Properties

Label 735.2.p.g.374.29
Level $735$
Weight $2$
Character 735.374
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.29
Character \(\chi\) \(=\) 735.374
Dual form 735.2.p.g.509.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10453 + 1.91310i) q^{2} +(-1.38025 + 1.04638i) q^{3} +(-1.43998 + 2.49412i) q^{4} +(-0.889228 + 2.05165i) q^{5} +(-3.52637 - 1.48480i) q^{6} -1.94389 q^{8} +(0.810168 - 2.88853i) q^{9} +(-4.90720 + 0.564929i) q^{10} +(-3.30554 - 1.90846i) q^{11} +(-0.622272 - 4.94927i) q^{12} -6.50161 q^{13} +(-0.919457 - 3.76226i) q^{15} +(0.732874 + 1.26937i) q^{16} +(2.54654 + 1.47025i) q^{17} +(6.42092 - 1.64054i) q^{18} +(1.76224 - 1.01743i) q^{19} +(-3.83659 - 5.17218i) q^{20} -8.43180i q^{22} +(1.50029 + 2.59858i) q^{23} +(2.68305 - 2.03405i) q^{24} +(-3.41855 - 3.64877i) q^{25} +(-7.18123 - 12.4383i) q^{26} +(1.90428 + 4.83464i) q^{27} +2.25259i q^{29} +(6.18203 - 5.91455i) q^{30} +(-5.77216 - 3.33256i) q^{31} +(-3.56285 + 6.17104i) q^{32} +(6.55944 - 0.824719i) q^{33} +6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} +(-2.91560 + 1.68332i) q^{37} +(3.89289 + 2.24756i) q^{38} +(8.97383 - 6.80317i) q^{39} +(1.72856 - 3.98818i) q^{40} +3.51094 q^{41} +7.03729i q^{43} +(9.51983 - 5.49628i) q^{44} +(5.20584 + 4.23075i) q^{45} +(-3.31424 + 5.74043i) q^{46} +(4.34120 - 2.50639i) q^{47} +(-2.33980 - 0.985185i) q^{48} +(3.20459 - 10.5702i) q^{50} +(-5.05330 + 0.635352i) q^{51} +(9.36219 - 16.2158i) q^{52} +(0.967113 - 1.67509i) q^{53} +(-7.14584 + 8.98309i) q^{54} +(6.85487 - 5.08477i) q^{55} +(-1.36770 + 3.24827i) q^{57} +(-4.30944 + 2.48806i) q^{58} +(3.96509 - 6.86774i) q^{59} +(10.7075 + 3.12434i) q^{60} +(-11.8342 + 6.83249i) q^{61} -14.7237i q^{62} -12.8096 q^{64} +(5.78141 - 13.3390i) q^{65} +(8.82289 + 11.6380i) q^{66} +(-9.34121 - 5.39315i) q^{67} +(-7.33395 + 4.23426i) q^{68} +(-4.78988 - 2.01681i) q^{69} +10.9926i q^{71} +(-1.57488 + 5.61499i) q^{72} +(1.65449 - 2.86566i) q^{73} +(-6.44074 - 3.71856i) q^{74} +(8.53645 + 1.45910i) q^{75} +5.86030i q^{76} +(22.9271 + 9.65357i) q^{78} +(2.92489 + 5.06605i) q^{79} +(-3.25601 + 0.374839i) q^{80} +(-7.68725 - 4.68040i) q^{81} +(3.87795 + 6.71680i) q^{82} +2.66330i q^{83} +(-5.28089 + 3.91724i) q^{85} +(-13.4631 + 7.77291i) q^{86} +(-2.35707 - 3.10913i) q^{87} +(6.42561 + 3.70983i) q^{88} +(6.75793 + 11.7051i) q^{89} +(-2.34385 + 14.6323i) q^{90} -8.64156 q^{92} +(11.4541 - 1.44013i) q^{93} +(9.58999 + 5.53678i) q^{94} +(0.520378 + 4.52022i) q^{95} +(-1.53965 - 12.2457i) q^{96} -4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10453 + 1.91310i 0.781022 + 1.35277i 0.931347 + 0.364133i \(0.118635\pi\)
−0.150325 + 0.988637i \(0.548032\pi\)
\(3\) −1.38025 + 1.04638i −0.796886 + 0.604129i
\(4\) −1.43998 + 2.49412i −0.719990 + 1.24706i
\(5\) −0.889228 + 2.05165i −0.397675 + 0.917526i
\(6\) −3.52637 1.48480i −1.43963 0.606166i
\(7\) 0 0
\(8\) −1.94389 −0.687269
\(9\) 0.810168 2.88853i 0.270056 0.962845i
\(10\) −4.90720 + 0.564929i −1.55179 + 0.178646i
\(11\) −3.30554 1.90846i −0.996659 0.575421i −0.0894006 0.995996i \(-0.528495\pi\)
−0.907258 + 0.420575i \(0.861828\pi\)
\(12\) −0.622272 4.94927i −0.179635 1.42873i
\(13\) −6.50161 −1.80322 −0.901611 0.432548i \(-0.857615\pi\)
−0.901611 + 0.432548i \(0.857615\pi\)
\(14\) 0 0
\(15\) −0.919457 3.76226i −0.237403 0.971411i
\(16\) 0.732874 + 1.26937i 0.183218 + 0.317344i
\(17\) 2.54654 + 1.47025i 0.617628 + 0.356587i 0.775945 0.630801i \(-0.217274\pi\)
−0.158317 + 0.987388i \(0.550607\pi\)
\(18\) 6.42092 1.64054i 1.51343 0.386679i
\(19\) 1.76224 1.01743i 0.404285 0.233414i −0.284046 0.958811i \(-0.591677\pi\)
0.688331 + 0.725397i \(0.258344\pi\)
\(20\) −3.83659 5.17218i −0.857888 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) 1.50029 + 2.59858i 0.312832 + 0.541842i 0.978974 0.203983i \(-0.0653888\pi\)
−0.666142 + 0.745825i \(0.732056\pi\)
\(24\) 2.68305 2.03405i 0.547675 0.415199i
\(25\) −3.41855 3.64877i −0.683710 0.729754i
\(26\) −7.18123 12.4383i −1.40836 2.43934i
\(27\) 1.90428 + 4.83464i 0.366478 + 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) 6.18203 5.91455i 1.12868 1.07984i
\(31\) −5.77216 3.33256i −1.03671 0.598545i −0.117810 0.993036i \(-0.537587\pi\)
−0.918900 + 0.394491i \(0.870921\pi\)
\(32\) −3.56285 + 6.17104i −0.629829 + 1.09090i
\(33\) 6.55944 0.824719i 1.14185 0.143565i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) −2.91560 + 1.68332i −0.479321 + 0.276736i −0.720134 0.693835i \(-0.755919\pi\)
0.240812 + 0.970572i \(0.422586\pi\)
\(38\) 3.89289 + 2.24756i 0.631510 + 0.364603i
\(39\) 8.97383 6.80317i 1.43696 1.08938i
\(40\) 1.72856 3.98818i 0.273309 0.630587i
\(41\) 3.51094 0.548317 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i 0.843844 + 0.536588i \(0.180287\pi\)
−0.843844 + 0.536588i \(0.819713\pi\)
\(44\) 9.51983 5.49628i 1.43517 0.828595i
\(45\) 5.20584 + 4.23075i 0.776041 + 0.630683i
\(46\) −3.31424 + 5.74043i −0.488658 + 0.846380i
\(47\) 4.34120 2.50639i 0.633229 0.365595i −0.148772 0.988871i \(-0.547532\pi\)
0.782002 + 0.623276i \(0.214199\pi\)
\(48\) −2.33980 0.985185i −0.337721 0.142199i
\(49\) 0 0
\(50\) 3.20459 10.5702i 0.453197 1.49486i
\(51\) −5.05330 + 0.635352i −0.707604 + 0.0889671i
\(52\) 9.36219 16.2158i 1.29830 2.24873i
\(53\) 0.967113 1.67509i 0.132843 0.230091i −0.791928 0.610614i \(-0.790923\pi\)
0.924771 + 0.380523i \(0.124256\pi\)
\(54\) −7.14584 + 8.98309i −0.972425 + 1.22244i
\(55\) 6.85487 5.08477i 0.924310 0.685630i
\(56\) 0 0
\(57\) −1.36770 + 3.24827i −0.181157 + 0.430244i
\(58\) −4.30944 + 2.48806i −0.565858 + 0.326698i
\(59\) 3.96509 6.86774i 0.516211 0.894104i −0.483612 0.875283i \(-0.660675\pi\)
0.999823 0.0188214i \(-0.00599139\pi\)
\(60\) 10.7075 + 3.12434i 1.38234 + 0.403351i
\(61\) −11.8342 + 6.83249i −1.51522 + 0.874810i −0.515375 + 0.856965i \(0.672347\pi\)
−0.999841 + 0.0178455i \(0.994319\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) 5.78141 13.3390i 0.717096 1.65450i
\(66\) 8.82289 + 11.6380i 1.08602 + 1.43254i
\(67\) −9.34121 5.39315i −1.14121 0.658878i −0.194480 0.980906i \(-0.562302\pi\)
−0.946730 + 0.322029i \(0.895635\pi\)
\(68\) −7.33395 + 4.23426i −0.889372 + 0.513479i
\(69\) −4.78988 2.01681i −0.576634 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) −1.57488 + 5.61499i −0.185601 + 0.661733i
\(73\) 1.65449 2.86566i 0.193643 0.335400i −0.752812 0.658236i \(-0.771303\pi\)
0.946455 + 0.322836i \(0.104636\pi\)
\(74\) −6.44074 3.71856i −0.748721 0.432274i
\(75\) 8.53645 + 1.45910i 0.985705 + 0.168482i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 22.9271 + 9.65357i 2.59598 + 1.09305i
\(79\) 2.92489 + 5.06605i 0.329075 + 0.569975i 0.982329 0.187164i \(-0.0599296\pi\)
−0.653253 + 0.757140i \(0.726596\pi\)
\(80\) −3.25601 + 0.374839i −0.364032 + 0.0419082i
\(81\) −7.68725 4.68040i −0.854139 0.520044i
\(82\) 3.87795 + 6.71680i 0.428248 + 0.741746i
\(83\) 2.66330i 0.292336i 0.989260 + 0.146168i \(0.0466939\pi\)
−0.989260 + 0.146168i \(0.953306\pi\)
\(84\) 0 0
\(85\) −5.28089 + 3.91724i −0.572793 + 0.424884i
\(86\) −13.4631 + 7.77291i −1.45176 + 0.838175i
\(87\) −2.35707 3.10913i −0.252705 0.333334i
\(88\) 6.42561 + 3.70983i 0.684972 + 0.395469i
\(89\) 6.75793 + 11.7051i 0.716339 + 1.24074i 0.962441 + 0.271492i \(0.0875170\pi\)
−0.246101 + 0.969244i \(0.579150\pi\)
\(90\) −2.34385 + 14.6323i −0.247063 + 1.54238i
\(91\) 0 0
\(92\) −8.64156 −0.900945
\(93\) 11.4541 1.44013i 1.18774 0.149334i
\(94\) 9.58999 + 5.53678i 0.989132 + 0.571075i
\(95\) 0.520378 + 4.52022i 0.0533896 + 0.463765i
\(96\) −1.53965 12.2457i −0.157140 1.24982i
\(97\) −4.46688 −0.453543 −0.226771 0.973948i \(-0.572817\pi\)
−0.226771 + 0.973948i \(0.572817\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) 14.0231 3.27211i 1.40231 0.327211i
\(101\) −4.43523 + 7.68205i −0.441322 + 0.764392i −0.997788 0.0664781i \(-0.978824\pi\)
0.556466 + 0.830871i \(0.312157\pi\)
\(102\) −6.79703 8.96573i −0.673006 0.887740i
\(103\) 0.661216 + 1.14526i 0.0651516 + 0.112846i 0.896761 0.442515i \(-0.145914\pi\)
−0.831610 + 0.555361i \(0.812580\pi\)
\(104\) 12.6384 1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) −1.66222 2.87905i −0.160693 0.278328i 0.774425 0.632666i \(-0.218040\pi\)
−0.935117 + 0.354338i \(0.884706\pi\)
\(108\) −14.8003 2.21229i −1.42416 0.212878i
\(109\) −6.14927 + 10.6509i −0.588994 + 1.02017i 0.405371 + 0.914152i \(0.367142\pi\)
−0.994365 + 0.106015i \(0.966191\pi\)
\(110\) 17.2991 + 7.49779i 1.64941 + 0.714886i
\(111\) 2.26285 5.37423i 0.214780 0.510099i
\(112\) 0 0
\(113\) −20.4591 −1.92463 −0.962314 0.271941i \(-0.912334\pi\)
−0.962314 + 0.271941i \(0.912334\pi\)
\(114\) −7.72496 + 0.971260i −0.723509 + 0.0909668i
\(115\) −6.66548 + 0.767346i −0.621560 + 0.0715553i
\(116\) −5.61823 3.24369i −0.521640 0.301169i
\(117\) −5.26740 + 18.7801i −0.486971 + 1.73622i
\(118\) 17.5183 1.61269
\(119\) 0 0
\(120\) 1.78732 + 7.31342i 0.163160 + 0.667620i
\(121\) 1.78441 + 3.09068i 0.162219 + 0.280971i
\(122\) −26.1425 15.0934i −2.36683 1.36649i
\(123\) −4.84597 + 3.67379i −0.436946 + 0.331254i
\(124\) 16.6236 9.59763i 1.49284 0.861893i
\(125\) 10.5259 3.76908i 0.941463 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i 0.999649 + 0.0265022i \(0.00843689\pi\)
−0.999649 + 0.0265022i \(0.991563\pi\)
\(128\) −7.02295 12.1641i −0.620747 1.07517i
\(129\) −7.36370 9.71321i −0.648337 0.855200i
\(130\) 31.9047 3.67294i 2.79823 0.322139i
\(131\) −2.90591 5.03319i −0.253891 0.439752i 0.710703 0.703492i \(-0.248377\pi\)
−0.964594 + 0.263741i \(0.915044\pi\)
\(132\) −7.38852 + 17.5476i −0.643088 + 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) −11.6123 0.392180i −0.999430 0.0337535i
\(136\) −4.95020 2.85800i −0.424476 0.245071i
\(137\) −0.546844 + 0.947161i −0.0467200 + 0.0809215i −0.888440 0.458993i \(-0.848210\pi\)
0.841720 + 0.539915i \(0.181544\pi\)
\(138\) −1.43221 11.3912i −0.121918 0.969681i
\(139\) 7.35968i 0.624240i 0.950043 + 0.312120i \(0.101039\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) −21.0299 + 12.1416i −1.76479 + 1.01890i
\(143\) 21.4913 + 12.4080i 1.79720 + 1.03761i
\(144\) 4.26038 1.08852i 0.355032 0.0907103i
\(145\) −4.62153 2.00307i −0.383797 0.166346i
\(146\) 7.30973 0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) −9.36993 + 5.40973i −0.767615 + 0.443183i −0.832023 0.554741i \(-0.812817\pi\)
0.0644082 + 0.997924i \(0.479484\pi\)
\(150\) 6.63737 + 17.9428i 0.541939 + 1.46502i
\(151\) 4.14799 7.18453i 0.337559 0.584669i −0.646414 0.762987i \(-0.723732\pi\)
0.983973 + 0.178318i \(0.0570655\pi\)
\(152\) −3.42559 + 1.97777i −0.277852 + 0.160418i
\(153\) 6.30999 6.16463i 0.510132 0.498381i
\(154\) 0 0
\(155\) 11.9700 8.87905i 0.961454 0.713183i
\(156\) 4.04577 + 32.1782i 0.323921 + 2.57632i
\(157\) −2.70593 + 4.68680i −0.215957 + 0.374048i −0.953568 0.301178i \(-0.902620\pi\)
0.737612 + 0.675225i \(0.235954\pi\)
\(158\) −6.46126 + 11.1912i −0.514030 + 0.890326i
\(159\) 0.417928 + 3.32401i 0.0331438 + 0.263611i
\(160\) −9.49264 12.7972i −0.750459 1.01171i
\(161\) 0 0
\(162\) 0.463276 19.8762i 0.0363984 1.56162i
\(163\) 14.8583 8.57846i 1.16379 0.671917i 0.211584 0.977360i \(-0.432138\pi\)
0.952210 + 0.305443i \(0.0988046\pi\)
\(164\) −5.05569 + 8.75671i −0.394783 + 0.683784i
\(165\) −4.14080 + 14.1911i −0.322361 + 1.10477i
\(166\) −5.09518 + 2.94170i −0.395463 + 0.228320i
\(167\) 9.60588i 0.743325i 0.928368 + 0.371663i \(0.121212\pi\)
−0.928368 + 0.371663i \(0.878788\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) −13.3270 5.77619i −1.02213 0.443014i
\(171\) −1.51117 5.91457i −0.115562 0.452298i
\(172\) −17.5518 10.1336i −1.33832 0.772677i
\(173\) −8.80967 + 5.08627i −0.669787 + 0.386702i −0.795996 0.605302i \(-0.793052\pi\)
0.126209 + 0.992004i \(0.459719\pi\)
\(174\) 3.34464 7.94346i 0.253556 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) 1.71347 + 13.6282i 0.128793 + 1.02436i
\(178\) −14.9287 + 25.8573i −1.11895 + 1.93808i
\(179\) 20.4854 + 11.8273i 1.53115 + 0.884011i 0.999309 + 0.0371678i \(0.0118336\pi\)
0.531843 + 0.846843i \(0.321500\pi\)
\(180\) −18.0483 + 6.89180i −1.34524 + 0.513684i
\(181\) 15.6330i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(182\) 0 0
\(183\) 9.18476 21.8136i 0.678957 1.61251i
\(184\) −2.91640 5.05135i −0.215000 0.372391i
\(185\) −0.860958 7.47864i −0.0632989 0.549841i
\(186\) 15.4066 + 20.3223i 1.12966 + 1.49010i
\(187\) −5.61181 9.71993i −0.410376 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 + 5.98826i −0.585668 + 0.434434i
\(191\) 9.33503 5.38958i 0.675459 0.389976i −0.122683 0.992446i \(-0.539150\pi\)
0.798142 + 0.602470i \(0.205817\pi\)
\(192\) 17.6805 13.4038i 1.27598 0.967335i
\(193\) 1.59886 + 0.923104i 0.115089 + 0.0664465i 0.556439 0.830888i \(-0.312167\pi\)
−0.441351 + 0.897335i \(0.645500\pi\)
\(194\) −4.93381 8.54561i −0.354227 0.613539i
\(195\) 5.97795 + 24.4607i 0.428090 + 1.75167i
\(196\) 0 0
\(197\) 8.09941 0.577059 0.288530 0.957471i \(-0.406834\pi\)
0.288530 + 0.957471i \(0.406834\pi\)
\(198\) −24.3555 6.83118i −1.73087 0.485471i
\(199\) 8.74922 + 5.05137i 0.620216 + 0.358082i 0.776953 0.629559i \(-0.216764\pi\)
−0.156737 + 0.987640i \(0.550098\pi\)
\(200\) 6.64528 + 7.09281i 0.469892 + 0.501537i
\(201\) 18.5365 2.33059i 1.30746 0.164387i
\(202\) −19.5954 −1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) −3.12203 + 7.20323i −0.218052 + 0.503095i
\(206\) −1.46067 + 2.52995i −0.101770 + 0.176270i
\(207\) 8.72158 2.22835i 0.606192 0.154881i
\(208\) −4.76486 8.25298i −0.330383 0.572241i
\(209\) −7.76686 −0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) 2.78525 + 4.82419i 0.191292 + 0.331327i
\(213\) −11.5024 15.1725i −0.788133 1.03960i
\(214\) 3.67195 6.36000i 0.251009 0.434761i
\(215\) −14.4381 6.25775i −0.984668 0.426775i
\(216\) −3.70170 9.39800i −0.251869 0.639453i
\(217\) 0 0
\(218\) −27.1683 −1.84007
\(219\) 0.714969 + 5.68654i 0.0483131 + 0.384261i
\(220\) 2.81115 + 24.4188i 0.189528 + 1.64632i
\(221\) −16.5566 9.55898i −1.11372 0.643006i
\(222\) 12.7809 1.60694i 0.857795 0.107851i
\(223\) 4.13183 0.276688 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(224\) 0 0
\(225\) −13.3092 + 6.91848i −0.887280 + 0.461232i
\(226\) −22.5977 39.1404i −1.50318 2.60358i
\(227\) 6.21430 + 3.58783i 0.412458 + 0.238132i 0.691845 0.722046i \(-0.256798\pi\)
−0.279388 + 0.960178i \(0.590131\pi\)
\(228\) −6.13212 8.08867i −0.406109 0.535685i
\(229\) 9.05093 5.22556i 0.598102 0.345315i −0.170192 0.985411i \(-0.554439\pi\)
0.768295 + 0.640096i \(0.221106\pi\)
\(230\) −8.83025 11.9042i −0.582250 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) −1.95072 3.37875i −0.127796 0.221349i 0.795026 0.606575i \(-0.207457\pi\)
−0.922822 + 0.385226i \(0.874124\pi\)
\(234\) −41.7463 + 10.6661i −2.72904 + 0.697268i
\(235\) 1.28193 + 11.1354i 0.0836240 + 0.726393i
\(236\) 11.4193 + 19.7788i 0.743334 + 1.28749i
\(237\) −9.33810 3.93186i −0.606574 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) 4.10187 3.92440i 0.264775 0.253319i
\(241\) 11.5030 + 6.64126i 0.740974 + 0.427801i 0.822423 0.568876i \(-0.192622\pi\)
−0.0814495 + 0.996677i \(0.525955\pi\)
\(242\) −3.94187 + 6.82752i −0.253393 + 0.438889i
\(243\) 15.5078 1.58370i 0.994826 0.101594i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) −11.4574 + 6.61492i −0.729015 + 0.420897i
\(248\) 11.2204 + 6.47812i 0.712498 + 0.411361i
\(249\) −2.78683 3.67602i −0.176608 0.232958i
\(250\) 18.8368 + 15.9740i 1.19134 + 1.01029i
\(251\) 9.12747 0.576121 0.288060 0.957612i \(-0.406990\pi\)
0.288060 + 0.957612i \(0.406990\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) −1.14275 + 0.659769i −0.0717027 + 0.0413976i
\(255\) 3.19001 10.9326i 0.199766 0.684625i
\(256\) 2.70450 4.68433i 0.169031 0.292770i
\(257\) −5.79051 + 3.34315i −0.361202 + 0.208540i −0.669608 0.742715i \(-0.733538\pi\)
0.308406 + 0.951255i \(0.400205\pi\)
\(258\) 10.4489 24.8161i 0.650523 1.54498i
\(259\) 0 0
\(260\) 24.9440 + 33.6275i 1.54696 + 2.08549i
\(261\) 6.50669 + 1.82498i 0.402754 + 0.112963i
\(262\) 6.41935 11.1186i 0.396588 0.686911i
\(263\) 12.0642 20.8958i 0.743908 1.28849i −0.206795 0.978384i \(-0.566303\pi\)
0.950703 0.310103i \(-0.100363\pi\)
\(264\) −12.7508 + 1.60316i −0.784759 + 0.0986678i
\(265\) 2.57672 + 3.47371i 0.158286 + 0.213389i
\(266\) 0 0
\(267\) −21.5756 9.08453i −1.32041 0.555964i
\(268\) 26.9023 15.5321i 1.64332 0.948771i
\(269\) −9.50393 + 16.4613i −0.579465 + 1.00366i 0.416076 + 0.909330i \(0.363405\pi\)
−0.995541 + 0.0943328i \(0.969928\pi\)
\(270\) −12.0759 22.6488i −0.734916 1.37836i
\(271\) −10.2612 + 5.92429i −0.623321 + 0.359875i −0.778161 0.628065i \(-0.783847\pi\)
0.154840 + 0.987940i \(0.450514\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) 4.33664 + 18.5853i 0.261509 + 1.12074i
\(276\) 11.9275 9.04238i 0.717951 0.544287i
\(277\) 14.3051 + 8.25906i 0.859511 + 0.496239i 0.863848 0.503752i \(-0.168047\pi\)
−0.00433762 + 0.999991i \(0.501381\pi\)
\(278\) −14.0798 + 8.12900i −0.844452 + 0.487545i
\(279\) −14.3026 + 13.9731i −0.856275 + 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) −19.0302 + 2.39266i −1.13323 + 0.142481i
\(283\) 3.00101 5.19791i 0.178392 0.308984i −0.762938 0.646472i \(-0.776244\pi\)
0.941330 + 0.337488i \(0.109577\pi\)
\(284\) −27.4167 15.8291i −1.62688 0.939282i
\(285\) −5.44813 5.69451i −0.322719 0.337314i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) 14.9388 + 15.2910i 0.880275 + 0.901031i
\(289\) −4.17674 7.23433i −0.245691 0.425549i
\(290\) −1.27255 11.0539i −0.0747269 0.649109i
\(291\) 6.16540 4.67406i 0.361422 0.273998i
\(292\) 4.76486 + 8.25298i 0.278842 + 0.482969i
\(293\) 3.55369i 0.207609i −0.994598 0.103805i \(-0.966898\pi\)
0.994598 0.103805i \(-0.0331016\pi\)
\(294\) 0 0
\(295\) 10.5643 + 14.2420i 0.615080 + 0.829200i
\(296\) 5.66760 3.27219i 0.329422 0.190192i
\(297\) 2.93202 19.6153i 0.170133 1.13820i
\(298\) −20.6988 11.9504i −1.19905 0.692271i
\(299\) −9.75431 16.8950i −0.564106 0.977061i
\(300\) −15.9315 + 19.1899i −0.919805 + 1.10793i
\(301\) 0 0
\(302\) 18.3264 1.05456
\(303\) −1.91664 15.2441i −0.110108 0.875750i
\(304\) 2.58299 + 1.49129i 0.148145 + 0.0855314i
\(305\) −3.49457 30.3553i −0.200099 1.73814i
\(306\) 18.7632 + 5.26264i 1.07262 + 0.300845i
\(307\) 29.0345 1.65709 0.828544 0.559923i \(-0.189169\pi\)
0.828544 + 0.559923i \(0.189169\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) 30.2078 + 13.0927i 1.71569 + 0.743614i
\(311\) 4.32216 7.48620i 0.245087 0.424503i −0.717069 0.697002i \(-0.754517\pi\)
0.962156 + 0.272499i \(0.0878501\pi\)
\(312\) −17.4441 + 13.2246i −0.987580 + 0.748696i
\(313\) 5.42607 + 9.39824i 0.306700 + 0.531220i 0.977638 0.210293i \(-0.0674419\pi\)
−0.670938 + 0.741513i \(0.734109\pi\)
\(314\) −11.9551 −0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) −4.67046 8.08947i −0.262319 0.454350i 0.704539 0.709665i \(-0.251154\pi\)
−0.966858 + 0.255316i \(0.917821\pi\)
\(318\) −5.89756 + 4.47101i −0.330719 + 0.250722i
\(319\) 4.29897 7.44604i 0.240696 0.416898i
\(320\) 11.3907 26.2809i 0.636759 1.46915i
\(321\) 5.30686 + 2.23448i 0.296200 + 0.124717i
\(322\) 0 0
\(323\) 5.98348 0.332930
\(324\) 22.7430 12.4332i 1.26350 0.690736i
\(325\) 22.2261 + 23.7229i 1.23288 + 1.31591i
\(326\) 32.8230 + 18.9504i 1.81790 + 1.04956i
\(327\) −2.65734 21.1353i −0.146951 1.16879i
\(328\) −6.82488 −0.376841
\(329\) 0 0
\(330\) −31.7226 + 7.75268i −1.74627 + 0.426771i
\(331\) −1.45459 2.51942i −0.0799515 0.138480i 0.823277 0.567639i \(-0.192143\pi\)
−0.903229 + 0.429159i \(0.858810\pi\)
\(332\) −6.64260 3.83511i −0.364560 0.210479i
\(333\) 2.50020 + 9.78557i 0.137010 + 0.536246i
\(334\) −18.3771 + 10.6100i −1.00555 + 0.580553i
\(335\) 19.3713 14.3692i 1.05837 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i 0.909146 + 0.416477i \(0.136735\pi\)
−0.909146 + 0.416477i \(0.863265\pi\)
\(338\) 32.3307 + 55.9983i 1.75856 + 3.04591i
\(339\) 28.2386 21.4080i 1.53371 1.16272i
\(340\) −2.16567 18.8119i −0.117450 1.02022i
\(341\) 12.7201 + 22.0318i 0.688830 + 1.19309i
\(342\) 9.64606 9.42384i 0.521599 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) 8.39708 8.03377i 0.452084 0.432524i
\(346\) −19.4611 11.2359i −1.04624 0.604045i
\(347\) −15.7892 + 27.3477i −0.847609 + 1.46810i 0.0357279 + 0.999362i \(0.488625\pi\)
−0.883336 + 0.468739i \(0.844708\pi\)
\(348\) 11.1487 1.40172i 0.597632 0.0751403i
\(349\) 8.25024i 0.441625i 0.975316 + 0.220813i \(0.0708709\pi\)
−0.975316 + 0.220813i \(0.929129\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) 23.5543 13.5991i 1.25545 0.724834i
\(353\) −3.71360 2.14405i −0.197655 0.114116i 0.397906 0.917426i \(-0.369737\pi\)
−0.595561 + 0.803310i \(0.703070\pi\)
\(354\) −24.1796 + 18.3308i −1.28513 + 0.974272i
\(355\) −22.5529 9.77488i −1.19698 0.518797i
\(356\) −38.9252 −2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) −6.17938 + 3.56767i −0.326135 + 0.188294i −0.654124 0.756387i \(-0.726963\pi\)
0.327989 + 0.944682i \(0.393629\pi\)
\(360\) −10.1196 8.22410i −0.533349 0.433448i
\(361\) −7.42968 + 12.8686i −0.391036 + 0.677294i
\(362\) 29.9076 17.2672i 1.57191 0.907542i
\(363\) −5.69696 2.39874i −0.299013 0.125901i
\(364\) 0 0
\(365\) 4.40811 + 5.94265i 0.230731 + 0.311053i
\(366\) 51.8766 6.52245i 2.71163 0.340934i
\(367\) 12.1957 21.1235i 0.636609 1.10264i −0.349563 0.936913i \(-0.613670\pi\)
0.986172 0.165726i \(-0.0529969\pi\)
\(368\) −2.19905 + 3.80886i −0.114633 + 0.198551i
\(369\) 2.84445 10.1415i 0.148076 0.527944i
\(370\) 13.3565 9.90750i 0.694370 0.515067i
\(371\) 0 0
\(372\) −12.9019 + 30.6417i −0.668931 + 1.58870i
\(373\) −19.0999 + 11.0273i −0.988956 + 0.570974i −0.904962 0.425492i \(-0.860101\pi\)
−0.0839940 + 0.996466i \(0.526768\pi\)
\(374\) 12.3968 21.4719i 0.641025 1.11029i
\(375\) −10.5844 + 16.2164i −0.546577 + 0.837409i
\(376\) −8.43881 + 4.87215i −0.435199 + 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) −12.0233 5.21114i −0.616782 0.267326i
\(381\) −0.625034 0.824462i −0.0320215 0.0422385i
\(382\) 20.6217 + 11.9059i 1.05510 + 0.609160i
\(383\) −1.84403 + 1.06465i −0.0942255 + 0.0544011i −0.546372 0.837542i \(-0.683992\pi\)
0.452147 + 0.891944i \(0.350658\pi\)
\(384\) 22.4217 + 9.44079i 1.14420 + 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) 20.3275 + 5.70139i 1.03330 + 0.289818i
\(388\) 6.43222 11.1409i 0.326546 0.565595i
\(389\) 20.9207 + 12.0785i 1.06072 + 0.612406i 0.925631 0.378427i \(-0.123535\pi\)
0.135088 + 0.990834i \(0.456868\pi\)
\(390\) −40.1931 + 38.4541i −2.03526 + 1.94720i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) 9.27752 + 3.90635i 0.467989 + 0.197049i
\(394\) 8.94606 + 15.4950i 0.450696 + 0.780628i
\(395\) −12.9947 + 1.49598i −0.653832 + 0.0752707i
\(396\) −8.16352 31.9513i −0.410232 1.60561i
\(397\) −6.00792 10.4060i −0.301529 0.522263i 0.674954 0.737860i \(-0.264164\pi\)
−0.976482 + 0.215597i \(0.930830\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 7.01351i 0.106315 0.350675i
\(401\) 26.6997 15.4151i 1.33332 0.769792i 0.347513 0.937675i \(-0.387026\pi\)
0.985807 + 0.167883i \(0.0536930\pi\)
\(402\) 24.9328 + 32.8880i 1.24353 + 1.64030i
\(403\) 37.5283 + 21.6670i 1.86942 + 1.07931i
\(404\) −12.7733 22.1240i −0.635495 1.10071i
\(405\) 16.4383 11.6096i 0.816824 0.576887i
\(406\) 0 0
\(407\) 12.8502 0.636959
\(408\) 9.82306 1.23505i 0.486314 0.0611443i
\(409\) −13.5699 7.83456i −0.670986 0.387394i 0.125464 0.992098i \(-0.459958\pi\)
−0.796450 + 0.604704i \(0.793291\pi\)
\(410\) −17.2289 + 1.98343i −0.850875 + 0.0979547i
\(411\) −0.236313 1.87953i −0.0116564 0.0927101i
\(412\) −3.80855 −0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) −5.46417 2.36828i −0.268226 0.116254i
\(416\) 23.1643 40.1217i 1.13572 1.96713i
\(417\) −7.70103 10.1582i −0.377121 0.497448i
\(418\) −8.57874 14.8588i −0.419600 0.726769i
\(419\) −19.5975 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) 11.7984 + 20.4355i 0.574338 + 0.994782i
\(423\) −3.72270 14.5703i −0.181004 0.708433i
\(424\) −1.87996 + 3.25619i −0.0912990 + 0.158134i
\(425\) −3.34089 14.3179i −0.162057 0.694518i
\(426\) 16.3217 38.7638i 0.790789 1.87811i
\(427\) 0 0
\(428\) 9.57425 0.462789
\(429\) −42.6469 + 5.36200i −2.05901 + 0.258880i
\(430\) −3.97557 34.5334i −0.191719 1.66535i
\(431\) 24.1528 + 13.9447i 1.16340 + 0.671690i 0.952117 0.305734i \(-0.0989019\pi\)
0.211285 + 0.977425i \(0.432235\pi\)
\(432\) −4.74137 + 5.96042i −0.228119 + 0.286771i
\(433\) −3.47350 −0.166926 −0.0834629 0.996511i \(-0.526598\pi\)
−0.0834629 + 0.996511i \(0.526598\pi\)
\(434\) 0 0
\(435\) 8.47483 2.07116i 0.406337 0.0993046i
\(436\) −17.7097 30.6740i −0.848139 1.46902i
\(437\) 5.28774 + 3.05288i 0.252947 + 0.146039i
\(438\) −10.0892 + 7.64878i −0.482083 + 0.365473i
\(439\) 3.41910 1.97402i 0.163185 0.0942147i −0.416184 0.909281i \(-0.636633\pi\)
0.579368 + 0.815066i \(0.303299\pi\)
\(440\) −13.3251 + 9.88423i −0.635249 + 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) −8.01539 13.8831i −0.380823 0.659604i 0.610357 0.792126i \(-0.291026\pi\)
−0.991180 + 0.132522i \(0.957693\pi\)
\(444\) 10.1455 + 13.3826i 0.481484 + 0.635110i
\(445\) −30.0241 + 3.45644i −1.42328 + 0.163851i
\(446\) 4.56373 + 7.90462i 0.216099 + 0.374295i
\(447\) 7.27218 17.2713i 0.343962 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) −27.9362 17.8202i −1.31692 0.840053i
\(451\) −11.6056 6.70048i −0.546485 0.315513i
\(452\) 29.4607 51.0274i 1.38571 2.40013i
\(453\) 1.79251 + 14.2568i 0.0842195 + 0.669844i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) 8.31969 4.80338i 0.389179 0.224692i −0.292625 0.956227i \(-0.594529\pi\)
0.681804 + 0.731535i \(0.261196\pi\)
\(458\) 19.9941 + 11.5436i 0.934262 + 0.539397i
\(459\) −2.25879 + 15.1114i −0.105431 + 0.705339i
\(460\) 7.68432 17.7295i 0.358283 0.826641i
\(461\) −24.5367 −1.14279 −0.571393 0.820676i \(-0.693597\pi\)
−0.571393 + 0.820676i \(0.693597\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i −0.940798 0.338968i \(-0.889922\pi\)
0.940798 0.338968i \(-0.110078\pi\)
\(464\) −2.85938 + 1.65086i −0.132743 + 0.0766395i
\(465\) −7.23069 + 24.7805i −0.335315 + 1.14917i
\(466\) 4.30927 7.46387i 0.199623 0.345757i
\(467\) 15.5179 8.95926i 0.718083 0.414585i −0.0959639 0.995385i \(-0.530593\pi\)
0.814047 + 0.580800i \(0.197260\pi\)
\(468\) −39.2549 40.1805i −1.81456 1.85735i
\(469\) 0 0
\(470\) −19.8872 + 14.7519i −0.917330 + 0.680452i
\(471\) −1.16934 9.30039i −0.0538802 0.428539i
\(472\) −7.70770 + 13.3501i −0.354776 + 0.614490i
\(473\) 13.4304 23.2621i 0.617529 1.06959i
\(474\) −2.79216 22.2076i −0.128248 1.02003i
\(475\) −9.73665 2.95187i −0.446748 0.135441i
\(476\) 0 0
\(477\) −4.05503 4.15064i −0.185667 0.190045i
\(478\) −45.5076 + 26.2738i −2.08147 + 1.20174i
\(479\) 1.48248 2.56774i 0.0677364 0.117323i −0.830168 0.557513i \(-0.811756\pi\)
0.897905 + 0.440190i \(0.145089\pi\)
\(480\) 26.4930 + 7.73037i 1.20923 + 0.352841i
\(481\) 18.9561 10.9443i 0.864322 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) 3.97207 9.16448i 0.180362 0.416138i
\(486\) 20.1586 + 27.9188i 0.914414 + 1.26642i
\(487\) −28.8004 16.6279i −1.30507 0.753482i −0.323800 0.946125i \(-0.604961\pi\)
−0.981269 + 0.192644i \(0.938294\pi\)
\(488\) 23.0044 13.2816i 1.04136 0.601230i
\(489\) −11.5318 + 27.3879i −0.521487 + 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) −2.18476 17.3766i −0.0984966 0.783398i
\(493\) −3.31187 + 5.73632i −0.149159 + 0.258351i
\(494\) −25.3101 14.6128i −1.13875 0.657460i
\(495\) −9.13393 23.9200i −0.410540 1.07513i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) 3.95447 9.39179i 0.177204 0.420856i
\(499\) 16.8358 + 29.1604i 0.753673 + 1.30540i 0.946031 + 0.324076i \(0.105053\pi\)
−0.192358 + 0.981325i \(0.561613\pi\)
\(500\) −5.75651 + 31.6802i −0.257439 + 1.41678i
\(501\) −10.0514 13.2585i −0.449064 0.592346i
\(502\) 10.0816 + 17.4618i 0.449963 + 0.779358i
\(503\) 35.2418i 1.57135i 0.618637 + 0.785677i \(0.287685\pi\)
−0.618637 + 0.785677i \(0.712315\pi\)
\(504\) 0 0
\(505\) −11.8170 15.9306i −0.525848 0.708904i
\(506\) 21.9107 12.6502i 0.974050 0.562368i
\(507\) −40.4011 + 30.6286i −1.79428 + 1.36026i
\(508\) −1.48981 0.860142i −0.0660996 0.0381626i
\(509\) 11.5914 + 20.0770i 0.513782 + 0.889896i 0.999872 + 0.0159875i \(0.00508920\pi\)
−0.486090 + 0.873908i \(0.661577\pi\)
\(510\) 24.4387 5.97256i 1.08216 0.264469i
\(511\) 0 0
\(512\) −16.1430 −0.713426
\(513\) 8.27468 + 6.58231i 0.365336 + 0.290616i
\(514\) −12.7916 7.38523i −0.564213 0.325749i
\(515\) −2.93765 + 0.338189i −0.129448 + 0.0149024i
\(516\) 34.8295 4.37911i 1.53328 0.192780i
\(517\) −19.1334 −0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) −11.2384 + 25.9296i −0.492837 + 1.13709i
\(521\) −7.18762 + 12.4493i −0.314895 + 0.545415i −0.979415 0.201856i \(-0.935303\pi\)
0.664520 + 0.747271i \(0.268636\pi\)
\(522\) 3.69547 + 14.4637i 0.161746 + 0.633060i
\(523\) 12.6242 + 21.8658i 0.552018 + 0.956124i 0.998129 + 0.0611461i \(0.0194755\pi\)
−0.446110 + 0.894978i \(0.647191\pi\)
\(524\) 16.7378 0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) −9.79936 16.9730i −0.426867 0.739355i
\(528\) 5.85412 + 7.72197i 0.254768 + 0.336056i
\(529\) 6.99825 12.1213i 0.304272 0.527014i
\(530\) −3.79952 + 8.76636i −0.165040 + 0.380786i
\(531\) −16.6253 17.0173i −0.721477 0.738489i
\(532\) 0 0
\(533\) −22.8268 −0.988737
\(534\) −6.45128 51.3106i −0.279174 2.22042i
\(535\) 7.38490 0.850166i 0.319277 0.0367559i
\(536\) 18.1583 + 10.4837i 0.784318 + 0.452826i
\(537\) −40.6508 + 5.11102i −1.75421 + 0.220557i
\(538\) −41.9896 −1.81030
\(539\) 0 0
\(540\) 17.6997 28.3978i 0.761673 1.22205i
\(541\) −7.88973 13.6654i −0.339206 0.587522i 0.645078 0.764117i \(-0.276825\pi\)
−0.984284 + 0.176595i \(0.943492\pi\)
\(542\) −22.6676 13.0871i −0.973655 0.562140i
\(543\) 16.3581 + 21.5774i 0.701994 + 0.925977i
\(544\) −18.1459 + 10.4766i −0.778000 + 0.449179i
\(545\) −16.3837 22.0872i −0.701802 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i −0.984393 0.175986i \(-0.943689\pi\)
0.984393 0.175986i \(-0.0563115\pi\)
\(548\) −1.57489 2.72779i −0.0672759 0.116525i
\(549\) 10.1482 + 39.7190i 0.433113 + 1.69517i
\(550\) −30.7657 + 28.8245i −1.31185 + 1.22908i
\(551\) 2.29185 + 3.96960i 0.0976360 + 0.169111i
\(552\) 9.31100 + 3.92045i 0.396303 + 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 9.01386 + 9.42149i 0.382617 + 0.399920i
\(556\) −18.3559 10.5978i −0.778464 0.449446i
\(557\) 14.4676 25.0586i 0.613011 1.06177i −0.377719 0.925920i \(-0.623292\pi\)
0.990730 0.135845i \(-0.0433750\pi\)
\(558\) −42.5298 11.9286i −1.80043 0.504980i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) 19.3369 11.1641i 0.815677 0.470931i
\(563\) −5.39368 3.11404i −0.227316 0.131241i 0.382017 0.924155i \(-0.375230\pi\)
−0.609333 + 0.792914i \(0.708563\pi\)
\(564\) −15.1062 19.9261i −0.636087 0.839041i
\(565\) 18.1928 41.9749i 0.765376 1.76590i
\(566\) 13.2589 0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 8.56862 4.94710i 0.359215 0.207393i −0.309521 0.950893i \(-0.600169\pi\)
0.668736 + 0.743500i \(0.266835\pi\)
\(570\) 4.87656 16.7126i 0.204257 0.700014i
\(571\) −9.60472 + 16.6359i −0.401945 + 0.696189i −0.993961 0.109737i \(-0.964999\pi\)
0.592015 + 0.805927i \(0.298332\pi\)
\(572\) −61.8942 + 35.7347i −2.58793 + 1.49414i
\(573\) −7.24509 + 17.2070i −0.302668 + 0.718831i
\(574\) 0 0
\(575\) 4.35281 14.3576i 0.181525 0.598753i
\(576\) −10.3780 + 37.0011i −0.432415 + 1.54171i
\(577\) −19.0377 + 32.9742i −0.792549 + 1.37273i 0.131835 + 0.991272i \(0.457913\pi\)
−0.924384 + 0.381463i \(0.875420\pi\)
\(578\) 9.22669 15.9811i 0.383780 0.664726i
\(579\) −3.17275 + 0.398910i −0.131855 + 0.0165781i
\(580\) 11.6508 8.64228i 0.483773 0.358851i
\(581\) 0 0
\(582\) 15.7519 + 6.63241i 0.652935 + 0.274922i
\(583\) −6.39367 + 3.69139i −0.264799 + 0.152882i
\(584\) −3.21614 + 5.57052i −0.133085 + 0.230510i
\(585\) −33.8463 27.5067i −1.39937 1.13726i
\(586\) 6.79859 3.92517i 0.280847 0.162147i
\(587\) 11.9232i 0.492124i −0.969254 0.246062i \(-0.920863\pi\)
0.969254 0.246062i \(-0.0791367\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) −15.5777 + 35.9414i −0.641326 + 1.47968i
\(591\) −11.1792 + 8.47508i −0.459851 + 0.348618i
\(592\) −4.27353 2.46732i −0.175641 0.101406i
\(593\) 14.5994 8.42896i 0.599525 0.346136i −0.169330 0.985559i \(-0.554160\pi\)
0.768855 + 0.639424i \(0.220827\pi\)
\(594\) 40.7647 16.0565i 1.67260 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) −17.3618 + 2.18289i −0.710569 + 0.0893399i
\(598\) 21.5479 37.3220i 0.881159 1.52621i
\(599\) 11.7736 + 6.79751i 0.481058 + 0.277739i 0.720857 0.693084i \(-0.243748\pi\)
−0.239800 + 0.970822i \(0.577082\pi\)
\(600\) −16.5939 2.83633i −0.677444 0.115793i
\(601\) 46.2155i 1.88517i 0.333966 + 0.942585i \(0.391613\pi\)
−0.333966 + 0.942585i \(0.608387\pi\)
\(602\) 0 0
\(603\) −23.1462 + 22.6130i −0.942588 + 0.920874i
\(604\) 11.9461 + 20.6912i 0.486078 + 0.841912i
\(605\) −7.92775 + 0.912661i −0.322309 + 0.0371049i
\(606\) 27.0465 20.5043i 1.09869 0.832930i
\(607\) 4.37164 + 7.57190i 0.177439 + 0.307334i 0.941003 0.338399i \(-0.109885\pi\)
−0.763563 + 0.645733i \(0.776552\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 40.2139i 2.19502 1.62821i
\(611\) −28.2248 + 16.2956i −1.14185 + 0.659249i
\(612\) 6.28906 + 24.6148i 0.254220 + 0.994995i
\(613\) −21.0938 12.1785i −0.851970 0.491885i 0.00934480 0.999956i \(-0.497025\pi\)
−0.861315 + 0.508071i \(0.830359\pi\)
\(614\) 32.0696 + 55.5461i 1.29422 + 2.24166i
\(615\) −3.22816 13.2091i −0.130172 0.532641i
\(616\) 0 0
\(617\) 25.3125 1.01904 0.509522 0.860458i \(-0.329822\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(618\) −0.631212 5.02038i −0.0253911 0.201949i
\(619\) −26.2018 15.1276i −1.05314 0.608029i −0.129612 0.991565i \(-0.541373\pi\)
−0.923526 + 0.383535i \(0.874706\pi\)
\(620\) 4.90885 + 42.6403i 0.197144 + 1.71247i
\(621\) −9.70623 + 12.2018i −0.389498 + 0.489641i
\(622\) 19.0958 0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) −1.62705 + 24.9470i −0.0650820 + 0.997880i
\(626\) −11.9865 + 20.7613i −0.479079 + 0.829788i
\(627\) 10.7202 8.12711i 0.428123 0.324565i
\(628\) −7.79296 13.4978i −0.310973 0.538621i
\(629\) −9.89959 −0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) −5.68566 9.84784i −0.226163 0.391726i
\(633\) −14.7436 + 11.1773i −0.586004 + 0.444257i
\(634\) 10.3173 17.8701i 0.409754 0.709714i
\(635\) −1.22551 0.531161i −0.0486329 0.0210785i
\(636\) −8.89228 3.74415i −0.352602 0.148465i
\(637\) 0 0
\(638\) 18.9934 0.751956
\(639\) 31.7524 + 8.90582i 1.25610 + 0.352309i
\(640\) 31.2015 3.59199i 1.23335 0.141986i
\(641\) −0.111457 0.0643495i −0.00440227 0.00254165i 0.497797 0.867293i \(-0.334142\pi\)
−0.502200 + 0.864752i \(0.667476\pi\)
\(642\) 1.58679 + 12.6206i 0.0626257 + 0.498097i
\(643\) −0.150563 −0.00593763 −0.00296881 0.999996i \(-0.500945\pi\)
−0.00296881 + 0.999996i \(0.500945\pi\)
\(644\) 0 0
\(645\) 26.4761 6.47049i 1.04250 0.254775i
\(646\) 6.60894 + 11.4470i 0.260025 + 0.450377i
\(647\) 35.8147 + 20.6776i 1.40802 + 0.812920i 0.995197 0.0978912i \(-0.0312097\pi\)
0.412822 + 0.910812i \(0.364543\pi\)
\(648\) 14.9432 + 9.09817i 0.587023 + 0.357410i
\(649\) −26.2136 + 15.1344i −1.02897 + 0.594078i
\(650\) −20.8350 + 68.7235i −0.817214 + 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) −14.7304 25.5138i −0.576446 0.998433i −0.995883 0.0906487i \(-0.971106\pi\)
0.419437 0.907784i \(-0.362227\pi\)
\(654\) 37.4990 28.4284i 1.46633 1.11164i
\(655\) 12.9104 1.48627i 0.504450 0.0580734i
\(656\) 2.57308 + 4.45670i 0.100462 + 0.174005i
\(657\) −6.93713 7.10071i −0.270643 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) −29.4315 30.7625i −1.14562 1.19743i
\(661\) −20.3164 11.7297i −0.790218 0.456233i 0.0498213 0.998758i \(-0.484135\pi\)
−0.840039 + 0.542526i \(0.817468\pi\)
\(662\) 3.21328 5.56557i 0.124888 0.216312i
\(663\) 32.8546 4.13081i 1.27597 0.160427i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) −5.85354 + 3.37954i −0.226650 + 0.130856i
\(668\) −23.9582 13.8323i −0.926971 0.535187i
\(669\) −5.70294 + 4.32347i −0.220489 + 0.167155i
\(670\) 48.8860 + 21.1882i 1.88863 + 0.818570i
\(671\) 52.1580 2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i −0.512570 0.858645i \(-0.671307\pi\)
0.512570 0.858645i \(-0.328693\pi\)
\(674\) −29.2533 + 16.8894i −1.12680 + 0.650555i
\(675\) 11.1306 23.4757i 0.428418 0.903581i
\(676\) −42.1496 + 73.0052i −1.62114 + 2.80789i
\(677\) 39.5783 22.8505i 1.52112 0.878217i 0.521427 0.853296i \(-0.325400\pi\)
0.999689 0.0249214i \(-0.00793355\pi\)
\(678\) 72.1462 + 30.3776i 2.77076 + 1.16664i
\(679\) 0 0
\(680\) 10.2655 7.61467i 0.393663 0.292009i
\(681\) −12.3315 + 1.55044i −0.472545 + 0.0594130i
\(682\) −28.0994 + 48.6697i −1.07598 + 1.86366i
\(683\) −19.3444 + 33.5055i −0.740192 + 1.28205i 0.212215 + 0.977223i \(0.431932\pi\)
−0.952407 + 0.304828i \(0.901401\pi\)
\(684\) 16.9277 + 4.74783i 0.647246 + 0.181538i
\(685\) −1.45698 1.96418i −0.0556682 0.0750473i
\(686\) 0 0
\(687\) −7.02460 + 16.6833i −0.268005 + 0.636508i
\(688\) −8.93296 + 5.15745i −0.340566 + 0.196626i
\(689\) −6.28779 + 10.8908i −0.239546 + 0.414905i
\(690\) 24.6443 + 7.19095i 0.938192 + 0.273755i
\(691\) −16.6768 + 9.62834i −0.634415 + 0.366279i −0.782460 0.622701i \(-0.786035\pi\)
0.148045 + 0.988981i \(0.452702\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) −15.0995 6.54443i −0.572756 0.248244i
\(696\) 4.58189 + 6.04381i 0.173676 + 0.229090i
\(697\) 8.94077 + 5.16195i 0.338656 + 0.195523i
\(698\) −15.7836 + 9.11265i −0.597417 + 0.344919i
\(699\) 6.22794 + 2.62231i 0.235562 + 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) 46.4594 58.4046i 1.75350 2.20434i
\(703\) −3.42531 + 5.93282i −0.129188 + 0.223760i
\(704\) 42.3428 + 24.4466i 1.59586 + 0.921367i
\(705\) −13.4213 14.0282i −0.505474 0.528333i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) −36.4577 15.3507i −1.37016 0.576916i
\(709\) −2.44586 4.23635i −0.0918561 0.159099i 0.816436 0.577436i \(-0.195947\pi\)
−0.908292 + 0.418336i \(0.862613\pi\)
\(710\) −6.21001 53.9427i −0.233057 2.02443i
\(711\) 17.0031 4.34428i 0.637667 0.162923i
\(712\) −13.1367 22.7534i −0.492318 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 + 33.0592i −1.66674 + 1.23634i
\(716\) −58.9972 + 34.0620i −2.20483 + 1.27296i
\(717\) −24.8906 32.8324i −0.929557 1.22615i
\(718\) −13.6506 7.88121i −0.509438 0.294124i
\(719\) −19.0108 32.9277i −0.708985 1.22800i −0.965234 0.261387i \(-0.915820\pi\)
0.256249 0.966611i \(-0.417513\pi\)
\(720\) −1.55518 + 9.70876i −0.0579581 + 0.361824i
\(721\) 0 0
\(722\) −32.8253 −1.22163
\(723\) −22.8263 + 2.86995i −0.848919 + 0.106735i
\(724\) 38.9906 + 22.5112i 1.44907 + 0.836624i
\(725\) 8.21919 7.70059i 0.305253 0.285993i
\(726\) −1.70344 13.5484i −0.0632205 0.502827i
\(727\) −18.6502 −0.691699 −0.345849 0.938290i \(-0.612409\pi\)
−0.345849 + 0.938290i \(0.612409\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) −6.50002 + 14.9970i −0.240576 + 0.555065i
\(731\) −10.3466 + 17.9208i −0.382681 + 0.662824i
\(732\) 41.1799 + 54.3191i 1.52205 + 2.00769i
\(733\) 18.7967 + 32.5568i 0.694271 + 1.20251i 0.970426 + 0.241399i \(0.0776062\pi\)
−0.276155 + 0.961113i \(0.589060\pi\)
\(734\) 53.8821 1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) 20.5852 + 35.6546i 0.758264 + 1.31335i
\(738\) 22.5435 5.75984i 0.829837 0.212023i
\(739\) 24.7189 42.8144i 0.909300 1.57495i 0.0942603 0.995548i \(-0.469951\pi\)
0.815039 0.579406i \(-0.196715\pi\)
\(740\) 19.8924 + 8.62177i 0.731259 + 0.316942i
\(741\) 8.89228 21.1190i 0.326666 0.775826i
\(742\) 0 0
\(743\) 42.7477 1.56826 0.784131 0.620596i \(-0.213109\pi\)
0.784131 + 0.620596i \(0.213109\pi\)
\(744\) −22.2656 + 2.79945i −0.816295 + 0.102633i
\(745\) −2.76689 24.0343i −0.101371 0.880550i
\(746\) −42.1929 24.3601i −1.54479 0.891886i
\(747\) 7.69304 + 2.15772i 0.281474 + 0.0789470i
\(748\) 32.3236 1.18187
\(749\) 0 0
\(750\) −42.7144 2.33761i −1.55971 0.0853575i
\(751\) −2.79526 4.84152i −0.102000 0.176670i 0.810508 0.585727i \(-0.199191\pi\)
−0.912509 + 0.409057i \(0.865858\pi\)
\(752\) 6.36310 + 3.67374i 0.232039 + 0.133968i
\(753\) −12.5982 + 9.55082i −0.459103 + 0.348051i
\(754\) 28.0183 16.1764i 1.02037 0.589109i
\(755\) 11.0517 + 14.8989i 0.402211 + 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i 0.624150 + 0.781305i \(0.285445\pi\)
−0.624150 + 0.781305i \(0.714555\pi\)
\(758\) 1.27906 + 2.21539i 0.0464574 + 0.0804666i
\(759\) 11.9842 + 15.8079i 0.434998 + 0.573791i
\(760\) −1.01156 8.78681i −0.0366930 0.318731i
\(761\) −24.5715 42.5591i −0.890716 1.54277i −0.839019 0.544102i \(-0.816870\pi\)
−0.0516970 0.998663i \(-0.516463\pi\)
\(762\) 0.886912 2.10640i 0.0321294 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) 7.03665 + 18.4277i 0.254411 + 0.666253i
\(766\) −4.07358 2.35188i −0.147184 0.0849769i
\(767\) −25.7795 + 44.6514i −0.930843 + 1.61227i
\(768\) 1.16872 + 9.29547i 0.0421725 + 0.335421i
\(769\) 27.0203i 0.974376i 0.873297 + 0.487188i \(0.161977\pi\)
−0.873297 + 0.487188i \(0.838023\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) −4.60466 + 2.65850i −0.165725 + 0.0956816i
\(773\) −45.8267 26.4581i −1.64827 0.951631i −0.977758 0.209735i \(-0.932740\pi\)
−0.670515 0.741896i \(-0.733927\pi\)
\(774\) 11.5450 + 45.1859i 0.414975 + 1.62417i
\(775\) 7.57267 + 32.4538i 0.272018 + 1.16577i
\(776\) 8.68312 0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 6.18711 3.57213i 0.221676 0.127985i
\(780\) −69.6161 20.3133i −2.49266 0.727331i
\(781\) 20.9788 36.3364i 0.750681 1.30022i
\(782\) −16.8797 + 9.74550i −0.603617 + 0.348499i
\(783\) −10.8905 + 4.28956i −0.389193 + 0.153296i
\(784\) 0 0
\(785\) −7.20950 9.71926i −0.257318 0.346895i
\(786\) 2.77405 + 22.0636i 0.0989471 + 0.786981i
\(787\) 8.37879 14.5125i 0.298672 0.517315i −0.677161 0.735835i \(-0.736790\pi\)
0.975832 + 0.218521i \(0.0701231\pi\)
\(788\) −11.6630 + 20.2009i −0.415477 + 0.719627i
\(789\) 5.21340 + 41.4650i 0.185602 + 1.47619i
\(790\) −17.2150 23.2078i −0.612481 0.825697i
\(791\) 0 0
\(792\) 15.9218 15.5550i 0.565756 0.552723i
\(793\) 76.9414 44.4222i 2.73227 1.57748i
\(794\) 13.2719 22.9876i 0.471001 0.815798i
\(795\) −7.19134 2.09836i −0.255051 0.0744211i
\(796\) −25.1974 + 14.5477i −0.893099 + 0.515631i
\(797\) 55.9724i 1.98264i 0.131462 + 0.991321i \(0.458033\pi\)
−0.131462 + 0.991321i \(0.541967\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) 34.6965 8.09598i 1.22671 0.286236i
\(801\) 39.2856 10.0374i 1.38809 0.354655i
\(802\) 58.9813 + 34.0529i 2.08270 + 1.20245i
\(803\) −10.9380 + 6.31503i −0.385992 + 0.222853i
\(804\) −20.8794 + 49.5882i −0.736359 + 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) −4.10702 32.6654i −0.144574 1.14988i
\(808\) 8.62160 14.9331i 0.303307 0.525343i
\(809\) −36.4604 21.0504i −1.28188 0.740094i −0.304689 0.952452i \(-0.598553\pi\)
−0.977192 + 0.212358i \(0.931886\pi\)
\(810\) 40.3670 + 18.6249i 1.41835 + 0.654413i
\(811\) 1.35051i 0.0474227i 0.999719 + 0.0237113i \(0.00754826\pi\)
−0.999719 + 0.0237113i \(0.992452\pi\)
\(812\) 0 0
\(813\) 7.96388 18.9141i 0.279306 0.663346i
\(814\) 14.1934 + 24.5837i 0.497479 + 0.861659i
\(815\) 4.38758 + 38.1123i 0.153690 + 1.33502i
\(816\) −4.50993 5.94890i −0.157879 0.208253i
\(817\) 7.15993 + 12.4014i 0.250494 + 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 18.1592i −0.470395 0.634147i
\(821\) −9.82457 + 5.67222i −0.342880 + 0.197962i −0.661545 0.749906i \(-0.730099\pi\)
0.318665 + 0.947867i \(0.396765\pi\)
\(822\) 3.33471 2.52809i 0.116312 0.0881771i
\(823\) −26.1348 15.0889i −0.911002 0.525967i −0.0302488 0.999542i \(-0.509630\pi\)
−0.880754 + 0.473575i \(0.842963\pi\)
\(824\) −1.28533 2.22626i −0.0447766 0.0775554i
\(825\) −25.4330 21.1146i −0.885463 0.735114i
\(826\) 0 0
\(827\) 34.7911 1.20981 0.604903 0.796299i \(-0.293212\pi\)
0.604903 + 0.796299i \(0.293212\pi\)
\(828\) −7.00112 + 24.9614i −0.243306 + 0.867470i
\(829\) −3.50678 2.02464i −0.121796 0.0703187i 0.437864 0.899041i \(-0.355735\pi\)
−0.559660 + 0.828722i \(0.689068\pi\)
\(830\) −1.50458 13.0694i −0.0522246 0.453645i
\(831\) −28.3867 + 3.56906i −0.984725 + 0.123809i
\(832\) 83.2833 2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) −19.7079 8.54181i −0.682021 0.295602i
\(836\) 11.1841 19.3715i 0.386811 0.669977i
\(837\) 5.11992 34.2524i 0.176970 1.18394i
\(838\) −21.6460 37.4920i −0.747749 1.29514i
\(839\) −25.8653 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) −35.9846 62.3272i −1.24011 2.14794i
\(843\) 10.5764 + 13.9510i 0.364271 + 0.480497i
\(844\) −15.3816 + 26.6417i −0.529457 + 0.917047i
\(845\) −26.0285 + 60.0537i −0.895408 + 2.06591i
\(846\) 23.7627 23.2153i 0.816978 0.798158i
\(847\) 0 0
\(848\) 2.83509 0.0973573
\(849\) 1.29686 + 10.3146i 0.0445080 + 0.353997i
\(850\) 23.7015 22.2060i 0.812953 0.761660i
\(851\) −8.74849 5.05094i −0.299894 0.173144i
\(852\) 54.4052 6.84036i 1.86389 0.234347i
\(853\) 37.5709 1.28640 0.643201 0.765697i \(-0.277606\pi\)
0.643201 + 0.765697i \(0.277606\pi\)
\(854\) 0 0
\(855\) 13.4784 + 2.15901i 0.460952 + 0.0738366i
\(856\) 3.23117 + 5.59655i 0.110439 + 0.191286i
\(857\) 19.8563 + 11.4640i 0.678278 + 0.391604i 0.799206 0.601057i \(-0.205254\pi\)
−0.120928 + 0.992661i \(0.538587\pi\)
\(858\) −57.3630 75.6656i −1.95834 2.58318i
\(859\) 16.2512 9.38264i 0.554484 0.320132i −0.196444 0.980515i \(-0.562940\pi\)
0.750929 + 0.660383i \(0.229606\pi\)
\(860\) 36.3981 26.9992i 1.24117 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) 4.23086 + 7.32807i 0.144020 + 0.249450i 0.929007 0.370062i \(-0.120664\pi\)
−0.784987 + 0.619512i \(0.787330\pi\)
\(864\) −36.6194 5.47373i −1.24582 0.186220i
\(865\) −2.60144 22.5972i −0.0884517 0.768329i
\(866\) −3.83659 6.64517i −0.130373 0.225812i
\(867\) 13.3348 + 5.61470i 0.452874 + 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 13.3231 + 13.9256i 0.451694 + 0.472121i
\(871\) 60.7329 + 35.0641i 2.05785 + 1.18810i
\(872\) 11.9535 20.7041i 0.404797 0.701129i
\(873\) −3.61892 + 12.9027i −0.122482 + 0.436691i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) 3.27867 1.89294i 0.110713 0.0639201i −0.443621 0.896214i \(-0.646306\pi\)
0.554334 + 0.832294i \(0.312973\pi\)
\(878\) 7.55301 + 4.36073i 0.254902 + 0.147168i
\(879\) 3.71852 + 4.90498i 0.125423 + 0.165441i
\(880\) 11.4782 + 4.97490i 0.386931 + 0.167704i
\(881\) −54.6531 −1.84131 −0.920654 0.390379i \(-0.872344\pi\)
−0.920654 + 0.390379i \(0.872344\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i −0.880715 0.473647i \(-0.842937\pi\)
0.880715 0.473647i \(-0.157063\pi\)
\(884\) 47.6824 27.5295i 1.60373 0.925916i
\(885\) −29.4840 8.60311i −0.991093 0.289191i
\(886\) 17.7065 30.6686i 0.594862 1.03033i
\(887\) −26.0011 + 15.0117i −0.873032 + 0.504045i −0.868355 0.495944i \(-0.834822\pi\)
−0.00467726 + 0.999989i \(0.501489\pi\)
\(888\) −4.39873 + 10.4469i −0.147612 + 0.350575i
\(889\) 0 0
\(890\) −39.7751 53.6215i −1.33326 1.79740i
\(891\) 16.4782 + 30.1420i 0.552041 + 1.00980i
\(892\) −5.94975 + 10.3053i −0.199212 + 0.345046i
\(893\) 5.10015 8.83371i 0.170670 0.295609i
\(894\) 41.0742 5.16426i 1.37373 0.172719i
\(895\) −42.4816 + 31.5118i −1.42000 + 1.05332i
\(896\) 0 0
\(897\) 31.1420 + 13.1125i 1.03980 + 0.437814i
\(898\) −40.3668 + 23.3058i −1.34706 + 0.777724i
\(899\) 7.50689 13.0023i 0.250369 0.433651i
\(900\) 1.90948 43.1572i 0.0636493 1.43857i
\(901\) 4.92559 2.84379i 0.164095 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) 32.0735 + 13.9013i 1.06616 + 0.462095i
\(906\) −25.2949 + 19.1764i −0.840367 + 0.637092i
\(907\) 16.8295 + 9.71653i 0.558815 + 0.322632i 0.752670 0.658398i \(-0.228766\pi\)
−0.193855 + 0.981030i \(0.562099\pi\)
\(908\) −17.8969 + 10.3328i −0.593931 + 0.342906i
\(909\) 18.5966 + 19.0351i 0.616809 + 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) −5.12563 + 0.644446i −0.169727 + 0.0213397i
\(913\) 5.08280 8.80366i 0.168216 0.291359i
\(914\) 18.3787 + 10.6110i 0.607914 + 0.350979i
\(915\) 36.5866 + 38.2412i 1.20952 + 1.26422i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) −31.4046 + 12.3697i −1.03650 + 0.408261i
\(919\) −22.5064 38.9822i −0.742416 1.28590i −0.951392 0.307982i \(-0.900346\pi\)
0.208976 0.977921i \(-0.432987\pi\)
\(920\) 12.9570 1.49163i 0.427178 0.0491777i
\(921\) −40.0749 + 30.3812i −1.32051 + 1.00110i
\(922\) −27.1015 46.9412i −0.892541 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 + 4.88383i 0.529666 + 0.160579i
\(926\) 27.9073 16.1123i 0.917092 0.529483i
\(927\) 3.84382 0.982092i 0.126248 0.0322561i
\(928\) −13.9008 8.02565i −0.456317 0.263455i
\(929\) 21.3495 + 36.9785i 0.700455 + 1.21322i 0.968307 + 0.249764i \(0.0803530\pi\)
−0.267852 + 0.963460i \(0.586314\pi\)
\(930\) −55.3942 + 13.5378i −1.81645 + 0.443921i
\(931\) 0 0
\(932\) 11.2360 0.368048
\(933\) 1.86777 + 14.8554i 0.0611482 + 0.486345i
\(934\) 34.2800 + 19.7916i 1.12168 + 0.647600i
\(935\) 24.9321 2.87024i 0.815366 0.0938668i
\(936\) 10.2392 36.5065i 0.334680 1.19325i
\(937\) −26.4685 −0.864688 −0.432344 0.901709i \(-0.642313\pi\)
−0.432344 + 0.901709i \(0.642313\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) −29.6189 12.8375i −0.966063 0.418711i
\(941\) −15.8545 + 27.4609i −0.516843 + 0.895199i 0.482965 + 0.875640i \(0.339560\pi\)
−0.999809 + 0.0195596i \(0.993774\pi\)
\(942\) 16.5010 12.5096i 0.537633 0.407586i
\(943\) 5.26744 + 9.12347i 0.171531 + 0.297101i
\(944\) 11.6237 0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) 5.97276 + 10.3451i 0.194089 + 0.336171i 0.946601 0.322406i \(-0.104492\pi\)
−0.752513 + 0.658578i \(0.771158\pi\)
\(948\) 23.2532 17.6285i 0.755229 0.572548i
\(949\) −10.7568 + 18.6314i −0.349181 + 0.604800i
\(950\) −5.10720 21.8877i −0.165699 0.710130i
\(951\) 14.9111 + 6.27839i 0.483524 + 0.203591i
\(952\) 0 0
\(953\) 1.76384 0.0571364 0.0285682 0.999592i \(-0.490905\pi\)
0.0285682 + 0.999592i \(0.490905\pi\)
\(954\) 3.46171 12.3422i 0.112077 0.399594i
\(955\) 2.75658 + 23.9448i 0.0892008 + 0.774835i
\(956\) −59.3284 34.2532i −1.91882 1.10783i
\(957\) 1.85775 + 14.7757i 0.0600527 + 0.477632i
\(958\) 6.54980 0.211614
\(959\) 0 0
\(960\) 11.7779 + 48.1932i 0.380131 + 1.55543i
\(961\) 6.71186 + 11.6253i 0.216511 + 0.375009i
\(962\) 41.8752 + 24.1766i 1.35011 + 0.779486i
\(963\) −9.66291 + 2.46886i −0.311383 + 0.0795580i
\(964\) −33.1282 + 19.1266i −1.06699 + 0.616026i
\(965\) −3.31564 + 2.45946i −0.106734 + 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i −0.512584 0.858637i \(-0.671312\pi\)
0.512584 0.858637i \(-0.328688\pi\)
\(968\) −3.46869 6.00795i −0.111488 0.193103i
\(969\) −8.25869 + 6.26101i −0.265307 + 0.201133i
\(970\) 21.9199 2.52347i 0.703805 0.0810236i
\(971\) −23.9577 41.4959i −0.768838 1.33167i −0.938193 0.346111i \(-0.887502\pi\)
0.169356 0.985555i \(-0.445831\pi\)
\(972\) −18.3810 + 40.9588i −0.589571 + 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) −55.5007 9.48649i −1.77744 0.303811i
\(976\) −17.3460 10.0147i −0.555231 0.320563i
\(977\) −4.07411 + 7.05657i −0.130342 + 0.225760i −0.923809 0.382855i \(-0.874941\pi\)
0.793466 + 0.608614i \(0.208274\pi\)
\(978\) −65.1332 + 8.18920i −2.08273 + 0.261862i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) 48.7636 28.1537i 1.55611 0.898420i
\(983\) −12.6460 7.30116i −0.403344 0.232871i 0.284582 0.958652i \(-0.408145\pi\)
−0.687926 + 0.725781i \(0.741479\pi\)
\(984\) 9.42003 7.14143i 0.300300 0.227661i
\(985\) −7.20222 + 16.6172i −0.229482 + 0.529467i
\(986\) −14.6322 −0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) −18.2870 + 10.5580i −0.581492 + 0.335725i
\(990\) 35.6728 43.8946i 1.13376 1.39506i
\(991\) −7.84118 + 13.5813i −0.249083 + 0.431425i −0.963272 0.268529i \(-0.913463\pi\)
0.714188 + 0.699953i \(0.246796\pi\)
\(992\) 41.1307 23.7468i 1.30590 0.753962i
\(993\) 4.64398 + 1.95537i 0.147372 + 0.0620519i
\(994\) 0 0
\(995\) −18.1437 + 13.4585i −0.575194 + 0.426664i
\(996\) 13.1814 1.65730i 0.417669 0.0525136i
\(997\) −13.5211 + 23.4192i −0.428218 + 0.741695i −0.996715 0.0809903i \(-0.974192\pi\)
0.568497 + 0.822685i \(0.307525\pi\)
\(998\) −37.1913 + 64.4173i −1.17727 + 2.03909i
\(999\) −13.6904 10.8903i −0.433144 0.344555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.374.29 64
3.2 odd 2 inner 735.2.p.g.374.2 64
5.4 even 2 inner 735.2.p.g.374.4 64
7.2 even 3 inner 735.2.p.g.509.30 64
7.3 odd 6 735.2.g.c.734.1 32
7.4 even 3 735.2.g.c.734.4 yes 32
7.5 odd 6 inner 735.2.p.g.509.31 64
7.6 odd 2 inner 735.2.p.g.374.32 64
15.14 odd 2 inner 735.2.p.g.374.31 64
21.2 odd 6 inner 735.2.p.g.509.1 64
21.5 even 6 inner 735.2.p.g.509.4 64
21.11 odd 6 735.2.g.c.734.31 yes 32
21.17 even 6 735.2.g.c.734.30 yes 32
21.20 even 2 inner 735.2.p.g.374.3 64
35.4 even 6 735.2.g.c.734.29 yes 32
35.9 even 6 inner 735.2.p.g.509.3 64
35.19 odd 6 inner 735.2.p.g.509.2 64
35.24 odd 6 735.2.g.c.734.32 yes 32
35.34 odd 2 inner 735.2.p.g.374.1 64
105.44 odd 6 inner 735.2.p.g.509.32 64
105.59 even 6 735.2.g.c.734.3 yes 32
105.74 odd 6 735.2.g.c.734.2 yes 32
105.89 even 6 inner 735.2.p.g.509.29 64
105.104 even 2 inner 735.2.p.g.374.30 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 7.3 odd 6
735.2.g.c.734.2 yes 32 105.74 odd 6
735.2.g.c.734.3 yes 32 105.59 even 6
735.2.g.c.734.4 yes 32 7.4 even 3
735.2.g.c.734.29 yes 32 35.4 even 6
735.2.g.c.734.30 yes 32 21.17 even 6
735.2.g.c.734.31 yes 32 21.11 odd 6
735.2.g.c.734.32 yes 32 35.24 odd 6
735.2.p.g.374.1 64 35.34 odd 2 inner
735.2.p.g.374.2 64 3.2 odd 2 inner
735.2.p.g.374.3 64 21.20 even 2 inner
735.2.p.g.374.4 64 5.4 even 2 inner
735.2.p.g.374.29 64 1.1 even 1 trivial
735.2.p.g.374.30 64 105.104 even 2 inner
735.2.p.g.374.31 64 15.14 odd 2 inner
735.2.p.g.374.32 64 7.6 odd 2 inner
735.2.p.g.509.1 64 21.2 odd 6 inner
735.2.p.g.509.2 64 35.19 odd 6 inner
735.2.p.g.509.3 64 35.9 even 6 inner
735.2.p.g.509.4 64 21.5 even 6 inner
735.2.p.g.509.29 64 105.89 even 6 inner
735.2.p.g.509.30 64 7.2 even 3 inner
735.2.p.g.509.31 64 7.5 odd 6 inner
735.2.p.g.509.32 64 105.44 odd 6 inner