Properties

Label 735.2.p.g.509.3
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.3
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.g.374.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.10453 + 1.91310i) q^{2} +(0.216070 + 1.71852i) q^{3} +(-1.43998 - 2.49412i) q^{4} +(-0.889228 - 2.05165i) q^{5} +(-3.52637 - 1.48480i) q^{6} +1.94389 q^{8} +(-2.90663 + 0.742640i) q^{9} +(4.90720 + 0.564929i) q^{10} +(3.30554 - 1.90846i) q^{11} +(3.97506 - 3.01354i) q^{12} +6.50161 q^{13} +(3.33367 - 1.97146i) q^{15} +(0.732874 - 1.26937i) q^{16} +(2.54654 - 1.47025i) q^{17} +(1.78971 - 6.38095i) q^{18} +(-1.76224 - 1.01743i) q^{19} +(-3.83659 + 5.17218i) q^{20} +8.43180i q^{22} +(-1.50029 + 2.59858i) q^{23} +(0.420016 + 3.34061i) q^{24} +(-3.41855 + 3.64877i) q^{25} +(-7.18123 + 12.4383i) q^{26} +(-1.90428 - 4.83464i) q^{27} +2.25259i q^{29} +(0.0894567 + 8.55520i) q^{30} +(5.77216 - 3.33256i) q^{31} +(3.56285 + 6.17104i) q^{32} +(3.99395 + 5.26828i) q^{33} +6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} +(-2.91560 - 1.68332i) q^{37} +(3.89289 - 2.24756i) q^{38} +(1.40480 + 11.1732i) q^{39} +(-1.72856 - 3.98818i) q^{40} +3.51094 q^{41} -7.03729i q^{43} +(-9.51983 - 5.49628i) q^{44} +(4.10829 + 5.30301i) q^{45} +(-3.31424 - 5.74043i) q^{46} +(4.34120 + 2.50639i) q^{47} +(2.33980 + 0.985185i) q^{48} +(-3.20459 - 10.5702i) q^{50} +(3.07688 + 4.05861i) q^{51} +(-9.36219 - 16.2158i) q^{52} +(-0.967113 - 1.67509i) q^{53} +(11.3525 + 1.69693i) q^{54} +(-6.85487 - 5.08477i) q^{55} +(1.36770 - 3.24827i) q^{57} +(-4.30944 - 2.48806i) q^{58} +(3.96509 + 6.86774i) q^{59} +(-9.71747 - 5.47572i) q^{60} +(11.8342 + 6.83249i) q^{61} +14.7237i q^{62} -12.8096 q^{64} +(-5.78141 - 13.3390i) q^{65} +(-14.4902 + 1.82186i) q^{66} +(-9.34121 + 5.39315i) q^{67} +(-7.33395 - 4.23426i) q^{68} +(-4.78988 - 2.01681i) q^{69} +10.9926i q^{71} +(-5.65016 + 1.44361i) q^{72} +(-1.65449 - 2.86566i) q^{73} +(6.44074 - 3.71856i) q^{74} +(-7.00913 - 5.08646i) q^{75} +5.86030i q^{76} +(-22.9271 - 9.65357i) q^{78} +(2.92489 - 5.06605i) q^{79} +(-3.25601 - 0.374839i) q^{80} +(7.89697 - 4.31716i) q^{81} +(-3.87795 + 6.71680i) q^{82} -2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} +(13.4631 + 7.77291i) q^{86} +(-3.87112 + 0.486717i) q^{87} +(6.42561 - 3.70983i) q^{88} +(6.75793 - 11.7051i) q^{89} +(-14.6830 + 2.00225i) q^{90} +8.64156 q^{92} +(6.97425 + 9.19951i) q^{93} +(-9.58999 + 5.53678i) q^{94} +(-0.520378 + 4.52022i) q^{95} +(-9.83524 + 7.45621i) q^{96} +4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.10453 + 1.91310i −0.781022 + 1.35277i 0.150325 + 0.988637i \(0.451968\pi\)
−0.931347 + 0.364133i \(0.881365\pi\)
\(3\) 0.216070 + 1.71852i 0.124748 + 0.992188i
\(4\) −1.43998 2.49412i −0.719990 1.24706i
\(5\) −0.889228 2.05165i −0.397675 0.917526i
\(6\) −3.52637 1.48480i −1.43963 0.606166i
\(7\) 0 0
\(8\) 1.94389 0.687269
\(9\) −2.90663 + 0.742640i −0.968876 + 0.247547i
\(10\) 4.90720 + 0.564929i 1.55179 + 0.178646i
\(11\) 3.30554 1.90846i 0.996659 0.575421i 0.0894006 0.995996i \(-0.471505\pi\)
0.907258 + 0.420575i \(0.138172\pi\)
\(12\) 3.97506 3.01354i 1.14750 0.869934i
\(13\) 6.50161 1.80322 0.901611 0.432548i \(-0.142385\pi\)
0.901611 + 0.432548i \(0.142385\pi\)
\(14\) 0 0
\(15\) 3.33367 1.97146i 0.860750 0.509028i
\(16\) 0.732874 1.26937i 0.183218 0.317344i
\(17\) 2.54654 1.47025i 0.617628 0.356587i −0.158317 0.987388i \(-0.550607\pi\)
0.775945 + 0.630801i \(0.217274\pi\)
\(18\) 1.78971 6.38095i 0.421839 1.50401i
\(19\) −1.76224 1.01743i −0.404285 0.233414i 0.284046 0.958811i \(-0.408323\pi\)
−0.688331 + 0.725397i \(0.741656\pi\)
\(20\) −3.83659 + 5.17218i −0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) −1.50029 + 2.59858i −0.312832 + 0.541842i −0.978974 0.203983i \(-0.934611\pi\)
0.666142 + 0.745825i \(0.267944\pi\)
\(24\) 0.420016 + 3.34061i 0.0857353 + 0.681900i
\(25\) −3.41855 + 3.64877i −0.683710 + 0.729754i
\(26\) −7.18123 + 12.4383i −1.40836 + 2.43934i
\(27\) −1.90428 4.83464i −0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) 0.0894567 + 8.55520i 0.0163325 + 1.56196i
\(31\) 5.77216 3.33256i 1.03671 0.598545i 0.117810 0.993036i \(-0.462413\pi\)
0.918900 + 0.394491i \(0.129079\pi\)
\(32\) 3.56285 + 6.17104i 0.629829 + 1.09090i
\(33\) 3.99395 + 5.26828i 0.695257 + 0.917091i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) −2.91560 1.68332i −0.479321 0.276736i 0.240812 0.970572i \(-0.422586\pi\)
−0.720134 + 0.693835i \(0.755919\pi\)
\(38\) 3.89289 2.24756i 0.631510 0.364603i
\(39\) 1.40480 + 11.1732i 0.224948 + 1.78914i
\(40\) −1.72856 3.98818i −0.273309 0.630587i
\(41\) 3.51094 0.548317 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) −9.51983 5.49628i −1.43517 0.828595i
\(45\) 4.10829 + 5.30301i 0.612428 + 0.790526i
\(46\) −3.31424 5.74043i −0.488658 0.846380i
\(47\) 4.34120 + 2.50639i 0.633229 + 0.365595i 0.782002 0.623276i \(-0.214199\pi\)
−0.148772 + 0.988871i \(0.547532\pi\)
\(48\) 2.33980 + 0.985185i 0.337721 + 0.142199i
\(49\) 0 0
\(50\) −3.20459 10.5702i −0.453197 1.49486i
\(51\) 3.07688 + 4.05861i 0.430850 + 0.568319i
\(52\) −9.36219 16.2158i −1.29830 2.24873i
\(53\) −0.967113 1.67509i −0.132843 0.230091i 0.791928 0.610614i \(-0.209077\pi\)
−0.924771 + 0.380523i \(0.875744\pi\)
\(54\) 11.3525 + 1.69693i 1.54488 + 0.230923i
\(55\) −6.85487 5.08477i −0.924310 0.685630i
\(56\) 0 0
\(57\) 1.36770 3.24827i 0.181157 0.430244i
\(58\) −4.30944 2.48806i −0.565858 0.326698i
\(59\) 3.96509 + 6.86774i 0.516211 + 0.894104i 0.999823 + 0.0188214i \(0.00599139\pi\)
−0.483612 + 0.875283i \(0.660675\pi\)
\(60\) −9.71747 5.47572i −1.25452 0.706912i
\(61\) 11.8342 + 6.83249i 1.51522 + 0.874810i 0.999841 + 0.0178455i \(0.00568070\pi\)
0.515375 + 0.856965i \(0.327653\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) −5.78141 13.3390i −0.717096 1.65450i
\(66\) −14.4902 + 1.82186i −1.78362 + 0.224255i
\(67\) −9.34121 + 5.39315i −1.14121 + 0.658878i −0.946730 0.322029i \(-0.895635\pi\)
−0.194480 + 0.980906i \(0.562302\pi\)
\(68\) −7.33395 4.23426i −0.889372 0.513479i
\(69\) −4.78988 2.01681i −0.576634 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) −5.65016 + 1.44361i −0.665878 + 0.170131i
\(73\) −1.65449 2.86566i −0.193643 0.335400i 0.752812 0.658236i \(-0.228697\pi\)
−0.946455 + 0.322836i \(0.895364\pi\)
\(74\) 6.44074 3.71856i 0.748721 0.432274i
\(75\) −7.00913 5.08646i −0.809345 0.587334i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) −22.9271 9.65357i −2.59598 1.09305i
\(79\) 2.92489 5.06605i 0.329075 0.569975i −0.653253 0.757140i \(-0.726596\pi\)
0.982329 + 0.187164i \(0.0599296\pi\)
\(80\) −3.25601 0.374839i −0.364032 0.0419082i
\(81\) 7.89697 4.31716i 0.877441 0.479684i
\(82\) −3.87795 + 6.71680i −0.428248 + 0.741746i
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) 13.4631 + 7.77291i 1.45176 + 0.838175i
\(87\) −3.87112 + 0.486717i −0.415028 + 0.0521815i
\(88\) 6.42561 3.70983i 0.684972 0.395469i
\(89\) 6.75793 11.7051i 0.716339 1.24074i −0.246101 0.969244i \(-0.579150\pi\)
0.962441 0.271492i \(-0.0875170\pi\)
\(90\) −14.6830 + 2.00225i −1.54772 + 0.211056i
\(91\) 0 0
\(92\) 8.64156 0.900945
\(93\) 6.97425 + 9.19951i 0.723196 + 0.953944i
\(94\) −9.58999 + 5.53678i −0.989132 + 0.571075i
\(95\) −0.520378 + 4.52022i −0.0533896 + 0.463765i
\(96\) −9.83524 + 7.45621i −1.00381 + 0.760997i
\(97\) 4.46688 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) 14.0231 + 3.27211i 1.40231 + 0.327211i
\(101\) −4.43523 7.68205i −0.441322 0.764392i 0.556466 0.830871i \(-0.312157\pi\)
−0.997788 + 0.0664781i \(0.978824\pi\)
\(102\) −11.1631 + 1.40353i −1.10531 + 0.138970i
\(103\) −0.661216 + 1.14526i −0.0651516 + 0.112846i −0.896761 0.442515i \(-0.854086\pi\)
0.831610 + 0.555361i \(0.187420\pi\)
\(104\) 12.6384 1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) 1.66222 2.87905i 0.160693 0.278328i −0.774425 0.632666i \(-0.781960\pi\)
0.935117 + 0.354338i \(0.115294\pi\)
\(108\) −9.31604 + 11.7113i −0.896437 + 1.12692i
\(109\) −6.14927 10.6509i −0.588994 1.02017i −0.994365 0.106015i \(-0.966191\pi\)
0.405371 0.914152i \(-0.367142\pi\)
\(110\) 17.2991 7.49779i 1.64941 0.714886i
\(111\) 2.26285 5.37423i 0.214780 0.510099i
\(112\) 0 0
\(113\) 20.4591 1.92463 0.962314 0.271941i \(-0.0876657\pi\)
0.962314 + 0.271941i \(0.0876657\pi\)
\(114\) 4.70362 + 6.20438i 0.440534 + 0.581094i
\(115\) 6.66548 + 0.767346i 0.621560 + 0.0715553i
\(116\) 5.61823 3.24369i 0.521640 0.301169i
\(117\) −18.8978 + 4.82836i −1.74710 + 0.446382i
\(118\) −17.5183 −1.61269
\(119\) 0 0
\(120\) 6.48029 3.83229i 0.591567 0.349839i
\(121\) 1.78441 3.09068i 0.162219 0.280971i
\(122\) −26.1425 + 15.0934i −2.36683 + 1.36649i
\(123\) 0.758608 + 6.03363i 0.0684014 + 0.544034i
\(124\) −16.6236 9.59763i −1.49284 0.861893i
\(125\) 10.5259 + 3.76908i 0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) 7.02295 12.1641i 0.620747 1.07517i
\(129\) 12.0937 1.52055i 1.06479 0.133877i
\(130\) 31.9047 + 3.67294i 2.79823 + 0.322139i
\(131\) −2.90591 + 5.03319i −0.253891 + 0.439752i −0.964594 0.263741i \(-0.915044\pi\)
0.710703 + 0.703492i \(0.248377\pi\)
\(132\) 7.38852 17.5476i 0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) −8.22566 + 8.20601i −0.707952 + 0.706261i
\(136\) 4.95020 2.85800i 0.424476 0.245071i
\(137\) 0.546844 + 0.947161i 0.0467200 + 0.0809215i 0.888440 0.458993i \(-0.151790\pi\)
−0.841720 + 0.539915i \(0.818456\pi\)
\(138\) 9.14894 6.93592i 0.778810 0.590425i
\(139\) 7.35968i 0.624240i 0.950043 + 0.312120i \(0.101039\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) −21.0299 12.1416i −1.76479 1.01890i
\(143\) 21.4913 12.4080i 1.79720 1.03761i
\(144\) −1.18750 + 4.23386i −0.0989585 + 0.352822i
\(145\) 4.62153 2.00307i 0.383797 0.166346i
\(146\) 7.30973 0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) 9.36993 + 5.40973i 0.767615 + 0.443183i 0.832023 0.554741i \(-0.187183\pi\)
−0.0644082 + 0.997924i \(0.520516\pi\)
\(150\) 17.4727 7.79105i 1.42664 0.636137i
\(151\) 4.14799 + 7.18453i 0.337559 + 0.584669i 0.983973 0.178318i \(-0.0570655\pi\)
−0.646414 + 0.762987i \(0.723732\pi\)
\(152\) −3.42559 1.97777i −0.277852 0.160418i
\(153\) −6.30999 + 6.16463i −0.510132 + 0.498381i
\(154\) 0 0
\(155\) −11.9700 8.87905i −0.961454 0.713183i
\(156\) 25.8443 19.5929i 2.06920 1.56868i
\(157\) 2.70593 + 4.68680i 0.215957 + 0.374048i 0.953568 0.301178i \(-0.0973797\pi\)
−0.737612 + 0.675225i \(0.764046\pi\)
\(158\) 6.46126 + 11.1912i 0.514030 + 0.890326i
\(159\) 2.66971 2.02394i 0.211722 0.160509i
\(160\) 9.49264 12.7972i 0.750459 1.01171i
\(161\) 0 0
\(162\) −0.463276 + 19.8762i −0.0363984 + 1.56162i
\(163\) 14.8583 + 8.57846i 1.16379 + 0.671917i 0.952210 0.305443i \(-0.0988046\pi\)
0.211584 + 0.977360i \(0.432138\pi\)
\(164\) −5.05569 8.75671i −0.394783 0.683784i
\(165\) 7.25715 12.8789i 0.564969 1.00262i
\(166\) 5.09518 + 2.94170i 0.395463 + 0.228320i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) 13.3270 5.77619i 1.02213 0.443014i
\(171\) 5.87775 + 1.64858i 0.449483 + 0.126070i
\(172\) −17.5518 + 10.1336i −1.33832 + 0.772677i
\(173\) −8.80967 5.08627i −0.669787 0.386702i 0.126209 0.992004i \(-0.459719\pi\)
−0.795996 + 0.605302i \(0.793052\pi\)
\(174\) 3.34464 7.94346i 0.253556 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) −10.9456 + 8.29801i −0.822724 + 0.623716i
\(178\) 14.9287 + 25.8573i 1.11895 + 1.93808i
\(179\) −20.4854 + 11.8273i −1.53115 + 0.884011i −0.531843 + 0.846843i \(0.678500\pi\)
−0.999309 + 0.0371678i \(0.988166\pi\)
\(180\) 7.31048 17.8828i 0.544891 1.33291i
\(181\) 15.6330i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(182\) 0 0
\(183\) −9.18476 + 21.8136i −0.678957 + 1.61251i
\(184\) −2.91640 + 5.05135i −0.215000 + 0.372391i
\(185\) −0.860958 + 7.47864i −0.0632989 + 0.549841i
\(186\) −25.3029 + 3.18134i −1.85530 + 0.233267i
\(187\) 5.61181 9.71993i 0.410376 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) −9.33503 5.38958i −0.675459 0.389976i 0.122683 0.992446i \(-0.460850\pi\)
−0.798142 + 0.602470i \(0.794183\pi\)
\(192\) −2.76778 22.0136i −0.199747 1.58870i
\(193\) 1.59886 0.923104i 0.115089 0.0664465i −0.441351 0.897335i \(-0.645500\pi\)
0.556439 + 0.830888i \(0.312167\pi\)
\(194\) −4.93381 + 8.54561i −0.354227 + 0.613539i
\(195\) 21.6742 12.8176i 1.55212 0.917890i
\(196\) 0 0
\(197\) −8.09941 −0.577059 −0.288530 0.957471i \(-0.593166\pi\)
−0.288530 + 0.957471i \(0.593166\pi\)
\(198\) −6.26180 24.5081i −0.445006 1.74172i
\(199\) −8.74922 + 5.05137i −0.620216 + 0.358082i −0.776953 0.629559i \(-0.783236\pi\)
0.156737 + 0.987640i \(0.449902\pi\)
\(200\) −6.64528 + 7.09281i −0.469892 + 0.501537i
\(201\) −11.2866 14.8878i −0.796094 1.05010i
\(202\) 19.5954 1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) −3.12203 7.20323i −0.218052 0.503095i
\(206\) −1.46067 2.52995i −0.101770 0.176270i
\(207\) 2.43098 8.66729i 0.168965 0.602418i
\(208\) 4.76486 8.25298i 0.330383 0.572241i
\(209\) −7.76686 −0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) −2.78525 + 4.82419i −0.191292 + 0.331327i
\(213\) −18.8909 + 2.37516i −1.29439 + 0.162743i
\(214\) 3.67195 + 6.36000i 0.251009 + 0.434761i
\(215\) −14.4381 + 6.25775i −0.984668 + 0.426775i
\(216\) −3.70170 9.39800i −0.251869 0.639453i
\(217\) 0 0
\(218\) 27.1683 1.84007
\(219\) 4.56720 3.46245i 0.308623 0.233971i
\(220\) −2.81115 + 24.4188i −0.189528 + 1.64632i
\(221\) 16.5566 9.55898i 1.11372 0.643006i
\(222\) 7.78207 + 10.2651i 0.522299 + 0.688947i
\(223\) −4.13183 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(224\) 0 0
\(225\) 7.22672 13.1444i 0.481782 0.876291i
\(226\) −22.5977 + 39.1404i −1.50318 + 2.60358i
\(227\) 6.21430 3.58783i 0.412458 0.238132i −0.279388 0.960178i \(-0.590131\pi\)
0.691845 + 0.722046i \(0.256798\pi\)
\(228\) −10.0711 + 1.26623i −0.666972 + 0.0838584i
\(229\) −9.05093 5.22556i −0.598102 0.345315i 0.170192 0.985411i \(-0.445561\pi\)
−0.768295 + 0.640096i \(0.778894\pi\)
\(230\) −8.83025 + 11.9042i −0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) 1.95072 3.37875i 0.127796 0.221349i −0.795026 0.606575i \(-0.792543\pi\)
0.922822 + 0.385226i \(0.125876\pi\)
\(234\) 11.6360 41.4865i 0.760670 2.71206i
\(235\) 1.28193 11.1354i 0.0836240 0.726393i
\(236\) 11.4193 19.7788i 0.743334 1.28749i
\(237\) 9.33810 + 3.93186i 0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) −0.0593559 5.67650i −0.00383141 0.366417i
\(241\) −11.5030 + 6.64126i −0.740974 + 0.427801i −0.822423 0.568876i \(-0.807378\pi\)
0.0814495 + 0.996677i \(0.474045\pi\)
\(242\) 3.94187 + 6.82752i 0.253393 + 0.438889i
\(243\) 9.12542 + 12.6383i 0.585396 + 0.810747i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) −11.4574 6.61492i −0.729015 0.420897i
\(248\) 11.2204 6.47812i 0.712498 0.411361i
\(249\) 4.57694 0.575459i 0.290052 0.0364682i
\(250\) −18.8368 + 15.9740i −1.19134 + 1.01029i
\(251\) 9.12747 0.576121 0.288060 0.957612i \(-0.406990\pi\)
0.288060 + 0.957612i \(0.406990\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) 1.14275 + 0.659769i 0.0717027 + 0.0413976i
\(255\) 5.59081 9.92172i 0.350110 0.621322i
\(256\) 2.70450 + 4.68433i 0.169031 + 0.292770i
\(257\) −5.79051 3.34315i −0.361202 0.208540i 0.308406 0.951255i \(-0.400205\pi\)
−0.669608 + 0.742715i \(0.733538\pi\)
\(258\) −10.4489 + 24.8161i −0.650523 + 1.54498i
\(259\) 0 0
\(260\) −24.9440 + 33.6275i −1.54696 + 2.08549i
\(261\) −1.67287 6.54744i −0.103548 0.405277i
\(262\) −6.41935 11.1186i −0.396588 0.686911i
\(263\) −12.0642 20.8958i −0.743908 1.28849i −0.950703 0.310103i \(-0.899637\pi\)
0.206795 0.978384i \(-0.433697\pi\)
\(264\) 7.76379 + 10.2410i 0.477828 + 0.630288i
\(265\) −2.57672 + 3.47371i −0.158286 + 0.213389i
\(266\) 0 0
\(267\) 21.5756 + 9.08453i 1.32041 + 0.555964i
\(268\) 26.9023 + 15.5321i 1.64332 + 0.948771i
\(269\) −9.50393 16.4613i −0.579465 1.00366i −0.995541 0.0943328i \(-0.969928\pi\)
0.416076 0.909330i \(-0.363405\pi\)
\(270\) −6.61345 24.8003i −0.402482 1.50930i
\(271\) 10.2612 + 5.92429i 0.623321 + 0.359875i 0.778161 0.628065i \(-0.216153\pi\)
−0.154840 + 0.987940i \(0.549486\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) −4.33664 + 18.5853i −0.261509 + 1.12074i
\(276\) 1.86718 + 14.8507i 0.112391 + 0.893907i
\(277\) 14.3051 8.25906i 0.859511 0.496239i −0.00433762 0.999991i \(-0.501381\pi\)
0.863848 + 0.503752i \(0.168047\pi\)
\(278\) −14.0798 8.12900i −0.844452 0.487545i
\(279\) −14.3026 + 13.9731i −0.856275 + 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) −11.5872 15.2843i −0.690007 0.910165i
\(283\) −3.00101 5.19791i −0.178392 0.308984i 0.762938 0.646472i \(-0.223756\pi\)
−0.941330 + 0.337488i \(0.890423\pi\)
\(284\) 27.4167 15.8291i 1.62688 0.939282i
\(285\) −7.88053 + 0.0824021i −0.466802 + 0.00488108i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) −14.9388 15.2910i −0.880275 0.901031i
\(289\) −4.17674 + 7.23433i −0.245691 + 0.425549i
\(290\) −1.27255 + 11.0539i −0.0747269 + 0.649109i
\(291\) 0.965157 + 7.67642i 0.0565785 + 0.450000i
\(292\) −4.76486 + 8.25298i −0.278842 + 0.482969i
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) −5.66760 3.27219i −0.329422 0.190192i
\(297\) −15.5214 12.3469i −0.900641 0.716438i
\(298\) −20.6988 + 11.9504i −1.19905 + 0.692271i
\(299\) −9.75431 + 16.8950i −0.564106 + 0.977061i
\(300\) −2.59322 + 24.8060i −0.149720 + 1.43218i
\(301\) 0 0
\(302\) −18.3264 −1.05456
\(303\) 12.2434 9.28190i 0.703367 0.533231i
\(304\) −2.58299 + 1.49129i −0.148145 + 0.0855314i
\(305\) 3.49457 30.3553i 0.200099 1.73814i
\(306\) −4.82400 18.8807i −0.275770 1.07934i
\(307\) −29.0345 −1.65709 −0.828544 0.559923i \(-0.810831\pi\)
−0.828544 + 0.559923i \(0.810831\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) 30.2078 13.0927i 1.71569 0.743614i
\(311\) 4.32216 + 7.48620i 0.245087 + 0.424503i 0.962156 0.272499i \(-0.0878501\pi\)
−0.717069 + 0.697002i \(0.754517\pi\)
\(312\) 2.73078 + 21.7194i 0.154600 + 1.22962i
\(313\) −5.42607 + 9.39824i −0.306700 + 0.531220i −0.977638 0.210293i \(-0.932558\pi\)
0.670938 + 0.741513i \(0.265891\pi\)
\(314\) −11.9551 −0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) 4.67046 8.08947i 0.262319 0.454350i −0.704539 0.709665i \(-0.748846\pi\)
0.966858 + 0.255316i \(0.0821794\pi\)
\(318\) 0.923229 + 7.34294i 0.0517721 + 0.411772i
\(319\) 4.29897 + 7.44604i 0.240696 + 0.416898i
\(320\) 11.3907 + 26.2809i 0.636759 + 1.46915i
\(321\) 5.30686 + 2.23448i 0.296200 + 0.124717i
\(322\) 0 0
\(323\) −5.98348 −0.332930
\(324\) −22.1390 13.4794i −1.22994 0.748853i
\(325\) −22.2261 + 23.7229i −1.23288 + 1.31591i
\(326\) −32.8230 + 18.9504i −1.81790 + 1.04956i
\(327\) 16.9750 12.8690i 0.938722 0.711656i
\(328\) 6.82488 0.376841
\(329\) 0 0
\(330\) 16.6229 + 28.1088i 0.915062 + 1.54734i
\(331\) −1.45459 + 2.51942i −0.0799515 + 0.138480i −0.903229 0.429159i \(-0.858810\pi\)
0.823277 + 0.567639i \(0.192143\pi\)
\(332\) −6.64260 + 3.83511i −0.364560 + 0.210479i
\(333\) 9.72466 + 2.72755i 0.532908 + 0.149469i
\(334\) 18.3771 + 10.6100i 1.00555 + 0.580553i
\(335\) 19.3713 + 14.3692i 1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) −32.3307 + 55.9983i −1.75856 + 3.04591i
\(339\) 4.42059 + 35.1593i 0.240093 + 1.90959i
\(340\) −2.16567 + 18.8119i −0.117450 + 1.02022i
\(341\) 12.7201 22.0318i 0.688830 1.19309i
\(342\) −9.64606 + 9.42384i −0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) 0.121510 + 11.6206i 0.00654185 + 0.625631i
\(346\) 19.4611 11.2359i 1.04624 0.604045i
\(347\) 15.7892 + 27.3477i 0.847609 + 1.46810i 0.883336 + 0.468739i \(0.155292\pi\)
−0.0357279 + 0.999362i \(0.511375\pi\)
\(348\) 6.78827 + 8.95418i 0.363890 + 0.479995i
\(349\) 8.25024i 0.441625i 0.975316 + 0.220813i \(0.0708709\pi\)
−0.975316 + 0.220813i \(0.929129\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) 23.5543 + 13.5991i 1.25545 + 0.724834i
\(353\) −3.71360 + 2.14405i −0.197655 + 0.114116i −0.595561 0.803310i \(-0.703070\pi\)
0.397906 + 0.917426i \(0.369737\pi\)
\(354\) −3.78517 30.1055i −0.201180 1.60009i
\(355\) 22.5529 9.77488i 1.19698 0.518797i
\(356\) −38.9252 −2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) 6.17938 + 3.56767i 0.326135 + 0.188294i 0.654124 0.756387i \(-0.273037\pi\)
−0.327989 + 0.944682i \(0.606371\pi\)
\(360\) 7.98607 + 10.3085i 0.420903 + 0.543304i
\(361\) −7.42968 12.8686i −0.391036 0.677294i
\(362\) 29.9076 + 17.2672i 1.57191 + 0.907542i
\(363\) 5.69696 + 2.39874i 0.299013 + 0.125901i
\(364\) 0 0
\(365\) −4.40811 + 5.94265i −0.230731 + 0.311053i
\(366\) −31.5869 41.6653i −1.65107 2.17788i
\(367\) −12.1957 21.1235i −0.636609 1.10264i −0.986172 0.165726i \(-0.947003\pi\)
0.349563 0.936913i \(-0.386330\pi\)
\(368\) 2.19905 + 3.80886i 0.114633 + 0.198551i
\(369\) −10.2050 + 2.60737i −0.531251 + 0.135734i
\(370\) −13.3565 9.90750i −0.694370 0.515067i
\(371\) 0 0
\(372\) 12.9019 30.6417i 0.668931 1.58870i
\(373\) −19.0999 11.0273i −0.988956 0.570974i −0.0839940 0.996466i \(-0.526768\pi\)
−0.904962 + 0.425492i \(0.860101\pi\)
\(374\) 12.3968 + 21.4719i 0.641025 + 1.11029i
\(375\) −4.20293 + 18.9033i −0.217038 + 0.976163i
\(376\) 8.43881 + 4.87215i 0.435199 + 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) 12.0233 5.21114i 0.616782 0.267326i
\(381\) 1.02652 0.129065i 0.0525903 0.00661218i
\(382\) 20.6217 11.9059i 1.05510 0.609160i
\(383\) −1.84403 1.06465i −0.0942255 0.0544011i 0.452147 0.891944i \(-0.350658\pi\)
−0.546372 + 0.837542i \(0.683992\pi\)
\(384\) 22.4217 + 9.44079i 1.14420 + 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) 5.22618 + 20.4548i 0.265662 + 1.03978i
\(388\) −6.43222 11.1409i −0.326546 0.565595i
\(389\) −20.9207 + 12.0785i −1.06072 + 0.612406i −0.925631 0.378427i \(-0.876465\pi\)
−0.135088 + 0.990834i \(0.543132\pi\)
\(390\) 0.581612 + 55.6226i 0.0294511 + 2.81656i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) −9.27752 3.90635i −0.467989 0.197049i
\(394\) 8.94606 15.4950i 0.450696 0.780628i
\(395\) −12.9947 1.49598i −0.653832 0.0752707i
\(396\) 31.7524 + 8.90582i 1.59562 + 0.447534i
\(397\) 6.00792 10.4060i 0.301529 0.522263i −0.674954 0.737860i \(-0.735836\pi\)
0.976482 + 0.215597i \(0.0691697\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) −26.6997 15.4151i −1.33332 0.769792i −0.347513 0.937675i \(-0.612974\pi\)
−0.985807 + 0.167883i \(0.946307\pi\)
\(402\) 40.9482 5.14842i 2.04231 0.256780i
\(403\) 37.5283 21.6670i 1.86942 1.07931i
\(404\) −12.7733 + 22.1240i −0.635495 + 1.10071i
\(405\) −15.8795 12.3629i −0.789059 0.614317i
\(406\) 0 0
\(407\) −12.8502 −0.636959
\(408\) 5.98112 + 7.88949i 0.296109 + 0.390588i
\(409\) 13.5699 7.83456i 0.670986 0.387394i −0.125464 0.992098i \(-0.540042\pi\)
0.796450 + 0.604704i \(0.206709\pi\)
\(410\) 17.2289 + 1.98343i 0.850875 + 0.0979547i
\(411\) −1.50956 + 1.14442i −0.0744611 + 0.0564498i
\(412\) 3.80855 0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) −5.46417 + 2.36828i −0.268226 + 0.116254i
\(416\) 23.1643 + 40.1217i 1.13572 + 1.96713i
\(417\) −12.6478 + 1.59020i −0.619363 + 0.0778726i
\(418\) 8.57874 14.8588i 0.419600 0.726769i
\(419\) −19.5975 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) −11.7984 + 20.4355i −0.574338 + 0.994782i
\(423\) −14.4796 4.06120i −0.704023 0.197462i
\(424\) −1.87996 3.25619i −0.0912990 0.158134i
\(425\) −3.34089 + 14.3179i −0.162057 + 0.694518i
\(426\) 16.3217 38.7638i 0.790789 1.87811i
\(427\) 0 0
\(428\) −9.57425 −0.462789
\(429\) 25.9671 + 34.2523i 1.25370 + 1.65372i
\(430\) 3.97557 34.5334i 0.191719 1.66535i
\(431\) −24.1528 + 13.9447i −1.16340 + 0.671690i −0.952117 0.305734i \(-0.901098\pi\)
−0.211285 + 0.977425i \(0.567765\pi\)
\(432\) −7.53256 1.12594i −0.362410 0.0541717i
\(433\) 3.47350 0.166926 0.0834629 0.996511i \(-0.473402\pi\)
0.0834629 + 0.996511i \(0.473402\pi\)
\(434\) 0 0
\(435\) 4.44088 + 7.50940i 0.212924 + 0.360048i
\(436\) −17.7097 + 30.6740i −0.848139 + 1.46902i
\(437\) 5.28774 3.05288i 0.252947 0.146039i
\(438\) 1.57941 + 12.5619i 0.0754672 + 0.600232i
\(439\) −3.41910 1.97402i −0.163185 0.0942147i 0.416184 0.909281i \(-0.363367\pi\)
−0.579368 + 0.815066i \(0.696701\pi\)
\(440\) −13.3251 9.88423i −0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) 8.01539 13.8831i 0.380823 0.659604i −0.610357 0.792126i \(-0.708974\pi\)
0.991180 + 0.132522i \(0.0423075\pi\)
\(444\) −16.6624 + 2.09497i −0.790764 + 0.0994227i
\(445\) −30.0241 3.45644i −1.42328 0.163851i
\(446\) 4.56373 7.90462i 0.216099 0.374295i
\(447\) −7.27218 + 17.2713i −0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) 17.1644 + 28.3439i 0.809138 + 1.33614i
\(451\) 11.6056 6.70048i 0.546485 0.315513i
\(452\) −29.4607 51.0274i −1.38571 2.40013i
\(453\) −11.4505 + 8.68077i −0.537992 + 0.407858i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) 8.31969 + 4.80338i 0.389179 + 0.224692i 0.681804 0.731535i \(-0.261196\pi\)
−0.292625 + 0.956227i \(0.594529\pi\)
\(458\) 19.9941 11.5436i 0.934262 0.539397i
\(459\) −11.9574 9.51186i −0.558126 0.443975i
\(460\) −7.68432 17.7295i −0.358283 0.826641i
\(461\) −24.5367 −1.14279 −0.571393 0.820676i \(-0.693597\pi\)
−0.571393 + 0.820676i \(0.693597\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) 2.85938 + 1.65086i 0.132743 + 0.0766395i
\(465\) 12.6725 22.4892i 0.587672 1.04291i
\(466\) 4.30927 + 7.46387i 0.199623 + 0.345757i
\(467\) 15.5179 + 8.95926i 0.718083 + 0.414585i 0.814047 0.580800i \(-0.197260\pi\)
−0.0959639 + 0.995385i \(0.530593\pi\)
\(468\) 39.2549 + 40.1805i 1.81456 + 1.85735i
\(469\) 0 0
\(470\) 19.8872 + 14.7519i 0.917330 + 0.680452i
\(471\) −7.46970 + 5.66287i −0.344186 + 0.260931i
\(472\) 7.70770 + 13.3501i 0.354776 + 0.614490i
\(473\) −13.4304 23.2621i −0.617529 1.06959i
\(474\) −17.8363 + 13.5219i −0.819247 + 0.621081i
\(475\) 9.73665 2.95187i 0.446748 0.135441i
\(476\) 0 0
\(477\) 4.05503 + 4.15064i 0.185667 + 0.190045i
\(478\) −45.5076 26.2738i −2.08147 1.20174i
\(479\) 1.48248 + 2.56774i 0.0677364 + 0.117323i 0.897905 0.440190i \(-0.145089\pi\)
−0.830168 + 0.557513i \(0.811756\pi\)
\(480\) 24.0433 + 13.5482i 1.09742 + 0.618389i
\(481\) −18.9561 10.9443i −0.864322 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) −3.97207 9.16448i −0.180362 0.416138i
\(486\) −34.2577 + 3.49849i −1.55396 + 0.158695i
\(487\) −28.8004 + 16.6279i −1.30507 + 0.753482i −0.981269 0.192644i \(-0.938294\pi\)
−0.323800 + 0.946125i \(0.604961\pi\)
\(488\) 23.0044 + 13.2816i 1.04136 + 0.601230i
\(489\) −11.5318 + 27.3879i −0.521487 + 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) 13.9562 10.5804i 0.629194 0.477000i
\(493\) 3.31187 + 5.73632i 0.149159 + 0.258351i
\(494\) 25.3101 14.6128i 1.13875 0.657460i
\(495\) 23.7007 + 9.68883i 1.06527 + 0.435481i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) −3.95447 + 9.39179i −0.177204 + 0.420856i
\(499\) 16.8358 29.1604i 0.753673 1.30540i −0.192358 0.981325i \(-0.561613\pi\)
0.946031 0.324076i \(-0.105053\pi\)
\(500\) −5.75651 31.6802i −0.257439 1.41678i
\(501\) 16.5079 2.07554i 0.737519 0.0927283i
\(502\) −10.0816 + 17.4618i −0.449963 + 0.779358i
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) −21.9107 12.6502i −0.974050 0.562368i
\(507\) 6.32456 + 50.3027i 0.280884 + 2.23402i
\(508\) −1.48981 + 0.860142i −0.0660996 + 0.0381626i
\(509\) 11.5914 20.0770i 0.513782 0.889896i −0.486090 0.873908i \(-0.661577\pi\)
0.999872 0.0159875i \(-0.00508920\pi\)
\(510\) 12.8061 + 21.6547i 0.567062 + 0.958884i
\(511\) 0 0
\(512\) 16.1430 0.713426
\(513\) −1.56311 + 10.4572i −0.0690129 + 0.461698i
\(514\) 12.7916 7.38523i 0.564213 0.325749i
\(515\) 2.93765 + 0.338189i 0.129448 + 0.0149024i
\(516\) −21.2072 27.9737i −0.933593 1.23147i
\(517\) 19.1334 0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) −11.2384 25.9296i −0.492837 1.13709i
\(521\) −7.18762 12.4493i −0.314895 0.545415i 0.664520 0.747271i \(-0.268636\pi\)
−0.979415 + 0.201856i \(0.935303\pi\)
\(522\) 14.3737 + 4.03149i 0.629119 + 0.176454i
\(523\) −12.6242 + 21.8658i −0.552018 + 0.956124i 0.446110 + 0.894978i \(0.352809\pi\)
−0.998129 + 0.0611461i \(0.980524\pi\)
\(524\) 16.7378 0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) 9.79936 16.9730i 0.426867 0.739355i
\(528\) 9.61448 1.20883i 0.418417 0.0526075i
\(529\) 6.99825 + 12.1213i 0.304272 + 0.527014i
\(530\) −3.79952 8.76636i −0.165040 0.380786i
\(531\) −16.6253 17.0173i −0.721477 0.738489i
\(532\) 0 0
\(533\) 22.8268 0.988737
\(534\) −41.2106 + 31.2422i −1.78336 + 1.35198i
\(535\) −7.38490 0.850166i −0.319277 0.0367559i
\(536\) −18.1583 + 10.4837i −0.784318 + 0.452826i
\(537\) −24.7517 32.6491i −1.06811 1.40891i
\(538\) 41.9896 1.81030
\(539\) 0 0
\(540\) 32.3115 + 8.69928i 1.39047 + 0.374357i
\(541\) −7.88973 + 13.6654i −0.339206 + 0.587522i −0.984284 0.176595i \(-0.943492\pi\)
0.645078 + 0.764117i \(0.276825\pi\)
\(542\) −22.6676 + 13.0871i −0.973655 + 0.562140i
\(543\) 26.8657 3.37782i 1.15292 0.144956i
\(544\) 18.1459 + 10.4766i 0.778000 + 0.449179i
\(545\) −16.3837 + 22.0872i −0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) 1.57489 2.72779i 0.0672759 0.116525i
\(549\) −39.4717 11.0709i −1.68461 0.472496i
\(550\) −30.7657 28.8245i −1.31185 1.22908i
\(551\) 2.29185 3.96960i 0.0976360 0.169111i
\(552\) −9.31100 3.92045i −0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) −13.0382 + 0.136333i −0.553442 + 0.00578702i
\(556\) 18.3559 10.5978i 0.778464 0.449446i
\(557\) −14.4676 25.0586i −0.613011 1.06177i −0.990730 0.135845i \(-0.956625\pi\)
0.377719 0.925920i \(-0.376708\pi\)
\(558\) −10.9344 42.7962i −0.462889 1.81171i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) 19.3369 + 11.1641i 0.815677 + 0.470931i
\(563\) −5.39368 + 3.11404i −0.227316 + 0.131241i −0.609333 0.792914i \(-0.708563\pi\)
0.382017 + 0.924155i \(0.375230\pi\)
\(564\) 24.8097 3.11932i 1.04467 0.131347i
\(565\) −18.1928 41.9749i −0.765376 1.76590i
\(566\) 13.2589 0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) −8.56862 4.94710i −0.359215 0.207393i 0.309521 0.950893i \(-0.399831\pi\)
−0.668736 + 0.743500i \(0.733165\pi\)
\(570\) 8.54665 15.1673i 0.357980 0.635288i
\(571\) −9.60472 16.6359i −0.401945 0.696189i 0.592015 0.805927i \(-0.298332\pi\)
−0.993961 + 0.109737i \(0.964999\pi\)
\(572\) −61.8942 35.7347i −2.58793 1.49414i
\(573\) 7.24509 17.2070i 0.302668 0.718831i
\(574\) 0 0
\(575\) −4.35281 14.3576i −0.181525 0.598753i
\(576\) 37.2329 9.51296i 1.55137 0.396373i
\(577\) 19.0377 + 32.9742i 0.792549 + 1.37273i 0.924384 + 0.381463i \(0.124580\pi\)
−0.131835 + 0.991272i \(0.542087\pi\)
\(578\) −9.22669 15.9811i −0.383780 0.664726i
\(579\) 1.93184 + 2.54823i 0.0802845 + 0.105901i
\(580\) −11.6508 8.64228i −0.483773 0.358851i
\(581\) 0 0
\(582\) −15.7519 6.63241i −0.652935 0.274922i
\(583\) −6.39367 3.69139i −0.264799 0.152882i
\(584\) −3.21614 5.57052i −0.133085 0.230510i
\(585\) 26.7105 + 34.4781i 1.10434 + 1.42549i
\(586\) −6.79859 3.92517i −0.280847 0.162147i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) 15.5777 + 35.9414i 0.641326 + 1.47968i
\(591\) −1.75004 13.9190i −0.0719869 0.572552i
\(592\) −4.27353 + 2.46732i −0.175641 + 0.101406i
\(593\) 14.5994 + 8.42896i 0.599525 + 0.346136i 0.768855 0.639424i \(-0.220827\pi\)
−0.169330 + 0.985559i \(0.554160\pi\)
\(594\) 40.7647 16.0565i 1.67260 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) −10.5713 13.9443i −0.432655 0.570701i
\(598\) −21.5479 37.3220i −0.881159 1.52621i
\(599\) −11.7736 + 6.79751i −0.481058 + 0.277739i −0.720857 0.693084i \(-0.756252\pi\)
0.239800 + 0.970822i \(0.422918\pi\)
\(600\) −13.6250 9.88751i −0.556237 0.403656i
\(601\) 46.2155i 1.88517i 0.333966 + 0.942585i \(0.391613\pi\)
−0.333966 + 0.942585i \(0.608387\pi\)
\(602\) 0 0
\(603\) 23.1462 22.6130i 0.942588 0.920874i
\(604\) 11.9461 20.6912i 0.486078 0.841912i
\(605\) −7.92775 0.912661i −0.322309 0.0371049i
\(606\) 4.23398 + 33.6751i 0.171994 + 1.36796i
\(607\) −4.37164 + 7.57190i −0.177439 + 0.307334i −0.941003 0.338399i \(-0.890115\pi\)
0.763563 + 0.645733i \(0.223448\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) 28.2248 + 16.2956i 1.14185 + 0.659249i
\(612\) 24.4616 + 6.86092i 0.988801 + 0.277336i
\(613\) −21.0938 + 12.1785i −0.851970 + 0.491885i −0.861315 0.508071i \(-0.830359\pi\)
0.00934480 + 0.999956i \(0.497025\pi\)
\(614\) 32.0696 55.5461i 1.29422 2.24166i
\(615\) 11.7043 6.92167i 0.471964 0.279109i
\(616\) 0 0
\(617\) −25.3125 −1.01904 −0.509522 0.860458i \(-0.670178\pi\)
−0.509522 + 0.860458i \(0.670178\pi\)
\(618\) 4.03217 3.05684i 0.162198 0.122964i
\(619\) 26.2018 15.1276i 1.05314 0.608029i 0.129612 0.991565i \(-0.458627\pi\)
0.923526 + 0.383535i \(0.125294\pi\)
\(620\) −4.90885 + 42.6403i −0.197144 + 1.71247i
\(621\) 15.4202 + 2.30495i 0.618790 + 0.0924944i
\(622\) −19.0958 −0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) −1.62705 24.9470i −0.0650820 0.997880i
\(626\) −11.9865 20.7613i −0.479079 0.829788i
\(627\) −1.67818 13.3475i −0.0670202 0.533048i
\(628\) 7.79296 13.4978i 0.310973 0.538621i
\(629\) −9.89959 −0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) 5.68566 9.84784i 0.226163 0.391726i
\(633\) 2.30802 + 18.3569i 0.0917355 + 0.729623i
\(634\) 10.3173 + 17.8701i 0.409754 + 0.709714i
\(635\) −1.22551 + 0.531161i −0.0486329 + 0.0210785i
\(636\) −8.89228 3.74415i −0.352602 0.148465i
\(637\) 0 0
\(638\) −18.9934 −0.751956
\(639\) −8.16352 31.9513i −0.322944 1.26397i
\(640\) −31.2015 3.59199i −1.23335 0.141986i
\(641\) 0.111457 0.0643495i 0.00440227 0.00254165i −0.497797 0.867293i \(-0.665858\pi\)
0.502200 + 0.864752i \(0.332524\pi\)
\(642\) −10.1364 + 7.68452i −0.400052 + 0.303284i
\(643\) 0.150563 0.00593763 0.00296881 0.999996i \(-0.499055\pi\)
0.00296881 + 0.999996i \(0.499055\pi\)
\(644\) 0 0
\(645\) −13.8737 23.4600i −0.546277 0.923737i
\(646\) 6.60894 11.4470i 0.260025 0.450377i
\(647\) 35.8147 20.6776i 1.40802 0.812920i 0.412822 0.910812i \(-0.364543\pi\)
0.995197 + 0.0978912i \(0.0312097\pi\)
\(648\) 15.3508 8.39208i 0.603038 0.329672i
\(649\) 26.2136 + 15.1344i 1.02897 + 0.594078i
\(650\) −20.8350 68.7235i −0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) 14.7304 25.5138i 0.576446 0.998433i −0.419437 0.907784i \(-0.637773\pi\)
0.995883 0.0906487i \(-0.0288940\pi\)
\(654\) 5.87024 + 46.6892i 0.229545 + 1.82569i
\(655\) 12.9104 + 1.48627i 0.504450 + 0.0580734i
\(656\) 2.57308 4.45670i 0.100462 0.174005i
\(657\) 6.93713 + 7.10071i 0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) −42.5717 + 0.445147i −1.65710 + 0.0173273i
\(661\) 20.3164 11.7297i 0.790218 0.456233i −0.0498213 0.998758i \(-0.515865\pi\)
0.840039 + 0.542526i \(0.182532\pi\)
\(662\) −3.21328 5.56557i −0.124888 0.216312i
\(663\) 20.0047 + 26.3875i 0.776918 + 1.02481i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) −5.85354 3.37954i −0.226650 0.130856i
\(668\) −23.9582 + 13.8323i −0.926971 + 0.535187i
\(669\) −0.892762 7.10063i −0.0345162 0.274526i
\(670\) −48.8860 + 21.1882i −1.88863 + 0.818570i
\(671\) 52.1580 2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) 29.2533 + 16.8894i 1.12680 + 0.650555i
\(675\) 24.1503 + 9.57918i 0.929547 + 0.368703i
\(676\) −42.1496 73.0052i −1.62114 2.80789i
\(677\) 39.5783 + 22.8505i 1.52112 + 0.878217i 0.999689 + 0.0249214i \(0.00793355\pi\)
0.521427 + 0.853296i \(0.325400\pi\)
\(678\) −72.1462 30.3776i −2.77076 1.16664i
\(679\) 0 0
\(680\) −10.2655 7.61467i −0.393663 0.292009i
\(681\) 7.50848 + 9.90418i 0.287725 + 0.379529i
\(682\) 28.0994 + 48.6697i 1.07598 + 1.86366i
\(683\) 19.3444 + 33.5055i 0.740192 + 1.28205i 0.952407 + 0.304828i \(0.0985990\pi\)
−0.212215 + 0.977223i \(0.568068\pi\)
\(684\) −4.35210 17.0337i −0.166407 0.651300i
\(685\) 1.45698 1.96418i 0.0556682 0.0750473i
\(686\) 0 0
\(687\) 7.02460 16.6833i 0.268005 0.636508i
\(688\) −8.93296 5.15745i −0.340566 0.196626i
\(689\) −6.28779 10.8908i −0.239546 0.414905i
\(690\) −22.3656 12.6028i −0.851443 0.479782i
\(691\) 16.6768 + 9.62834i 0.634415 + 0.366279i 0.782460 0.622701i \(-0.213965\pi\)
−0.148045 + 0.988981i \(0.547298\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) 15.0995 6.54443i 0.572756 0.248244i
\(696\) −7.52504 + 0.946123i −0.285236 + 0.0358627i
\(697\) 8.94077 5.16195i 0.338656 0.195523i
\(698\) −15.7836 9.11265i −0.597417 0.344919i
\(699\) 6.22794 + 2.62231i 0.235562 + 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) 73.8096 + 11.0328i 2.78576 + 0.416405i
\(703\) 3.42531 + 5.93282i 0.129188 + 0.223760i
\(704\) −42.3428 + 24.4466i −1.59586 + 0.921367i
\(705\) 19.4134 0.202994i 0.731150 0.00764521i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) 36.4577 + 15.3507i 1.37016 + 0.576916i
\(709\) −2.44586 + 4.23635i −0.0918561 + 0.159099i −0.908292 0.418336i \(-0.862613\pi\)
0.816436 + 0.577436i \(0.195947\pi\)
\(710\) −6.21001 + 53.9427i −0.233057 + 2.02443i
\(711\) −4.73930 + 16.8973i −0.177738 + 0.633697i
\(712\) 13.1367 22.7534i 0.492318 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) 58.9972 + 34.0620i 2.20483 + 1.27296i
\(717\) −40.8790 + 5.13971i −1.52665 + 0.191946i
\(718\) −13.6506 + 7.88121i −0.509438 + 0.294124i
\(719\) −19.0108 + 32.9277i −0.708985 + 1.22800i 0.256249 + 0.966611i \(0.417513\pi\)
−0.965234 + 0.261387i \(0.915820\pi\)
\(720\) 9.74237 1.32852i 0.363077 0.0495112i
\(721\) 0 0
\(722\) 32.8253 1.22163
\(723\) −13.8986 18.3332i −0.516894 0.681818i
\(724\) −38.9906 + 22.5112i −1.44907 + 0.836624i
\(725\) −8.21919 7.70059i −0.305253 0.285993i
\(726\) −10.8815 + 8.24940i −0.403851 + 0.306164i
\(727\) 18.6502 0.691699 0.345849 0.938290i \(-0.387591\pi\)
0.345849 + 0.938290i \(0.387591\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) −6.50002 14.9970i −0.240576 0.555065i
\(731\) −10.3466 17.9208i −0.382681 0.662824i
\(732\) 67.6317 8.50333i 2.49974 0.314292i
\(733\) −18.7967 + 32.5568i −0.694271 + 1.20251i 0.276155 + 0.961113i \(0.410940\pi\)
−0.970426 + 0.241399i \(0.922394\pi\)
\(734\) 53.8821 1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) −20.5852 + 35.6546i −0.758264 + 1.31335i
\(738\) 6.28358 22.4032i 0.231302 0.824672i
\(739\) 24.7189 + 42.8144i 0.909300 + 1.57495i 0.815039 + 0.579406i \(0.196715\pi\)
0.0942603 + 0.995548i \(0.469951\pi\)
\(740\) 19.8924 8.62177i 0.731259 0.316942i
\(741\) 8.89228 21.1190i 0.326666 0.775826i
\(742\) 0 0
\(743\) −42.7477 −1.56826 −0.784131 0.620596i \(-0.786891\pi\)
−0.784131 + 0.620596i \(0.786891\pi\)
\(744\) 13.5572 + 17.8828i 0.497030 + 0.655616i
\(745\) 2.76689 24.0343i 0.101371 0.880550i
\(746\) 42.1929 24.3601i 1.54479 0.891886i
\(747\) 1.97788 + 7.74123i 0.0723667 + 0.283237i
\(748\) −32.3236 −1.18187
\(749\) 0 0
\(750\) −31.5218 28.9200i −1.15101 1.05601i
\(751\) −2.79526 + 4.84152i −0.102000 + 0.176670i −0.912509 0.409057i \(-0.865858\pi\)
0.810508 + 0.585727i \(0.199191\pi\)
\(752\) 6.36310 3.67374i 0.232039 0.133968i
\(753\) 1.97217 + 15.6857i 0.0718698 + 0.571620i
\(754\) −28.0183 16.1764i −1.02037 0.589109i
\(755\) 11.0517 14.8989i 0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) −1.27906 + 2.21539i −0.0464574 + 0.0804666i
\(759\) −19.6822 + 2.47464i −0.714417 + 0.0898237i
\(760\) −1.01156 + 8.78681i −0.0366930 + 0.318731i
\(761\) −24.5715 + 42.5591i −0.890716 + 1.54277i −0.0516970 + 0.998663i \(0.516463\pi\)
−0.839019 + 0.544102i \(0.816870\pi\)
\(762\) −0.886912 + 2.10640i −0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) 18.2587 + 7.46414i 0.660144 + 0.269867i
\(766\) 4.07358 2.35188i 0.147184 0.0849769i
\(767\) 25.7795 + 44.6514i 0.930843 + 1.61227i
\(768\) −7.46575 + 5.65988i −0.269397 + 0.204233i
\(769\) 27.0203i 0.974376i 0.873297 + 0.487188i \(0.161977\pi\)
−0.873297 + 0.487188i \(0.838023\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) −4.60466 2.65850i −0.165725 0.0956816i
\(773\) −45.8267 + 26.4581i −1.64827 + 0.951631i −0.670515 + 0.741896i \(0.733927\pi\)
−0.977758 + 0.209735i \(0.932740\pi\)
\(774\) −44.9046 12.5947i −1.61406 0.452708i
\(775\) −7.57267 + 32.4538i −0.272018 + 1.16577i
\(776\) 8.68312 0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) −6.18711 3.57213i −0.221676 0.127985i
\(780\) −63.1792 35.6010i −2.26218 1.27472i
\(781\) 20.9788 + 36.3364i 0.750681 + 1.30022i
\(782\) −16.8797 9.74550i −0.603617 0.348499i
\(783\) 10.8905 4.28956i 0.389193 0.153296i
\(784\) 0 0
\(785\) 7.20950 9.71926i 0.257318 0.346895i
\(786\) 17.7206 13.4342i 0.632072 0.479181i
\(787\) −8.37879 14.5125i −0.298672 0.517315i 0.677161 0.735835i \(-0.263210\pi\)
−0.975832 + 0.218521i \(0.929877\pi\)
\(788\) 11.6630 + 20.2009i 0.415477 + 0.719627i
\(789\) 33.3031 25.2475i 1.18562 0.898833i
\(790\) 17.2150 23.2078i 0.612481 0.825697i
\(791\) 0 0
\(792\) −15.9218 + 15.5550i −0.565756 + 0.552723i
\(793\) 76.9414 + 44.4222i 2.73227 + 1.57748i
\(794\) 13.2719 + 22.9876i 0.471001 + 0.815798i
\(795\) −6.52640 3.67758i −0.231468 0.130430i
\(796\) 25.1974 + 14.5477i 0.893099 + 0.515631i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) −34.6965 8.09598i −1.22671 0.286236i
\(801\) −10.9501 + 39.0410i −0.386904 + 1.37945i
\(802\) 58.9813 34.0529i 2.08270 1.20245i
\(803\) −10.9380 6.31503i −0.385992 0.222853i
\(804\) −20.8794 + 49.5882i −0.736359 + 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) 26.2356 19.8895i 0.923536 0.700143i
\(808\) −8.62160 14.9331i −0.303307 0.525343i
\(809\) 36.4604 21.0504i 1.28188 0.740094i 0.304689 0.952452i \(-0.401447\pi\)
0.977192 + 0.212358i \(0.0681142\pi\)
\(810\) 41.1909 16.7240i 1.44730 0.587620i
\(811\) 1.35051i 0.0474227i 0.999719 + 0.0237113i \(0.00754826\pi\)
−0.999719 + 0.0237113i \(0.992452\pi\)
\(812\) 0 0
\(813\) −7.96388 + 18.9141i −0.279306 + 0.663346i
\(814\) 14.1934 24.5837i 0.497479 0.861659i
\(815\) 4.38758 38.1123i 0.153690 1.33502i
\(816\) 7.40686 0.931265i 0.259292 0.0326008i
\(817\) −7.15993 + 12.4014i −0.250494 + 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) 9.82457 + 5.67222i 0.342880 + 0.197962i 0.661545 0.749906i \(-0.269901\pi\)
−0.318665 + 0.947867i \(0.603235\pi\)
\(822\) −0.522030 4.15199i −0.0182079 0.144817i
\(823\) −26.1348 + 15.0889i −0.911002 + 0.525967i −0.880754 0.473575i \(-0.842963\pi\)
−0.0302488 + 0.999542i \(0.509630\pi\)
\(824\) −1.28533 + 2.22626i −0.0447766 + 0.0775554i
\(825\) −32.8763 3.43689i −1.14460 0.119657i
\(826\) 0 0
\(827\) −34.7911 −1.20981 −0.604903 0.796299i \(-0.706788\pi\)
−0.604903 + 0.796299i \(0.706788\pi\)
\(828\) −25.1178 + 6.41757i −0.872904 + 0.223026i
\(829\) 3.50678 2.02464i 0.121796 0.0703187i −0.437864 0.899041i \(-0.644265\pi\)
0.559660 + 0.828722i \(0.310932\pi\)
\(830\) 1.50458 13.0694i 0.0522246 0.453645i
\(831\) 17.2843 + 22.7991i 0.599585 + 0.790892i
\(832\) −83.2833 −2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) −19.7079 + 8.54181i −0.682021 + 0.295602i
\(836\) 11.1841 + 19.3715i 0.386811 + 0.669977i
\(837\) −27.1035 21.5602i −0.936834 0.745229i
\(838\) 21.6460 37.4920i 0.747749 1.29514i
\(839\) −25.8653 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) 35.9846 62.3272i 1.24011 2.14794i
\(843\) 17.3701 2.18394i 0.598258 0.0752190i
\(844\) −15.3816 26.6417i −0.529457 0.917047i
\(845\) −26.0285 60.0537i −0.895408 2.06591i
\(846\) 23.7627 23.2153i 0.816978 0.798158i
\(847\) 0 0
\(848\) −2.83509 −0.0973573
\(849\) 8.28429 6.28042i 0.284316 0.215543i
\(850\) −23.7015 22.2060i −0.812953 0.761660i
\(851\) 8.74849 5.05094i 0.299894 0.173144i
\(852\) 33.1265 + 43.6961i 1.13490 + 1.49700i
\(853\) −37.5709 −1.28640 −0.643201 0.765697i \(-0.722394\pi\)
−0.643201 + 0.765697i \(0.722394\pi\)
\(854\) 0 0
\(855\) −1.84435 13.5250i −0.0630755 0.462547i
\(856\) 3.23117 5.59655i 0.110439 0.191286i
\(857\) 19.8563 11.4640i 0.678278 0.391604i −0.120928 0.992661i \(-0.538587\pi\)
0.799206 + 0.601057i \(0.205254\pi\)
\(858\) −94.2098 + 11.8450i −3.21627 + 0.404382i
\(859\) −16.2512 9.38264i −0.554484 0.320132i 0.196444 0.980515i \(-0.437060\pi\)
−0.750929 + 0.660383i \(0.770394\pi\)
\(860\) 36.3981 + 26.9992i 1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) −4.23086 + 7.32807i −0.144020 + 0.249450i −0.929007 0.370062i \(-0.879336\pi\)
0.784987 + 0.619512i \(0.212670\pi\)
\(864\) 23.0501 28.9765i 0.784180 0.985800i
\(865\) −2.60144 + 22.5972i −0.0884517 + 0.768329i
\(866\) −3.83659 + 6.64517i −0.130373 + 0.225812i
\(867\) −13.3348 5.61470i −0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) −19.2714 + 0.201509i −0.653360 + 0.00683181i
\(871\) −60.7329 + 35.0641i −2.05785 + 1.18810i
\(872\) −11.9535 20.7041i −0.404797 0.701129i
\(873\) −12.9836 + 3.31728i −0.439427 + 0.112273i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) 3.27867 + 1.89294i 0.110713 + 0.0639201i 0.554334 0.832294i \(-0.312973\pi\)
−0.443621 + 0.896214i \(0.646306\pi\)
\(878\) 7.55301 4.36073i 0.254902 0.147168i
\(879\) −6.10710 + 0.767845i −0.205987 + 0.0258988i
\(880\) −11.4782 + 4.97490i −0.386931 + 0.167704i
\(881\) −54.6531 −1.84131 −0.920654 0.390379i \(-0.872344\pi\)
−0.920654 + 0.390379i \(0.872344\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) −47.6824 27.5295i −1.60373 0.925916i
\(885\) 26.7578 + 15.0778i 0.899453 + 0.506834i
\(886\) 17.7065 + 30.6686i 0.594862 + 1.03033i
\(887\) −26.0011 15.0117i −0.873032 0.504045i −0.00467726 0.999989i \(-0.501489\pi\)
−0.868355 + 0.495944i \(0.834822\pi\)
\(888\) 4.39873 10.4469i 0.147612 0.350575i
\(889\) 0 0
\(890\) 39.7751 53.6215i 1.33326 1.79740i
\(891\) 17.8647 29.3416i 0.598489 0.982980i
\(892\) 5.94975 + 10.3053i 0.199212 + 0.345046i
\(893\) −5.10015 8.83371i −0.170670 0.295609i
\(894\) −25.0095 32.9892i −0.836442 1.10332i
\(895\) 42.4816 + 31.5118i 1.42000 + 1.05332i
\(896\) 0 0
\(897\) −31.1420 13.1125i −1.03980 0.437814i
\(898\) −40.3668 23.3058i −1.34706 0.777724i
\(899\) 7.50689 + 13.0023i 0.250369 + 0.433651i
\(900\) −43.1900 + 0.903323i −1.43967 + 0.0301108i
\(901\) −4.92559 2.84379i −0.164095 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) −32.0735 + 13.9013i −1.06616 + 0.462095i
\(906\) −3.95977 31.4942i −0.131555 1.04633i
\(907\) 16.8295 9.71653i 0.558815 0.322632i −0.193855 0.981030i \(-0.562099\pi\)
0.752670 + 0.658398i \(0.228766\pi\)
\(908\) −17.8969 10.3328i −0.593931 0.342906i
\(909\) 18.5966 + 19.0351i 0.616809 + 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) −3.12092 4.11670i −0.103344 0.136318i
\(913\) −5.08280 8.80366i −0.168216 0.291359i
\(914\) −18.3787 + 10.6110i −0.607914 + 0.350979i
\(915\) 52.9213 0.553367i 1.74952 0.0182938i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) 31.4046 12.3697i 1.03650 0.408261i
\(919\) −22.5064 + 38.9822i −0.742416 + 1.28590i 0.208976 + 0.977921i \(0.432987\pi\)
−0.951392 + 0.307982i \(0.900346\pi\)
\(920\) 12.9570 + 1.49163i 0.427178 + 0.0491777i
\(921\) −6.27348 49.8965i −0.206718 1.64414i
\(922\) 27.1015 46.9412i 0.892541 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) −27.9073 16.1123i −0.917092 0.529483i
\(927\) 1.07139 3.81989i 0.0351892 0.125462i
\(928\) −13.9008 + 8.02565i −0.456317 + 0.263455i
\(929\) 21.3495 36.9785i 0.700455 1.21322i −0.267852 0.963460i \(-0.586314\pi\)
0.968307 0.249764i \(-0.0803530\pi\)
\(930\) 29.0270 + 49.0838i 0.951834 + 1.60952i
\(931\) 0 0
\(932\) −11.2360 −0.368048
\(933\) −11.9313 + 9.04526i −0.390613 + 0.296128i
\(934\) −34.2800 + 19.7916i −1.12168 + 0.647600i
\(935\) −24.9321 2.87024i −0.815366 0.0938668i
\(936\) −36.7351 + 9.38579i −1.20073 + 0.306784i
\(937\) 26.4685 0.864688 0.432344 0.901709i \(-0.357687\pi\)
0.432344 + 0.901709i \(0.357687\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) −29.6189 + 12.8375i −0.966063 + 0.418711i
\(941\) −15.8545 27.4609i −0.516843 0.895199i −0.999809 0.0195596i \(-0.993774\pi\)
0.482965 0.875640i \(-0.339560\pi\)
\(942\) −2.58314 20.5451i −0.0841633 0.669397i
\(943\) −5.26744 + 9.12347i −0.171531 + 0.297101i
\(944\) 11.6237 0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) −5.97276 + 10.3451i −0.194089 + 0.336171i −0.946601 0.322406i \(-0.895508\pi\)
0.752513 + 0.658578i \(0.228842\pi\)
\(948\) −3.64015 28.9521i −0.118227 0.940321i
\(949\) −10.7568 18.6314i −0.349181 0.604800i
\(950\) −5.10720 + 21.8877i −0.165699 + 0.710130i
\(951\) 14.9111 + 6.27839i 0.483524 + 0.203591i
\(952\) 0 0
\(953\) −1.76384 −0.0571364 −0.0285682 0.999592i \(-0.509095\pi\)
−0.0285682 + 0.999592i \(0.509095\pi\)
\(954\) −12.4195 + 3.17318i −0.402097 + 0.102735i
\(955\) −2.75658 + 23.9448i −0.0892008 + 0.774835i
\(956\) 59.3284 34.2532i 1.91882 1.10783i
\(957\) −11.8673 + 8.99673i −0.383615 + 0.290823i
\(958\) −6.54980 −0.211614
\(959\) 0 0
\(960\) −42.7031 + 25.2536i −1.37824 + 0.815058i
\(961\) 6.71186 11.6253i 0.216511 0.375009i
\(962\) 41.8752 24.1766i 1.35011 0.779486i
\(963\) −2.69336 + 9.60275i −0.0867922 + 0.309444i
\(964\) 33.1282 + 19.1266i 1.06699 + 0.616026i
\(965\) −3.31564 2.45946i −0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) 3.46869 6.00795i 0.111488 0.193103i
\(969\) −1.29285 10.2827i −0.0415323 0.330329i
\(970\) 21.9199 + 2.52347i 0.703805 + 0.0810236i
\(971\) −23.9577 + 41.4959i −0.768838 + 1.33167i 0.169356 + 0.985555i \(0.445831\pi\)
−0.938193 + 0.346111i \(0.887502\pi\)
\(972\) 18.3810 40.9588i 0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) −45.5706 33.0702i −1.45943 1.05909i
\(976\) 17.3460 10.0147i 0.555231 0.320563i
\(977\) 4.07411 + 7.05657i 0.130342 + 0.225760i 0.923809 0.382855i \(-0.125059\pi\)
−0.793466 + 0.608614i \(0.791726\pi\)
\(978\) −39.6586 52.3124i −1.26814 1.67277i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) 48.7636 + 28.1537i 1.55611 + 0.898420i
\(983\) −12.6460 + 7.30116i −0.403344 + 0.232871i −0.687926 0.725781i \(-0.741479\pi\)
0.284582 + 0.958652i \(0.408145\pi\)
\(984\) 1.47465 + 11.7287i 0.0470101 + 0.373897i
\(985\) 7.20222 + 16.6172i 0.229482 + 0.529467i
\(986\) −14.6322 −0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) 18.2870 + 10.5580i 0.581492 + 0.335725i
\(990\) −44.7139 + 34.6403i −1.42110 + 1.10094i
\(991\) −7.84118 13.5813i −0.249083 0.431425i 0.714188 0.699953i \(-0.246796\pi\)
−0.963272 + 0.268529i \(0.913463\pi\)
\(992\) 41.1307 + 23.7468i 1.30590 + 0.753962i
\(993\) −4.64398 1.95537i −0.147372 0.0620519i
\(994\) 0 0
\(995\) 18.1437 + 13.4585i 0.575194 + 0.426664i
\(996\) −8.02597 10.5868i −0.254313 0.335455i
\(997\) 13.5211 + 23.4192i 0.428218 + 0.741695i 0.996715 0.0809903i \(-0.0258083\pi\)
−0.568497 + 0.822685i \(0.692475\pi\)
\(998\) 37.1913 + 64.4173i 1.17727 + 2.03909i
\(999\) −2.58614 + 17.3014i −0.0818219 + 0.547391i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.509.3 64
3.2 odd 2 inner 735.2.p.g.509.32 64
5.4 even 2 inner 735.2.p.g.509.30 64
7.2 even 3 735.2.g.c.734.29 yes 32
7.3 odd 6 inner 735.2.p.g.374.1 64
7.4 even 3 inner 735.2.p.g.374.4 64
7.5 odd 6 735.2.g.c.734.32 yes 32
7.6 odd 2 inner 735.2.p.g.509.2 64
15.14 odd 2 inner 735.2.p.g.509.1 64
21.2 odd 6 735.2.g.c.734.2 yes 32
21.5 even 6 735.2.g.c.734.3 yes 32
21.11 odd 6 inner 735.2.p.g.374.31 64
21.17 even 6 inner 735.2.p.g.374.30 64
21.20 even 2 inner 735.2.p.g.509.29 64
35.4 even 6 inner 735.2.p.g.374.29 64
35.9 even 6 735.2.g.c.734.4 yes 32
35.19 odd 6 735.2.g.c.734.1 32
35.24 odd 6 inner 735.2.p.g.374.32 64
35.34 odd 2 inner 735.2.p.g.509.31 64
105.44 odd 6 735.2.g.c.734.31 yes 32
105.59 even 6 inner 735.2.p.g.374.3 64
105.74 odd 6 inner 735.2.p.g.374.2 64
105.89 even 6 735.2.g.c.734.30 yes 32
105.104 even 2 inner 735.2.p.g.509.4 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 35.19 odd 6
735.2.g.c.734.2 yes 32 21.2 odd 6
735.2.g.c.734.3 yes 32 21.5 even 6
735.2.g.c.734.4 yes 32 35.9 even 6
735.2.g.c.734.29 yes 32 7.2 even 3
735.2.g.c.734.30 yes 32 105.89 even 6
735.2.g.c.734.31 yes 32 105.44 odd 6
735.2.g.c.734.32 yes 32 7.5 odd 6
735.2.p.g.374.1 64 7.3 odd 6 inner
735.2.p.g.374.2 64 105.74 odd 6 inner
735.2.p.g.374.3 64 105.59 even 6 inner
735.2.p.g.374.4 64 7.4 even 3 inner
735.2.p.g.374.29 64 35.4 even 6 inner
735.2.p.g.374.30 64 21.17 even 6 inner
735.2.p.g.374.31 64 21.11 odd 6 inner
735.2.p.g.374.32 64 35.24 odd 6 inner
735.2.p.g.509.1 64 15.14 odd 2 inner
735.2.p.g.509.2 64 7.6 odd 2 inner
735.2.p.g.509.3 64 1.1 even 1 trivial
735.2.p.g.509.4 64 105.104 even 2 inner
735.2.p.g.509.29 64 21.20 even 2 inner
735.2.p.g.509.30 64 5.4 even 2 inner
735.2.p.g.509.31 64 35.34 odd 2 inner
735.2.p.g.509.32 64 3.2 odd 2 inner