132522i \(-0.0423075\pi\)
−0.610357 + 0.792126i \(0.708974\pi\)
\(444\) 10.1455 + 13.3826i 0.481484 + 0.635110i
\(445\) 12.0187 + 27.7298i 0.569740 + 1.31452i
\(446\) 4.56373 + 7.90462i 0.216099 + 0.374295i
\(447\) −7.27218 + 17.2713i −0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) −33.1287 + 0.692891i −1.56170 + 0.0326632i
\(451\) −11.6056 6.70048i −0.546485 0.315513i
\(452\) −29.4607 + 51.0274i −1.38571 + 2.40013i
\(453\) −1.79251 14.2568i −0.0842195 0.669844i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) −8.31969 + 4.80338i −0.389179 + 0.224692i −0.681804 0.731535i \(-0.738804\pi\)
0.292625 + 0.956227i \(0.405471\pi\)
\(458\) −19.9941 11.5436i −0.934262 0.539397i
\(459\) −2.25879 + 15.1114i −0.105431 + 0.705339i
\(460\) 19.1963 + 2.20993i 0.895034 + 0.103038i
\(461\) −24.5367 −1.14279 −0.571393 0.820676i \(-0.693597\pi\)
−0.571393 + 0.820676i \(0.693597\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) −2.85938 + 1.65086i −0.132743 + 0.0766395i
\(465\) −25.8125 + 0.269906i −1.19702 + 0.0125166i
\(466\) 4.30927 7.46387i 0.199623 0.345757i
\(467\) −15.5179 + 8.95926i −0.718083 + 0.414585i −0.814047 0.580800i \(-0.802740\pi\)
0.0959639 + 0.995385i \(0.469407\pi\)
\(468\) 39.2549 + 40.1805i 1.81456 + 1.85735i
\(469\) 0 0
\(470\) 19.8872 + 14.7519i 0.917330 + 0.680452i
\(471\) −1.16934 9.30039i −0.0538802 0.428539i
\(472\) 7.70770 13.3501i 0.354776 0.614490i
\(473\) −13.4304 + 23.2621i −0.617529 + 1.06959i
\(474\) −2.79216 22.2076i −0.128248 1.02003i
\(475\) 9.73665 2.95187i 0.446748 0.135441i
\(476\) 0 0
\(477\) 4.05503 + 4.15064i 0.185667 + 0.190045i
\(478\) 45.5076 26.2738i 2.08147 1.20174i
\(479\) 1.48248 2.56774i 0.0677364 0.117323i −0.830168 0.557513i \(-0.811756\pi\)
0.897905 + 0.440190i \(0.145089\pi\)
\(480\) −0.288558 27.5962i −0.0131708 1.25959i
\(481\) 18.9561 10.9443i 0.864322 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) 9.92271 + 1.14232i 0.450567 + 0.0518703i
\(486\) 20.1586 + 27.9188i 0.914414 + 1.26642i
\(487\) 28.8004 + 16.6279i 1.30507 + 0.753482i 0.981269 0.192644i \(-0.0617061\pi\)
0.323800 + 0.946125i \(0.395039\pi\)
\(488\) −23.0044 + 13.2816i −1.04136 + 0.601230i
\(489\) −11.5318 + 27.3879i −0.521487 + 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) 2.18476 + 17.3766i 0.0984966 + 0.783398i
\(493\) 3.31187 5.73632i 0.149159 0.258351i
\(494\) −25.3101 14.6128i −1.13875 0.657460i
\(495\) −20.2411 + 15.6810i −0.909771 + 0.704808i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) −3.95447 + 9.39179i −0.177204 + 0.420856i
\(499\) 16.8358 + 29.1604i 0.753673 + 1.30540i 0.946031 + 0.324076i \(0.105053\pi\)
−0.192358 + 0.981325i \(0.561613\pi\)
\(500\) −24.5576 + 20.8254i −1.09825 + 0.931339i
\(501\) −10.0514 13.2585i −0.449064 0.592346i
\(502\) −10.0816 17.4618i −0.449963 0.779358i
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) 21.9107 12.6502i 0.974050 0.562368i
\(507\) 40.4011 30.6286i 1.79428 1.36026i
\(508\) 1.48981 + 0.860142i 0.0660996 + 0.0381626i
\(509\) 11.5914 + 20.0770i 0.513782 + 0.889896i 0.999872 + 0.0159875i \(0.00508920\pi\)
−0.486090 + 0.873908i \(0.661577\pi\)
\(510\) 12.8061 + 21.6547i 0.567062 + 0.958884i
\(511\) 0 0
\(512\) 16.1430 0.713426
\(513\) −8.27468 6.58231i −0.365336 0.290616i
\(514\) −12.7916 7.38523i −0.564213 0.325749i
\(515\) −1.17594 2.71317i −0.0518183 0.119557i
\(516\) 34.8295 4.37911i 1.53328 0.192780i
\(517\) 19.1334 0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) 28.0749 + 3.23205i 1.23117 + 0.141735i
\(521\) −7.18762 + 12.4493i −0.314895 + 0.545415i −0.979415 0.201856i \(-0.935303\pi\)
0.664520 + 0.747271i \(0.268636\pi\)
\(522\) −3.69547 14.4637i −0.161746 0.633060i
\(523\) −12.6242 21.8658i −0.552018 0.956124i −0.998129 0.0611461i \(-0.980524\pi\)
0.446110 0.894978i \(-0.352809\pi\)
\(524\) 16.7378 0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) 9.79936 + 16.9730i 0.426867 + 0.739355i
\(528\) −5.85412 7.72197i −0.254768 0.336056i
\(529\) 6.99825 12.1213i 0.304272 0.527014i
\(530\) 9.49164 + 1.09270i 0.412291 + 0.0474638i
\(531\) −16.6253 17.0173i −0.721477 0.738489i
\(532\) 0 0
\(533\) 22.8268 0.988737
\(534\) −6.45128 51.3106i −0.279174 2.22042i
\(535\) 2.95618 + 6.82059i 0.127807 + 0.294880i
\(536\) 18.1583 + 10.4837i 0.784318 + 0.452826i
\(537\) 40.6508 5.11102i 1.75421 0.220557i
\(538\) 41.9896 1.81030
\(539\) 0 0
\(540\) 32.3115 + 8.69928i 1.39047 + 0.374357i
\(541\) −7.88973 13.6654i −0.339206 0.587522i 0.645078 0.764117i \(-0.276825\pi\)
−0.984284 + 0.176595i \(0.943492\pi\)
\(542\) 22.6676 + 13.0871i 0.973655 + 0.562140i
\(543\) −16.3581 21.5774i −0.701994 0.925977i
\(544\) −18.1459 + 10.4766i −0.778000 + 0.449179i
\(545\) −16.3837 + 22.0872i −0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) 1.57489 + 2.72779i 0.0672759 + 0.116525i
\(549\) 10.1482 + 39.7190i 0.433113 + 1.69517i
\(550\) −9.57991 + 41.0561i −0.408489 + 1.75064i
\(551\) 2.29185 + 3.96960i 0.0976360 + 0.169111i
\(552\) −9.31100 3.92045i −0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 6.40105 11.3596i 0.271709 0.482188i
\(556\) −18.3559 10.5978i −0.778464 0.449446i
\(557\) −14.4676 + 25.0586i −0.613011 + 1.06177i 0.377719 + 0.925920i \(0.376708\pi\)
−0.990730 + 0.135845i \(0.956625\pi\)
\(558\) 42.5298 + 11.9286i 1.80043 + 0.504980i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) −19.3369 + 11.1641i −0.815677 + 0.470931i
\(563\) 5.39368 + 3.11404i 0.227316 + 0.131241i 0.609333 0.792914i \(-0.291437\pi\)
−0.382017 + 0.924155i \(0.624770\pi\)
\(564\) −15.1062 19.9261i −0.636087 0.839041i
\(565\) 45.4477 + 5.23204i 1.91200 + 0.220114i
\(566\) 13.2589 0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 8.56862 4.94710i 0.359215 0.207393i −0.309521 0.950893i \(-0.600169\pi\)
0.668736 + 0.743500i \(0.266835\pi\)
\(570\) −17.4086 + 0.182031i −0.729165 + 0.00762446i
\(571\) −9.60472 + 16.6359i −0.401945 + 0.696189i −0.993961 0.109737i \(-0.964999\pi\)
0.592015 + 0.805927i \(0.298332\pi\)
\(572\) 61.8942 35.7347i 2.58793 1.49414i
\(573\) 7.24509 17.2070i 0.302668 0.718831i
\(574\) 0 0
\(575\) −4.35281 14.3576i −0.181525 0.598753i
\(576\) −10.3780 + 37.0011i −0.432415 + 1.54171i
\(577\) 19.0377 32.9742i 0.792549 1.37273i −0.131835 0.991272i \(-0.542087\pi\)
0.924384 0.381463i \(-0.124580\pi\)
\(578\) −9.22669 + 15.9811i −0.383780 + 0.664726i
\(579\) −3.17275 + 0.398910i −0.131855 + 0.0165781i
\(580\) −11.6508 8.64228i −0.483773 0.358851i
\(581\) 0 0
\(582\) −15.7519 6.63241i −0.652935 0.274922i
\(583\) 6.39367 3.69139i 0.264799 0.152882i
\(584\) −3.21614 + 5.57052i −0.133085 + 0.230510i
\(585\) 16.5037 40.3710i 0.682342 1.66914i
\(586\) 6.79859 3.92517i 0.280847 0.162147i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) −38.9151 4.47999i −1.60211 0.184438i
\(591\) −11.1792 + 8.47508i −0.459851 + 0.348618i
\(592\) 4.27353 + 2.46732i 0.175641 + 0.101406i
\(593\) −14.5994 + 8.42896i −0.599525 + 0.346136i −0.768855 0.639424i \(-0.779173\pi\)
0.169330 + 0.985559i \(0.445840\pi\)
\(594\) 40.7647 16.0565i 1.67260 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) 17.3618 2.18289i 0.710569 0.0893399i
\(598\) −21.5479 + 37.3220i −0.881159 + 1.52621i
\(599\) 11.7736 + 6.79751i 0.481058 + 0.277739i 0.720857 0.693084i \(-0.243748\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(600\) 15.3753 6.85582i 0.627695 0.279888i
\(601\) 46.2155i 1.88517i 0.333966 + 0.942585i \(0.391613\pi\)
−0.333966 + 0.942585i \(0.608387\pi\)
\(602\) 0 0
\(603\) 23.1462 22.6130i 0.942588 0.920874i
\(604\) 11.9461 + 20.6912i 0.486078 + 0.841912i
\(605\) 3.17349 + 7.32196i 0.129021 + 0.297680i
\(606\) 27.0465 20.5043i 1.09869 0.832930i
\(607\) −4.37164 7.57190i −0.177439 0.307334i 0.763563 0.645733i \(-0.223448\pi\)
−0.941003 + 0.338399i \(0.890115\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) −28.2248 + 16.2956i −1.14185 + 0.659249i
\(612\) −6.28906 24.6148i −0.254220 0.994995i
\(613\) 21.0938 + 12.1785i 0.851970 + 0.491885i 0.861315 0.508071i \(-0.169641\pi\)
−0.00934480 + 0.999956i \(0.502975\pi\)
\(614\) 32.0696 + 55.5461i 1.29422 + 2.24166i
\(615\) 11.7043 6.92167i 0.471964 0.279109i
\(616\) 0 0
\(617\) −25.3125 −1.01904 −0.509522 0.860458i \(-0.670178\pi\)
−0.509522 + 0.860458i \(0.670178\pi\)
\(618\) 0.631212 + 5.02038i 0.0253911 + 0.201949i
\(619\) −26.2018 15.1276i −1.05314 0.608029i −0.129612 0.991565i \(-0.541373\pi\)
−0.923526 + 0.383535i \(0.874706\pi\)
\(620\) 39.3820 17.0690i 1.58162 0.685506i
\(621\) −9.70623 + 12.2018i −0.389498 + 0.489641i
\(622\) −19.0958 −0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) 22.4183 + 11.0644i 0.896730 + 0.442577i
\(626\) −11.9865 + 20.7613i −0.479079 + 0.829788i
\(627\) −10.7202 + 8.12711i −0.428123 + 0.324565i
\(628\) 7.79296 + 13.4978i 0.310973 + 0.538621i
\(629\) −9.89959 −0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) 5.68566 + 9.84784i 0.226163 + 0.391726i
\(633\) 14.7436 11.1773i 0.586004 0.444257i
\(634\) 10.3173 17.8701i 0.409754 0.709714i
\(635\) 0.152756 1.32690i 0.00606194 0.0526566i
\(636\) −8.89228 3.74415i −0.352602 0.148465i
\(637\) 0 0
\(638\) −18.9934 −0.751956
\(639\) 31.7524 + 8.90582i 1.25610 + 0.352309i
\(640\) 12.4900 + 28.8173i 0.493711 + 1.13910i
\(641\) −0.111457 0.0643495i −0.00440227 0.00254165i 0.497797 0.867293i \(-0.334142\pi\)
−0.502200 + 0.864752i \(0.667476\pi\)
\(642\) −1.58679 12.6206i −0.0626257 0.498097i
\(643\) 0.150563 0.00593763 0.00296881 0.999996i \(-0.499055\pi\)
0.00296881 + 0.999996i \(0.499055\pi\)
\(644\) 0 0
\(645\) −13.8737 23.4600i −0.546277 0.923737i
\(646\) 6.60894 + 11.4470i 0.260025 + 0.450377i
\(647\) −35.8147 20.6776i −1.40802 0.812920i −0.412822 0.910812i \(-0.635457\pi\)
−0.995197 + 0.0978912i \(0.968790\pi\)
\(648\) −14.9432 9.09817i −0.587023 0.357410i
\(649\) −26.2136 + 15.1344i −1.02897 + 0.594078i
\(650\) −20.8350 68.7235i −0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) 14.7304 + 25.5138i 0.576446 + 0.998433i 0.995883 + 0.0906487i \(0.0288940\pi\)
−0.419437 + 0.907784i \(0.637773\pi\)
\(654\) 37.4990 28.4284i 1.46633 1.11164i
\(655\) −5.16804 11.9238i −0.201932 0.465903i
\(656\) 2.57308 + 4.45670i 0.100462 + 0.174005i
\(657\) 6.93713 + 7.10071i 0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) 20.9003 37.0907i 0.813544 1.44375i
\(661\) −20.3164 11.7297i −0.790218 0.456233i 0.0498213 0.998758i \(-0.484135\pi\)
−0.840039 + 0.542526i \(0.817468\pi\)
\(662\) −3.21328 + 5.56557i −0.124888 + 0.216312i
\(663\) −32.8546 + 4.13081i −1.27597 + 0.160427i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) 5.85354 3.37954i 0.226650 0.130856i
\(668\) 23.9582 + 13.8323i 0.926971 + 0.535187i
\(669\) −5.70294 + 4.32347i −0.220489 + 0.167155i
\(670\) 6.09349 52.9306i 0.235412 2.04489i
\(671\) 52.1580 2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) −29.2533 + 16.8894i −1.12680 + 0.650555i
\(675\) −3.77936 25.7044i −0.145468 0.989363i
\(676\) −42.1496 + 73.0052i −1.62114 + 2.80789i
\(677\) −39.5783 + 22.8505i −1.52112 + 0.878217i −0.521427 + 0.853296i \(0.674600\pi\)
−0.999689 + 0.0249214i \(0.992066\pi\)
\(678\) −72.1462 30.3776i −2.77076 1.16664i
\(679\) 0 0
\(680\) −10.2655 7.61467i −0.393663 0.292009i
\(681\) −12.3315 + 1.55044i −0.472545 + 0.0594130i
\(682\) 28.0994 48.6697i 1.07598 1.86366i
\(683\) 19.3444 33.5055i 0.740192 1.28205i −0.212215 0.977223i \(-0.568068\pi\)
0.952407 0.304828i \(-0.0985990\pi\)
\(684\) 16.9277 + 4.74783i 0.647246 + 0.181538i
\(685\) 1.45698 1.96418i 0.0556682 0.0750473i
\(686\) 0 0
\(687\) 7.02460 16.6833i 0.268005 0.636508i
\(688\) 8.93296 5.15745i 0.340566 0.196626i
\(689\) −6.28779 + 10.8908i −0.239546 + 0.414905i
\(690\) 0.268422 + 25.6706i 0.0102187 + 0.977262i
\(691\) −16.6768 + 9.62834i −0.634415 + 0.366279i −0.782460 0.622701i \(-0.786035\pi\)
0.148045 + 0.988981i \(0.452702\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) −1.88211 + 16.3488i −0.0713923 + 0.620144i
\(696\) 4.58189 + 6.04381i 0.173676 + 0.229090i
\(697\) −8.94077 5.16195i −0.338656 0.195523i
\(698\) 15.7836 9.11265i 0.597417 0.344919i
\(699\) 6.22794 + 2.62231i 0.235562 + 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) −46.4594 + 58.4046i −1.75350 + 2.20434i
\(703\) 3.42531 5.93282i 0.129188 0.223760i
\(704\) 42.3428 + 24.4466i 1.59586 + 0.921367i
\(705\) −9.53089 + 16.9140i −0.358954 + 0.637017i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) 36.4577 + 15.3507i 1.37016 + 0.576916i
\(709\) −2.44586 4.23635i −0.0918561 0.159099i 0.816436 0.577436i \(-0.195947\pi\)
−0.908292 + 0.418336i \(0.862613\pi\)
\(710\) 49.8208 21.5933i 1.86974 0.810384i
\(711\) 17.0031 4.34428i 0.637667 0.162923i
\(712\) 13.1367 + 22.7534i 0.492318 + 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) −58.9972 + 34.0620i −2.20483 + 1.27296i
\(717\) 24.8906 + 32.8324i 0.929557 + 1.22615i
\(718\) 13.6506 + 7.88121i 0.509438 + 0.294124i
\(719\) −19.0108 32.9277i −0.708985 1.22800i −0.965234 0.261387i \(-0.915820\pi\)
0.256249 0.966611i \(-0.417513\pi\)
\(720\) 9.74237 1.32852i 0.363077 0.0495112i
\(721\) 0 0
\(722\) 32.8253 1.22163
\(723\) 22.8263 2.86995i 0.848919 0.106735i
\(724\) 38.9906 + 22.5112i 1.44907 + 0.836624i
\(725\) −2.55931 + 10.9683i −0.0950506 + 0.407353i
\(726\) −1.70344 13.5484i −0.0632205 0.502827i
\(727\) 18.6502 0.691699 0.345849 0.938290i \(-0.387591\pi\)
0.345849 + 0.938290i \(0.387591\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) 16.2378 + 1.86933i 0.600988 + 0.0691872i
\(731\) −10.3466 + 17.9208i −0.382681 + 0.662824i
\(732\) −41.1799 54.3191i −1.52205 2.00769i
\(733\) −18.7967 32.5568i −0.694271 1.20251i −0.970426 0.241399i \(-0.922394\pi\)
0.276155 0.961113i \(-0.410940\pi\)
\(734\) 53.8821 1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) −20.5852 35.6546i −0.758264 1.31335i
\(738\) −22.5435 + 5.75984i −0.829837 + 0.212023i
\(739\) 24.7189 42.8144i 0.909300 1.57495i 0.0942603 0.995548i \(-0.469951\pi\)
0.815039 0.579406i \(-0.196715\pi\)
\(740\) −2.47953 + 21.5382i −0.0911492 + 0.791760i
\(741\) 8.89228 21.1190i 0.326666 0.775826i
\(742\) 0 0
\(743\) −42.7477 −1.56826 −0.784131 0.620596i \(-0.786891\pi\)
−0.784131 + 0.620596i \(0.786891\pi\)
\(744\) −22.2656 + 2.79945i −0.816295 + 0.102633i
\(745\) −22.1978 + 9.62097i −0.813264 + 0.352485i
\(746\) −42.1929 24.3601i −1.54479 0.891886i
\(747\) −7.69304 2.15772i −0.281474 0.0789470i
\(748\) −32.3236 −1.18187
\(749\) 0 0
\(750\) −31.5218 28.9200i −1.15101 1.05601i
\(751\) −2.79526 4.84152i −0.102000 0.176670i 0.810508 0.585727i \(-0.199191\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(752\) −6.36310 3.67374i −0.232039 0.133968i
\(753\) 12.5982 9.55082i 0.459103 0.348051i
\(754\) 28.0183 16.1764i 1.02037 0.589109i
\(755\) 11.0517 14.8989i 0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) −1.27906 2.21539i −0.0464574 0.0804666i
\(759\) 11.9842 + 15.8079i 0.434998 + 0.573791i
\(760\) 8.11537 3.51737i 0.294376 0.127588i
\(761\) −24.5715 42.5591i −0.890716 1.54277i −0.839019 0.544102i \(-0.816870\pi\)
−0.0516970 0.998663i \(-0.516463\pi\)
\(762\) −0.886912 + 2.10640i −0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) −15.5935 + 12.0804i −0.563783 + 0.436768i
\(766\) −4.07358 2.35188i −0.147184 0.0849769i
\(767\) 25.7795 44.6514i 0.930843 1.61227i
\(768\) −1.16872 9.29547i −0.0421725 0.335421i
\(769\) 27.0203i 0.974376i 0.873297 + 0.487188i \(0.161977\pi\)
−0.873297 + 0.487188i \(0.838023\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) 4.60466 2.65850i 0.165725 0.0956816i
\(773\) 45.8267 + 26.4581i 1.64827 + 0.951631i 0.977758 + 0.209735i \(0.0672601\pi\)
0.670515 + 0.741896i \(0.266073\pi\)
\(774\) 11.5450 + 45.1859i 0.414975 + 1.62417i
\(775\) −24.3195 22.7850i −0.873581 0.818462i
\(776\) 8.68312 0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 6.18711 3.57213i 0.221676 0.127985i
\(780\) 0.758249 + 72.5152i 0.0271497 + 2.59646i
\(781\) 20.9788 36.3364i 0.750681 1.30022i
\(782\) 16.8797 9.74550i 0.603617 0.348499i
\(783\) 10.8905 4.28956i 0.389193 0.153296i
\(784\) 0 0
\(785\) 7.20950 9.71926i 0.257318 0.346895i
\(786\) 2.77405 + 22.0636i 0.0989471 + 0.786981i
\(787\) −8.37879 + 14.5125i −0.298672 + 0.517315i −0.975832 0.218521i \(-0.929877\pi\)
0.677161 + 0.735835i \(0.263210\pi\)
\(788\) 11.6630 20.2009i 0.415477 0.719627i
\(789\) 5.21340 + 41.4650i 0.185602 + 1.47619i
\(790\) 17.2150 23.2078i 0.612481 0.825697i
\(791\) 0 0
\(792\) −15.9218 + 15.5550i −0.565756 + 0.552723i
\(793\) −76.9414 + 44.4222i −2.73227 + 1.57748i
\(794\) 13.2719 22.9876i 0.471001 0.815798i
\(795\) 0.0783271 + 7.49082i 0.00277798 + 0.265672i
\(796\) −25.1974 + 14.5477i −0.893099 + 0.515631i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) 24.3596 26.0001i 0.861241 0.919241i
\(801\) 39.2856 10.0374i 1.38809 0.354655i
\(802\) −58.9813 34.0529i −2.08270 1.20245i
\(803\) 10.9380 6.31503i 0.385992 0.222853i
\(804\) −20.8794 + 49.5882i −0.736359 + 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) 4.10702 + 32.6654i 0.144574 + 1.14988i
\(808\) −8.62160 + 14.9331i −0.303307 + 0.525343i
\(809\) −36.4604 21.0504i −1.28188 0.740094i −0.304689 0.952452i \(-0.598553\pi\)
−0.977192 + 0.212358i \(0.931886\pi\)
\(810\) −6.11209 + 44.0344i −0.214757 + 1.54721i
\(811\) 1.35051i 0.0474227i 0.999719 + 0.0237113i \(0.00754826\pi\)
−0.999719 + 0.0237113i \(0.992452\pi\)
\(812\) 0 0
\(813\) −7.96388 + 18.9141i −0.279306 + 0.663346i
\(814\) 14.1934 + 24.5837i 0.497479 + 0.861659i
\(815\) −35.2000 + 15.2564i −1.23300 + 0.534409i
\(816\) −4.50993 5.94890i −0.157879 0.208253i
\(817\) −7.15993 12.4014i −0.250494 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) −9.82457 + 5.67222i −0.342880 + 0.197962i −0.661545 0.749906i \(-0.730099\pi\)
0.318665 + 0.947867i \(0.396765\pi\)
\(822\) −3.33471 + 2.52809i −0.116312 + 0.0881771i
\(823\) 26.1348 + 15.0889i 0.911002 + 0.525967i 0.880754 0.473575i \(-0.157037\pi\)
0.0302488 + 0.999542i \(0.490370\pi\)
\(824\) −1.28533 2.22626i −0.0447766 0.0775554i
\(825\) −32.8763 3.43689i −1.14460 0.119657i
\(826\) 0 0
\(827\) −34.7911 −1.20981 −0.604903 0.796299i \(-0.706788\pi\)
−0.604903 + 0.796299i \(0.706788\pi\)
\(828\) 7.00112 24.9614i 0.243306 0.867470i
\(829\) −3.50678 2.02464i −0.121796 0.0703187i 0.437864 0.899041i \(-0.355735\pi\)
−0.559660 + 0.828722i \(0.689068\pi\)
\(830\) −12.0707 + 5.23169i −0.418980 + 0.181595i
\(831\) −28.3867 + 3.56906i −0.984725 + 0.123809i
\(832\) −83.2833 −2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) 2.45653 21.3385i 0.0850118 0.738448i
\(836\) 11.1841 19.3715i 0.386811 0.669977i
\(837\) −5.11992 + 34.2524i −0.176970 + 1.18394i
\(838\) 21.6460 + 37.4920i 0.747749 + 1.29514i
\(839\) −25.8653 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) 35.9846 + 62.3272i 1.24011 + 2.14794i
\(843\) −10.5764 13.9510i −0.364271 0.480497i
\(844\) −15.3816 + 26.6417i −0.529457 + 0.917047i
\(845\) 65.0223 + 7.48552i 2.23684 + 0.257510i
\(846\) 23.7627 23.2153i 0.816978 0.798158i
\(847\) 0 0
\(848\) −2.83509 −0.0973573
\(849\) 1.29686 + 10.3146i 0.0445080 + 0.353997i
\(850\) −7.38023 + 31.6291i −0.253140 + 1.08487i
\(851\) −8.74849 5.05094i −0.299894 0.173144i
\(852\) −54.4052 + 6.84036i −1.86389 + 0.234347i
\(853\) −37.5709 −1.28640 −0.643201 0.765697i \(-0.722394\pi\)
−0.643201 + 0.765697i \(0.722394\pi\)
\(854\) 0 0
\(855\) −1.84435 13.5250i −0.0630755 0.462547i
\(856\) 3.23117 + 5.59655i 0.110439 + 0.191286i
\(857\) −19.8563 11.4640i −0.678278 0.391604i 0.120928 0.992661i \(-0.461413\pi\)
−0.799206 + 0.601057i \(0.794746\pi\)
\(858\) 57.3630 + 75.6656i 1.95834 + 2.58318i
\(859\) 16.2512 9.38264i 0.554484 0.320132i −0.196444 0.980515i \(-0.562940\pi\)
0.750929 + 0.660383i \(0.229606\pi\)
\(860\) 36.3981 + 26.9992i 1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) −4.23086 7.32807i −0.144020 0.249450i 0.784987 0.619512i \(-0.212670\pi\)
−0.929007 + 0.370062i \(0.879336\pi\)
\(864\) −36.6194 5.47373i −1.24582 0.186220i
\(865\) 20.8705 9.04569i 0.709618 0.307563i
\(866\) −3.83659 6.64517i −0.130373 0.225812i
\(867\) −13.3348 5.61470i −0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 9.46117 16.7902i 0.320764 0.569243i
\(871\) 60.7329 + 35.0641i 2.05785 + 1.18810i
\(872\) −11.9535 + 20.7041i −0.404797 + 0.701129i
\(873\) 3.61892 12.9027i 0.122482 0.436691i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) −3.27867 + 1.89294i −0.110713 + 0.0639201i −0.554334 0.832294i \(-0.687027\pi\)
0.443621 + 0.896214i \(0.353694\pi\)
\(878\) −7.55301 4.36073i −0.254902 0.147168i
\(879\) 3.71852 + 4.90498i 0.125423 + 0.165441i
\(880\) 1.43073 12.4279i 0.0482298 0.418944i
\(881\) −54.6531 −1.84131 −0.920654 0.390379i \(-0.872344\pi\)
−0.920654 + 0.390379i \(0.872344\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) 47.6824 27.5295i 1.60373 0.925916i
\(885\) −0.321135 30.7118i −0.0107948 1.03237i
\(886\) 17.7065 30.6686i 0.594862 1.03033i
\(887\) 26.0011 15.0117i 0.873032 0.504045i 0.00467726 0.999989i \(-0.498511\pi\)
0.868355 + 0.495944i \(0.165178\pi\)
\(888\) 4.39873 10.4469i 0.147612 0.350575i
\(889\) 0 0
\(890\) 39.7751 53.6215i 1.33326 1.79740i
\(891\) 16.4782 + 30.1420i 0.552041 + 1.00980i
\(892\) 5.94975 10.3053i 0.199212 0.345046i
\(893\) −5.10015 + 8.83371i −0.170670 + 0.295609i
\(894\) 41.0742 5.16426i 1.37373 0.172719i
\(895\) 42.4816 + 31.5118i 1.42000 + 1.05332i
\(896\) 0 0
\(897\) −31.1420 13.1125i −1.03980 0.437814i
\(898\) 40.3668 23.3058i 1.34706 0.777724i
\(899\) 7.50689 13.0023i 0.250369 0.433651i
\(900\) 22.3773 + 36.9519i 0.745909 + 1.23173i
\(901\) 4.92559 2.84379i 0.164095 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) 3.99787 34.7271i 0.132894 1.15437i
\(906\) −25.2949 + 19.1764i −0.840367 + 0.637092i
\(907\) −16.8295 9.71653i −0.558815 0.322632i 0.193855 0.981030i \(-0.437901\pi\)
−0.752670 + 0.658398i \(0.771234\pi\)
\(908\) 17.8969 10.3328i 0.593931 0.342906i
\(909\) 18.5966 + 19.0351i 0.616809 + 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) 5.12563 0.644446i 0.169727 0.0213397i
\(913\) −5.08280 + 8.80366i −0.168216 + 0.291359i
\(914\) 18.3787 + 10.6110i 0.607914 + 0.350979i
\(915\) −25.9814 + 46.1079i −0.858920 + 1.52428i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) 31.4046 12.3697i 1.03650 0.408261i
\(919\) −22.5064 38.9822i −0.742416 1.28590i −0.951392 0.307982i \(-0.900346\pi\)
0.208976 0.977921i \(-0.432987\pi\)
\(920\) −5.18669 11.9669i −0.171000 0.394536i
\(921\) −40.0749 + 30.3812i −1.32051 + 1.00110i
\(922\) 27.1015 + 46.9412i 0.892541 + 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) 27.9073 16.1123i 0.917092 0.529483i
\(927\) −3.84382 + 0.982092i −0.126248 + 0.0322561i
\(928\) 13.9008 + 8.02565i 0.456317 + 0.263455i
\(929\) 21.3495 + 36.9785i 0.700455 + 1.21322i 0.968307 + 0.249764i \(0.0803530\pi\)
−0.267852 + 0.963460i \(0.586314\pi\)
\(930\) 29.0270 + 49.0838i 0.951834 + 1.60952i
\(931\) 0 0
\(932\) −11.2360 −0.368048
\(933\) −1.86777 14.8554i −0.0611482 0.486345i
\(934\) 34.2800 + 19.7916i 1.12168 + 0.647600i
\(935\) 9.98034 + 23.0269i 0.326392 + 0.753061i
\(936\) 10.2392 36.5065i 0.334680 1.19325i
\(937\) 26.4685 0.864688 0.432344 0.901709i \(-0.357687\pi\)
0.432344 + 0.901709i \(0.357687\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) 3.69191 32.0695i 0.120417 1.04599i
\(941\) −15.8545 + 27.4609i −0.516843 + 0.895199i 0.482965 + 0.875640i \(0.339560\pi\)
−0.999809 + 0.0195596i \(0.993774\pi\)
\(942\) −16.5010 + 12.5096i −0.537633 + 0.407586i
\(943\) −5.26744 9.12347i −0.171531 0.297101i
\(944\) 11.6237 0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) −5.97276 10.3451i −0.194089 0.336171i 0.752513 0.658578i \(-0.228842\pi\)
−0.946601 + 0.322406i \(0.895508\pi\)
\(948\) −23.2532 + 17.6285i −0.755229 + 0.572548i
\(949\) −10.7568 + 18.6314i −0.349181 + 0.604800i
\(950\) −16.4017 15.3668i −0.532141 0.498565i
\(951\) 14.9111 + 6.27839i 0.483524 + 0.203591i
\(952\) 0 0
\(953\) −1.76384 −0.0571364 −0.0285682 0.999592i \(-0.509095\pi\)
−0.0285682 + 0.999592i \(0.509095\pi\)
\(954\) 3.46171 12.3422i 0.112077 0.399594i
\(955\) 22.1151 9.58513i 0.715627 0.310167i
\(956\) −59.3284 34.2532i −1.91882 1.10783i
\(957\) −1.85775 14.7757i −0.0600527 0.477632i
\(958\) −6.54980 −0.211614
\(959\) 0 0
\(960\) −42.7031 + 25.2536i −1.37824 + 0.815058i
\(961\) 6.71186 + 11.6253i 0.216511 + 0.375009i
\(962\) −41.8752 24.1766i −1.35011 0.779486i
\(963\) 9.66291 2.46886i 0.311383 0.0795580i
\(964\) −33.1282 + 19.1266i −1.06699 + 0.616026i
\(965\) −3.31564 2.45946i −0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) 3.46869 + 6.00795i 0.111488 + 0.193103i
\(969\) −8.25869 + 6.26101i −0.265307 + 0.201133i
\(970\) −8.77456 20.2449i −0.281734 0.650025i
\(971\) −23.9577 41.4959i −0.768838 1.33167i −0.938193 0.346111i \(-0.887502\pi\)
0.169356 0.985555i \(-0.445831\pi\)
\(972\) 18.3810 40.9588i 0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) 51.4249 22.9302i 1.64692 0.734356i
\(976\) −17.3460 10.0147i −0.555231 0.320563i
\(977\) 4.07411 7.05657i 0.130342 0.225760i −0.793466 0.608614i \(-0.791726\pi\)
0.923809 + 0.382855i \(0.125059\pi\)
\(978\) 65.1332 8.18920i 2.08273 0.261862i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) −48.7636 + 28.1537i −1.55611 + 0.898420i
\(983\) 12.6460 + 7.30116i 0.403344 + 0.232871i 0.687926 0.725781i \(-0.258521\pi\)
−0.284582 + 0.958652i \(0.591855\pi\)
\(984\) 9.42003 7.14143i 0.300300 0.227661i
\(985\) −17.9920 2.07128i −0.573273 0.0659965i
\(986\) −14.6322 −0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) −18.2870 + 10.5580i −0.581492 + 0.335725i
\(990\) 52.3563 + 21.4032i 1.66399 + 0.680240i
\(991\) −7.84118 + 13.5813i −0.249083 + 0.431425i −0.963272 0.268529i \(-0.913463\pi\)
0.714188 + 0.699953i \(0.246796\pi\)
\(992\) −41.1307 + 23.7468i −1.30590 + 0.753962i
\(993\) −4.64398 1.95537i −0.147372 0.0620519i
\(994\) 0 0
\(995\) 18.1437 + 13.4585i 0.575194 + 0.426664i
\(996\) 13.1814 1.65730i 0.417669 0.0525136i
\(997\) 13.5211 23.4192i 0.428218 0.741695i −0.568497 0.822685i \(-0.692475\pi\)
0.996715 + 0.0809903i \(0.0258083\pi\)
\(998\) 37.1913 64.4173i 1.17727 2.03909i
\(999\) −13.6904 10.8903i −0.433144 0.344555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.4 64
3.2 odd 2 inner 735.2.p.g.374.31 64
5.4 even 2 inner 735.2.p.g.374.29 64
7.2 even 3 inner 735.2.p.g.509.3 64
7.3 odd 6 735.2.g.c.734.32 yes 32
7.4 even 3 735.2.g.c.734.29 yes 32
7.5 odd 6 inner 735.2.p.g.509.2 64
7.6 odd 2 inner 735.2.p.g.374.1 64
15.14 odd 2 inner 735.2.p.g.374.2 64
21.2 odd 6 inner 735.2.p.g.509.32 64
21.5 even 6 inner 735.2.p.g.509.29 64
21.11 odd 6 735.2.g.c.734.2 yes 32
21.17 even 6 735.2.g.c.734.3 yes 32
21.20 even 2 inner 735.2.p.g.374.30 64
35.4 even 6 735.2.g.c.734.4 yes 32
35.9 even 6 inner 735.2.p.g.509.30 64
35.19 odd 6 inner 735.2.p.g.509.31 64
35.24 odd 6 735.2.g.c.734.1 32
35.34 odd 2 inner 735.2.p.g.374.32 64
105.44 odd 6 inner 735.2.p.g.509.1 64
105.59 even 6 735.2.g.c.734.30 yes 32
105.74 odd 6 735.2.g.c.734.31 yes 32
105.89 even 6 inner 735.2.p.g.509.4 64
105.104 even 2 inner 735.2.p.g.374.3 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 35.24 odd 6
735.2.g.c.734.2 yes 32 21.11 odd 6
735.2.g.c.734.3 yes 32 21.17 even 6
735.2.g.c.734.4 yes 32 35.4 even 6
735.2.g.c.734.29 yes 32 7.4 even 3
735.2.g.c.734.30 yes 32 105.59 even 6
735.2.g.c.734.31 yes 32 105.74 odd 6
735.2.g.c.734.32 yes 32 7.3 odd 6
735.2.p.g.374.1 64 7.6 odd 2 inner
735.2.p.g.374.2 64 15.14 odd 2 inner
735.2.p.g.374.3 64 105.104 even 2 inner
735.2.p.g.374.4 64 1.1 even 1 trivial
735.2.p.g.374.29 64 5.4 even 2 inner
735.2.p.g.374.30 64 21.20 even 2 inner
735.2.p.g.374.31 64 3.2 odd 2 inner
735.2.p.g.374.32 64 35.34 odd 2 inner
735.2.p.g.509.1 64 105.44 odd 6 inner
735.2.p.g.509.2 64 7.5 odd 6 inner
735.2.p.g.509.3 64 7.2 even 3 inner
735.2.p.g.509.4 64 105.89 even 6 inner
735.2.p.g.509.29 64 21.5 even 6 inner
735.2.p.g.509.30 64 35.9 even 6 inner
735.2.p.g.509.31 64 35.19 odd 6 inner
735.2.p.g.509.32 64 21.2 odd 6 inner