Properties

Label 735.2.g.c.734.29
Level $735$
Weight $2$
Character 735.734
Analytic conductor $5.869$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(734,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.734");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 734.29
Character \(\chi\) \(=\) 735.734
Dual form 735.2.g.c.734.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20906 q^{2} +(-1.59632 - 0.672139i) q^{3} +2.87996 q^{4} +(-1.33217 + 1.79592i) q^{5} +(-3.52637 - 1.48480i) q^{6} +1.94389 q^{8} +(2.09646 + 2.14589i) q^{9} +(-2.94284 + 3.96730i) q^{10} +3.81691i q^{11} +(-4.59733 - 1.93573i) q^{12} +6.50161 q^{13} +(3.33367 - 1.97146i) q^{15} -1.46575 q^{16} +2.94050i q^{17} +(4.63121 + 4.74041i) q^{18} +2.03485i q^{19} +(-3.83659 + 5.17218i) q^{20} +8.43180i q^{22} +3.00058 q^{23} +(-3.10306 - 1.30656i) q^{24} +(-1.45065 - 4.78494i) q^{25} +14.3625 q^{26} +(-1.90428 - 4.83464i) q^{27} +2.25259i q^{29} +(7.36429 - 4.35507i) q^{30} +6.66511i q^{31} -7.12571 q^{32} +(2.56549 - 6.09300i) q^{33} +6.49574i q^{34} +(6.03772 + 6.18009i) q^{36} +3.36664i q^{37} +4.49512i q^{38} +(-10.3786 - 4.36998i) q^{39} +(-2.58959 + 3.49107i) q^{40} +3.51094 q^{41} -7.03729i q^{43} +10.9926i q^{44} +(-6.64669 + 0.906381i) q^{45} +6.62848 q^{46} -5.01279i q^{47} +(2.33980 + 0.985185i) q^{48} +(-3.20459 - 10.5702i) q^{50} +(1.97642 - 4.69396i) q^{51} +18.7244 q^{52} +1.93423 q^{53} +(-4.20667 - 10.6800i) q^{54} +(-6.85487 - 5.08477i) q^{55} +(1.36770 - 3.24827i) q^{57} +4.97612i q^{58} -7.93019 q^{59} +(9.60084 - 5.67772i) q^{60} -13.6650i q^{61} +14.7237i q^{62} -12.8096 q^{64} +(-8.66124 + 11.6764i) q^{65} +(5.66734 - 13.4598i) q^{66} -10.7863i q^{67} +8.46851i q^{68} +(-4.78988 - 2.01681i) q^{69} +10.9926i q^{71} +(4.07528 + 4.17138i) q^{72} +3.30897 q^{73} +7.43712i q^{74} +(-0.900436 + 8.61332i) q^{75} +5.86030i q^{76} +(-22.9271 - 9.65357i) q^{78} -5.84977 q^{79} +(1.95262 - 2.63236i) q^{80} +(-0.209716 + 8.99756i) q^{81} +7.75589 q^{82} -2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} -15.5458i q^{86} +(1.51405 - 3.59585i) q^{87} +7.41965i q^{88} -13.5159 q^{89} +(-14.6830 + 2.00225i) q^{90} +8.64156 q^{92} +(4.47988 - 10.6396i) q^{93} -11.0736i q^{94} +(-3.65444 - 2.71077i) q^{95} +(11.3749 + 4.78946i) q^{96} +4.46688 q^{97} +(-8.19069 + 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 16 q^{4} + 40 q^{9} + 16 q^{15} - 16 q^{16} + 64 q^{25} + 56 q^{30} - 16 q^{36} - 56 q^{39} - 32 q^{46} - 40 q^{51} + 8 q^{60} - 176 q^{64} + 48 q^{79} - 40 q^{81} - 64 q^{85} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20906 1.56204 0.781022 0.624504i \(-0.214699\pi\)
0.781022 + 0.624504i \(0.214699\pi\)
\(3\) −1.59632 0.672139i −0.921634 0.388059i
\(4\) 2.87996 1.43998
\(5\) −1.33217 + 1.79592i −0.595764 + 0.803160i
\(6\) −3.52637 1.48480i −1.43963 0.606166i
\(7\) 0 0
\(8\) 1.94389 0.687269
\(9\) 2.09646 + 2.14589i 0.698820 + 0.715298i
\(10\) −2.94284 + 3.96730i −0.930609 + 1.25457i
\(11\) 3.81691i 1.15084i 0.817857 + 0.575421i \(0.195162\pi\)
−0.817857 + 0.575421i \(0.804838\pi\)
\(12\) −4.59733 1.93573i −1.32714 0.558798i
\(13\) 6.50161 1.80322 0.901611 0.432548i \(-0.142385\pi\)
0.901611 + 0.432548i \(0.142385\pi\)
\(14\) 0 0
\(15\) 3.33367 1.97146i 0.860750 0.509028i
\(16\) −1.46575 −0.366437
\(17\) 2.94050i 0.713175i 0.934262 + 0.356587i \(0.116060\pi\)
−0.934262 + 0.356587i \(0.883940\pi\)
\(18\) 4.63121 + 4.74041i 1.09159 + 1.11733i
\(19\) 2.03485i 0.466828i 0.972377 + 0.233414i \(0.0749897\pi\)
−0.972377 + 0.233414i \(0.925010\pi\)
\(20\) −3.83659 + 5.17218i −0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) 3.00058 0.625665 0.312832 0.949808i \(-0.398722\pi\)
0.312832 + 0.949808i \(0.398722\pi\)
\(24\) −3.10306 1.30656i −0.633410 0.266701i
\(25\) −1.45065 4.78494i −0.290131 0.956987i
\(26\) 14.3625 2.81671
\(27\) −1.90428 4.83464i −0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i 0.977884 + 0.209148i \(0.0670690\pi\)
−0.977884 + 0.209148i \(0.932931\pi\)
\(30\) 7.36429 4.35507i 1.34453 0.795123i
\(31\) 6.66511i 1.19709i 0.801089 + 0.598545i \(0.204254\pi\)
−0.801089 + 0.598545i \(0.795746\pi\)
\(32\) −7.12571 −1.25966
\(33\) 2.56549 6.09300i 0.446595 1.06066i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 + 6.18009i 1.00629 + 1.03001i
\(37\) 3.36664i 0.553472i 0.960946 + 0.276736i \(0.0892528\pi\)
−0.960946 + 0.276736i \(0.910747\pi\)
\(38\) 4.49512i 0.729205i
\(39\) −10.3786 4.36998i −1.66191 0.699757i
\(40\) −2.58959 + 3.49107i −0.409450 + 0.551986i
\(41\) 3.51094 0.548317 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) 10.9926i 1.65719i
\(45\) −6.64669 + 0.906381i −0.990830 + 0.135115i
\(46\) 6.62848 0.977316
\(47\) 5.01279i 0.731190i −0.930774 0.365595i \(-0.880865\pi\)
0.930774 0.365595i \(-0.119135\pi\)
\(48\) 2.33980 + 0.985185i 0.337721 + 0.142199i
\(49\) 0 0
\(50\) −3.20459 10.5702i −0.453197 1.49486i
\(51\) 1.97642 4.69396i 0.276754 0.657286i
\(52\) 18.7244 2.59660
\(53\) 1.93423 0.265686 0.132843 0.991137i \(-0.457589\pi\)
0.132843 + 0.991137i \(0.457589\pi\)
\(54\) −4.20667 10.6800i −0.572455 1.45337i
\(55\) −6.85487 5.08477i −0.924310 0.685630i
\(56\) 0 0
\(57\) 1.36770 3.24827i 0.181157 0.430244i
\(58\) 4.97612i 0.653396i
\(59\) −7.93019 −1.03242 −0.516211 0.856461i \(-0.672658\pi\)
−0.516211 + 0.856461i \(0.672658\pi\)
\(60\) 9.60084 5.67772i 1.23946 0.732990i
\(61\) 13.6650i 1.74962i −0.484466 0.874810i \(-0.660986\pi\)
0.484466 0.874810i \(-0.339014\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) −8.66124 + 11.6764i −1.07429 + 1.44828i
\(66\) 5.66734 13.4598i 0.697601 1.65679i
\(67\) 10.7863i 1.31776i −0.752250 0.658878i \(-0.771031\pi\)
0.752250 0.658878i \(-0.228969\pi\)
\(68\) 8.46851i 1.02696i
\(69\) −4.78988 2.01681i −0.576634 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i 0.757971 + 0.652288i \(0.226191\pi\)
−0.757971 + 0.652288i \(0.773809\pi\)
\(72\) 4.07528 + 4.17138i 0.480277 + 0.491602i
\(73\) 3.30897 0.387286 0.193643 0.981072i \(-0.437970\pi\)
0.193643 + 0.981072i \(0.437970\pi\)
\(74\) 7.43712i 0.864548i
\(75\) −0.900436 + 8.61332i −0.103973 + 0.994580i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) −22.9271 9.65357i −2.59598 1.09305i
\(79\) −5.84977 −0.658151 −0.329075 0.944304i \(-0.606737\pi\)
−0.329075 + 0.944304i \(0.606737\pi\)
\(80\) 1.95262 2.63236i 0.218310 0.294307i
\(81\) −0.209716 + 8.99756i −0.0233018 + 0.999728i
\(82\) 7.75589 0.856495
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) 15.5458i 1.67635i
\(87\) 1.51405 3.59585i 0.162324 0.385516i
\(88\) 7.41965i 0.790938i
\(89\) −13.5159 −1.43268 −0.716339 0.697752i \(-0.754184\pi\)
−0.716339 + 0.697752i \(0.754184\pi\)
\(90\) −14.6830 + 2.00225i −1.54772 + 0.211056i
\(91\) 0 0
\(92\) 8.64156 0.900945
\(93\) 4.47988 10.6396i 0.464542 1.10328i
\(94\) 11.0736i 1.14215i
\(95\) −3.65444 2.71077i −0.374937 0.278119i
\(96\) 11.3749 + 4.78946i 1.16094 + 0.488822i
\(97\) 4.46688 0.453543 0.226771 0.973948i \(-0.427183\pi\)
0.226771 + 0.973948i \(0.427183\pi\)
\(98\) 0 0
\(99\) −8.19069 + 8.00200i −0.823195 + 0.804231i
\(100\) −4.17782 13.7804i −0.417782 1.37804i
\(101\) 8.87047 0.882644 0.441322 0.897349i \(-0.354510\pi\)
0.441322 + 0.897349i \(0.354510\pi\)
\(102\) 4.36604 10.3693i 0.432302 1.02671i
\(103\) 1.32243 0.130303 0.0651516 0.997875i \(-0.479247\pi\)
0.0651516 + 0.997875i \(0.479247\pi\)
\(104\) 12.6384 1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) −3.32444 −0.321386 −0.160693 0.987004i \(-0.551373\pi\)
−0.160693 + 0.987004i \(0.551373\pi\)
\(108\) −5.48424 13.9236i −0.527722 1.33980i
\(109\) 12.2985 1.17799 0.588994 0.808138i \(-0.299524\pi\)
0.588994 + 0.808138i \(0.299524\pi\)
\(110\) −15.1428 11.2326i −1.44381 1.07098i
\(111\) 2.26285 5.37423i 0.214780 0.510099i
\(112\) 0 0
\(113\) 20.4591 1.92463 0.962314 0.271941i \(-0.0876657\pi\)
0.962314 + 0.271941i \(0.0876657\pi\)
\(114\) 3.02135 7.17564i 0.282975 0.672061i
\(115\) −3.99728 + 5.38881i −0.372749 + 0.502509i
\(116\) 6.48737i 0.602338i
\(117\) 13.6304 + 13.9518i 1.26013 + 1.28984i
\(118\) −17.5183 −1.61269
\(119\) 0 0
\(120\) 6.48029 3.83229i 0.591567 0.349839i
\(121\) −3.56881 −0.324438
\(122\) 30.1868i 2.73298i
\(123\) −5.60458 2.35984i −0.505348 0.212780i
\(124\) 19.1953i 1.72379i
\(125\) 10.5259 + 3.76908i 0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) −14.0459 −1.24149
\(129\) −4.73004 + 11.2338i −0.416456 + 0.989077i
\(130\) −19.1332 + 25.7938i −1.67810 + 2.26227i
\(131\) 5.81183 0.507782 0.253891 0.967233i \(-0.418290\pi\)
0.253891 + 0.967233i \(0.418290\pi\)
\(132\) 7.38852 17.5476i 0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) 11.2194 + 3.02063i 0.965616 + 0.259974i
\(136\) 5.71600i 0.490143i
\(137\) −1.09369 −0.0934400 −0.0467200 0.998908i \(-0.514877\pi\)
−0.0467200 + 0.998908i \(0.514877\pi\)
\(138\) −10.5812 4.45526i −0.900728 0.379257i
\(139\) 7.35968i 0.624240i 0.950043 + 0.312120i \(0.101039\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(140\) 0 0
\(141\) −3.36929 + 8.00200i −0.283745 + 0.673890i
\(142\) 24.2833i 2.03781i
\(143\) 24.8161i 2.07522i
\(144\) −3.07288 3.14534i −0.256073 0.262111i
\(145\) −4.04547 3.00083i −0.335958 0.249205i
\(146\) 7.30973 0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) 10.8195i 0.886365i −0.896431 0.443183i \(-0.853849\pi\)
0.896431 0.443183i \(-0.146151\pi\)
\(150\) −1.98912 + 19.0274i −0.162411 + 1.55358i
\(151\) −8.29599 −0.675118 −0.337559 0.941304i \(-0.609601\pi\)
−0.337559 + 0.941304i \(0.609601\pi\)
\(152\) 3.95553i 0.320836i
\(153\) −6.30999 + 6.16463i −0.510132 + 0.498381i
\(154\) 0 0
\(155\) −11.9700 8.87905i −0.961454 0.713183i
\(156\) −29.8901 12.5854i −2.39312 1.00764i
\(157\) −5.41185 −0.431913 −0.215957 0.976403i \(-0.569287\pi\)
−0.215957 + 0.976403i \(0.569287\pi\)
\(158\) −12.9225 −1.02806
\(159\) −3.08764 1.30007i −0.244866 0.103102i
\(160\) 9.49264 12.7972i 0.750459 1.01171i
\(161\) 0 0
\(162\) −0.463276 + 19.8762i −0.0363984 + 1.56162i
\(163\) 17.1569i 1.34383i −0.740627 0.671917i \(-0.765471\pi\)
0.740627 0.671917i \(-0.234529\pi\)
\(164\) 10.1114 0.789566
\(165\) 7.52487 + 12.7243i 0.585811 + 0.990588i
\(166\) 5.88341i 0.456641i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) −11.6658 8.65342i −0.894728 0.663687i
\(171\) −4.36658 + 4.26599i −0.333921 + 0.326228i
\(172\) 20.2671i 1.54535i
\(173\) 10.1725i 0.773403i 0.922205 + 0.386702i \(0.126386\pi\)
−0.922205 + 0.386702i \(0.873614\pi\)
\(174\) 3.34464 7.94346i 0.253556 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) 12.6591 + 5.33019i 0.951516 + 0.400641i
\(178\) −29.8574 −2.23791
\(179\) 23.6545i 1.76802i −0.467466 0.884011i \(-0.654833\pi\)
0.467466 0.884011i \(-0.345167\pi\)
\(180\) −19.1422 + 2.61034i −1.42678 + 0.194563i
\(181\) 15.6330i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(182\) 0 0
\(183\) −9.18476 + 21.8136i −0.678957 + 1.61251i
\(184\) 5.83280 0.430000
\(185\) −6.04622 4.48493i −0.444527 0.329739i
\(186\) 9.89634 23.5036i 0.725635 1.72337i
\(187\) −11.2236 −0.820752
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) 10.7792i 0.779953i 0.920825 + 0.389976i \(0.127517\pi\)
−0.920825 + 0.389976i \(0.872483\pi\)
\(192\) 20.4483 + 8.60986i 1.47573 + 0.621363i
\(193\) 1.84621i 0.132893i 0.997790 + 0.0664465i \(0.0211662\pi\)
−0.997790 + 0.0664465i \(0.978834\pi\)
\(194\) 9.86762 0.708454
\(195\) 21.6742 12.8176i 1.55212 0.917890i
\(196\) 0 0
\(197\) −8.09941 −0.577059 −0.288530 0.957471i \(-0.593166\pi\)
−0.288530 + 0.957471i \(0.593166\pi\)
\(198\) −18.0937 + 17.6769i −1.28587 + 1.25624i
\(199\) 10.1027i 0.716164i −0.933690 0.358082i \(-0.883431\pi\)
0.933690 0.358082i \(-0.116569\pi\)
\(200\) −2.81991 9.30138i −0.199398 0.657707i
\(201\) −7.24988 + 17.2184i −0.511367 + 1.21449i
\(202\) 19.5954 1.37873
\(203\) 0 0
\(204\) 5.69201 13.5184i 0.398521 0.946480i
\(205\) −4.67717 + 6.30537i −0.326667 + 0.440386i
\(206\) 2.92134 0.203539
\(207\) 6.29060 + 6.43893i 0.437227 + 0.447537i
\(208\) −9.52972 −0.660767
\(209\) −7.76686 −0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) 5.57050 0.382583
\(213\) 7.38852 17.5476i 0.506253 1.20234i
\(214\) −7.34390 −0.502018
\(215\) 12.6384 + 9.37486i 0.861932 + 0.639360i
\(216\) −3.70170 9.39800i −0.251869 0.639453i
\(217\) 0 0
\(218\) 27.1683 1.84007
\(219\) −5.28217 2.22409i −0.356936 0.150290i
\(220\) −19.7417 14.6439i −1.33099 0.987294i
\(221\) 19.1180i 1.28601i
\(222\) 4.99878 11.8720i 0.335496 0.796797i
\(223\) −4.13183 −0.276688 −0.138344 0.990384i \(-0.544178\pi\)
−0.138344 + 0.990384i \(0.544178\pi\)
\(224\) 0 0
\(225\) 7.22672 13.1444i 0.481782 0.876291i
\(226\) 45.1954 3.00635
\(227\) 7.17565i 0.476265i 0.971233 + 0.238132i \(0.0765352\pi\)
−0.971233 + 0.238132i \(0.923465\pi\)
\(228\) 3.93894 9.35490i 0.260862 0.619544i
\(229\) 10.4511i 0.690629i 0.938487 + 0.345315i \(0.112228\pi\)
−0.938487 + 0.345315i \(0.887772\pi\)
\(230\) −8.83025 + 11.9042i −0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) −3.90144 −0.255592 −0.127796 0.991800i \(-0.540790\pi\)
−0.127796 + 0.991800i \(0.540790\pi\)
\(234\) 30.1103 + 30.8203i 1.96837 + 2.01479i
\(235\) 9.00256 + 6.67788i 0.587262 + 0.435617i
\(236\) −22.8386 −1.48667
\(237\) 9.33810 + 3.93186i 0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i 0.638844 + 0.769336i \(0.279413\pi\)
−0.638844 + 0.769336i \(0.720587\pi\)
\(240\) −4.88632 + 2.88966i −0.315411 + 0.186526i
\(241\) 13.2825i 0.855603i −0.903873 0.427801i \(-0.859288\pi\)
0.903873 0.427801i \(-0.140712\pi\)
\(242\) −7.88374 −0.506786
\(243\) 6.38238 14.2220i 0.409430 0.912342i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 5.21303i −0.789375 0.332371i
\(247\) 13.2298i 0.841794i
\(248\) 12.9562i 0.822722i
\(249\) −1.79011 + 4.25148i −0.113444 + 0.269427i
\(250\) 23.2523 + 8.32615i 1.47061 + 0.526592i
\(251\) 9.12747 0.576121 0.288060 0.957612i \(-0.406990\pi\)
0.288060 + 0.957612i \(0.406990\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) 1.31954i 0.0827951i
\(255\) 5.79706 + 9.80264i 0.363026 + 0.613865i
\(256\) −5.40900 −0.338062
\(257\) 6.68630i 0.417080i 0.978014 + 0.208540i \(0.0668712\pi\)
−0.978014 + 0.208540i \(0.933129\pi\)
\(258\) −10.4489 + 24.8161i −0.650523 + 1.54498i
\(259\) 0 0
\(260\) −24.9440 + 33.6275i −1.54696 + 2.08549i
\(261\) −4.83382 + 4.72247i −0.299206 + 0.292313i
\(262\) 12.8387 0.793177
\(263\) 24.1283 1.48782 0.743908 0.668282i \(-0.232970\pi\)
0.743908 + 0.668282i \(0.232970\pi\)
\(264\) 4.98704 11.8441i 0.306931 0.728955i
\(265\) −2.57672 + 3.47371i −0.158286 + 0.213389i
\(266\) 0 0
\(267\) 21.5756 + 9.08453i 1.32041 + 0.555964i
\(268\) 31.0641i 1.89754i
\(269\) 19.0079 1.15893 0.579465 0.814997i \(-0.303262\pi\)
0.579465 + 0.814997i \(0.303262\pi\)
\(270\) 24.7845 + 6.67275i 1.50833 + 0.406091i
\(271\) 11.8486i 0.719750i −0.933001 0.359875i \(-0.882819\pi\)
0.933001 0.359875i \(-0.117181\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) 18.2637 5.53702i 1.10134 0.333895i
\(276\) −13.7947 5.80833i −0.830342 0.349620i
\(277\) 16.5181i 0.992478i 0.868186 + 0.496239i \(0.165286\pi\)
−0.868186 + 0.496239i \(0.834714\pi\)
\(278\) 16.2580i 0.975090i
\(279\) −14.3026 + 13.9731i −0.856275 + 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i −0.953471 0.301484i \(-0.902518\pi\)
0.953471 0.301484i \(-0.0974820\pi\)
\(282\) −7.44297 + 17.6769i −0.443222 + 1.05265i
\(283\) 6.00203 0.356784 0.178392 0.983960i \(-0.442911\pi\)
0.178392 + 0.983960i \(0.442911\pi\)
\(284\) 31.6581i 1.87856i
\(285\) 4.01163 + 6.78354i 0.237628 + 0.401822i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) −14.9388 15.2910i −0.880275 0.901031i
\(289\) 8.35349 0.491382
\(290\) −8.93670 6.62903i −0.524781 0.389270i
\(291\) −7.13056 3.00236i −0.418001 0.176002i
\(292\) 9.52972 0.557684
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) 6.54438i 0.380384i
\(297\) 18.4534 7.26846i 1.07077 0.421759i
\(298\) 23.9009i 1.38454i
\(299\) 19.5086 1.12821
\(300\) −2.59322 + 24.8060i −0.149720 + 1.43218i
\(301\) 0 0
\(302\) −18.3264 −1.05456
\(303\) −14.1601 5.96218i −0.813475 0.342518i
\(304\) 2.98258i 0.171063i
\(305\) 24.5412 + 18.2040i 1.40522 + 1.04236i
\(306\) −13.9392 + 13.6181i −0.796849 + 0.778492i
\(307\) −29.0345 −1.65709 −0.828544 0.559923i \(-0.810831\pi\)
−0.828544 + 0.559923i \(0.810831\pi\)
\(308\) 0 0
\(309\) −2.11102 0.888858i −0.120092 0.0505654i
\(310\) −26.4425 19.6144i −1.50183 1.11402i
\(311\) −8.64432 −0.490174 −0.245087 0.969501i \(-0.578817\pi\)
−0.245087 + 0.969501i \(0.578817\pi\)
\(312\) −20.1749 8.49476i −1.14218 0.480921i
\(313\) 10.8521 0.613400 0.306700 0.951806i \(-0.400775\pi\)
0.306700 + 0.951806i \(0.400775\pi\)
\(314\) −11.9551 −0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) −9.34091 −0.524638 −0.262319 0.964981i \(-0.584487\pi\)
−0.262319 + 0.964981i \(0.584487\pi\)
\(318\) −6.82079 2.87193i −0.382491 0.161050i
\(319\) −8.59794 −0.481392
\(320\) 17.0646 23.0051i 0.953940 1.28602i
\(321\) 5.30686 + 2.23448i 0.296200 + 0.124717i
\(322\) 0 0
\(323\) −5.98348 −0.332930
\(324\) −0.603973 + 25.9126i −0.0335541 + 1.43959i
\(325\) −9.43158 31.1098i −0.523170 1.72566i
\(326\) 37.9007i 2.09913i
\(327\) −19.6324 8.26633i −1.08567 0.457129i
\(328\) 6.82488 0.376841
\(329\) 0 0
\(330\) 16.6229 + 28.1088i 0.915062 + 1.54734i
\(331\) 2.90918 0.159903 0.0799515 0.996799i \(-0.474523\pi\)
0.0799515 + 0.996799i \(0.474523\pi\)
\(332\) 7.67021i 0.420958i
\(333\) −7.22445 + 7.05803i −0.395898 + 0.386777i
\(334\) 21.2200i 1.16111i
\(335\) 19.3713 + 14.3692i 1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) 64.6613 3.51711
\(339\) −32.6592 13.7513i −1.77380 0.746870i
\(340\) −15.2088 11.2815i −0.824811 0.611824i
\(341\) −25.4401 −1.37766
\(342\) −9.64606 + 9.42384i −0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) 10.0030 5.91552i 0.538541 0.318481i
\(346\) 22.4718i 1.20809i
\(347\) −31.5784 −1.69522 −0.847609 0.530622i \(-0.821958\pi\)
−0.847609 + 0.530622i \(0.821958\pi\)
\(348\) 4.36041 10.3559i 0.233743 0.555135i
\(349\) 8.25024i 0.441625i 0.975316 + 0.220813i \(0.0708709\pi\)
−0.975316 + 0.220813i \(0.929129\pi\)
\(350\) 0 0
\(351\) −12.3809 31.4329i −0.660842 1.67777i
\(352\) 27.1982i 1.44967i
\(353\) 4.28810i 0.228232i −0.993467 0.114116i \(-0.963596\pi\)
0.993467 0.114116i \(-0.0364036\pi\)
\(354\) 27.9647 + 11.7747i 1.48631 + 0.625819i
\(355\) −19.7417 14.6439i −1.04778 0.777220i
\(356\) −38.9252 −2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) 7.13534i 0.376589i −0.982113 0.188294i \(-0.939704\pi\)
0.982113 0.188294i \(-0.0602959\pi\)
\(360\) −12.9204 + 1.76190i −0.680966 + 0.0928605i
\(361\) 14.8594 0.782072
\(362\) 34.5343i 1.81508i
\(363\) 5.69696 + 2.39874i 0.299013 + 0.125901i
\(364\) 0 0
\(365\) −4.40811 + 5.94265i −0.230731 + 0.311053i
\(366\) −20.2897 + 48.1877i −1.06056 + 2.51881i
\(367\) 24.3914 1.27322 0.636609 0.771187i \(-0.280336\pi\)
0.636609 + 0.771187i \(0.280336\pi\)
\(368\) −4.39810 −0.229267
\(369\) 7.36055 + 7.53411i 0.383175 + 0.392210i
\(370\) −13.3565 9.90750i −0.694370 0.515067i
\(371\) 0 0
\(372\) 12.9019 30.6417i 0.668931 1.58870i
\(373\) 22.0547i 1.14195i 0.820968 + 0.570974i \(0.193434\pi\)
−0.820968 + 0.570974i \(0.806566\pi\)
\(374\) −24.7937 −1.28205
\(375\) −14.2693 13.0915i −0.736863 0.676042i
\(376\) 9.74430i 0.502524i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) −10.5246 7.80691i −0.539902 0.400486i
\(381\) −0.401488 + 0.953527i −0.0205688 + 0.0488506i
\(382\) 23.8118i 1.21832i
\(383\) 2.12930i 0.108802i 0.998519 + 0.0544011i \(0.0173250\pi\)
−0.998519 + 0.0544011i \(0.982675\pi\)
\(384\) 22.4217 + 9.44079i 1.14420 + 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) 15.1013 14.7534i 0.767641 0.749957i
\(388\) 12.8644 0.653093
\(389\) 24.1571i 1.22481i −0.790543 0.612406i \(-0.790202\pi\)
0.790543 0.612406i \(-0.209798\pi\)
\(390\) 47.8797 28.3150i 2.42448 1.43378i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) −9.27752 3.90635i −0.467989 0.197049i
\(394\) −17.8921 −0.901392
\(395\) 7.79288 10.5057i 0.392103 0.528600i
\(396\) −23.5889 + 23.0454i −1.18538 + 1.15808i
\(397\) −12.0158 −0.603058 −0.301529 0.953457i \(-0.597497\pi\)
−0.301529 + 0.953457i \(0.597497\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) 30.8302i 1.53958i 0.638294 + 0.769792i \(0.279640\pi\)
−0.638294 + 0.769792i \(0.720360\pi\)
\(402\) −16.0155 + 38.0364i −0.798778 + 1.89708i
\(403\) 43.3340i 2.15862i
\(404\) 25.5466 1.27099
\(405\) −15.8795 12.3629i −0.789059 0.614317i
\(406\) 0 0
\(407\) −12.8502 −0.636959
\(408\) 3.84194 9.12455i 0.190204 0.451732i
\(409\) 15.6691i 0.774788i 0.921914 + 0.387394i \(0.126625\pi\)
−0.921914 + 0.387394i \(0.873375\pi\)
\(410\) −10.3322 + 13.9290i −0.510269 + 0.687902i
\(411\) 1.74587 + 0.735110i 0.0861176 + 0.0362603i
\(412\) 3.80855 0.187634
\(413\) 0 0
\(414\) 13.8963 + 14.2240i 0.682968 + 0.699072i
\(415\) 4.78308 + 3.54797i 0.234792 + 0.174163i
\(416\) −46.3286 −2.27144
\(417\) 4.94672 11.7484i 0.242242 0.575321i
\(418\) −17.1575 −0.839200
\(419\) −19.5975 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) 23.5968 1.14868
\(423\) 10.7569 10.5091i 0.523019 0.510970i
\(424\) 3.75992 0.182598
\(425\) 14.0701 4.26564i 0.682499 0.206914i
\(426\) 16.3217 38.7638i 0.790789 1.87811i
\(427\) 0 0
\(428\) −9.57425 −0.462789
\(429\) 16.6798 39.6143i 0.805310 1.91260i
\(430\) 27.9190 + 20.7097i 1.34638 + 0.998708i
\(431\) 27.8893i 1.34338i −0.740832 0.671690i \(-0.765569\pi\)
0.740832 0.671690i \(-0.234431\pi\)
\(432\) 2.79119 + 7.08636i 0.134291 + 0.340943i
\(433\) 3.47350 0.166926 0.0834629 0.996511i \(-0.473402\pi\)
0.0834629 + 0.996511i \(0.473402\pi\)
\(434\) 0 0
\(435\) 4.44088 + 7.50940i 0.212924 + 0.360048i
\(436\) 35.4193 1.69628
\(437\) 6.10575i 0.292078i
\(438\) −11.6687 4.91315i −0.557550 0.234760i
\(439\) 3.94804i 0.188429i 0.995552 + 0.0942147i \(0.0300340\pi\)
−0.995552 + 0.0942147i \(0.969966\pi\)
\(440\) −13.3251 9.88423i −0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) −16.0308 −0.761646 −0.380823 0.924648i \(-0.624359\pi\)
−0.380823 + 0.924648i \(0.624359\pi\)
\(444\) 6.51692 15.4776i 0.309279 0.734533i
\(445\) 18.0054 24.2734i 0.853538 1.15067i
\(446\) −9.12747 −0.432198
\(447\) −7.27218 + 17.2713i −0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i 0.867241 + 0.497889i \(0.165891\pi\)
−0.867241 + 0.497889i \(0.834109\pi\)
\(450\) 15.9643 29.0367i 0.752564 1.36881i
\(451\) 13.4010i 0.631026i
\(452\) 58.9213 2.77143
\(453\) 13.2430 + 5.57605i 0.622212 + 0.261986i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 6.31429i 0.124503 0.295694i
\(457\) 9.60675i 0.449385i −0.974430 0.224692i \(-0.927862\pi\)
0.974430 0.224692i \(-0.0721378\pi\)
\(458\) 23.0872i 1.07879i
\(459\) 14.2162 5.59952i 0.663557 0.261363i
\(460\) −11.5120 + 15.5195i −0.536751 + 0.723603i
\(461\) −24.5367 −1.14279 −0.571393 0.820676i \(-0.693597\pi\)
−0.571393 + 0.820676i \(0.693597\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) 3.30173i 0.153279i
\(465\) 13.1400 + 22.2193i 0.609352 + 1.03039i
\(466\) −8.61854 −0.399246
\(467\) 17.9185i 0.829170i −0.910010 0.414585i \(-0.863927\pi\)
0.910010 0.414585i \(-0.136073\pi\)
\(468\) 39.2549 + 40.1805i 1.81456 + 1.85735i
\(469\) 0 0
\(470\) 19.8872 + 14.7519i 0.917330 + 0.680452i
\(471\) 8.63904 + 3.63752i 0.398066 + 0.167608i
\(472\) −15.4154 −0.709552
\(473\) 26.8607 1.23506
\(474\) 20.6284 + 8.68572i 0.947496 + 0.398949i
\(475\) 9.73665 2.95187i 0.446748 0.135441i
\(476\) 0 0
\(477\) 4.05503 + 4.15064i 0.185667 + 0.190045i
\(478\) 52.5477i 2.40347i
\(479\) −2.96497 −0.135473 −0.0677364 0.997703i \(-0.521578\pi\)
−0.0677364 + 0.997703i \(0.521578\pi\)
\(480\) −23.7548 + 14.0480i −1.08425 + 0.641201i
\(481\) 21.8886i 0.998034i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) −5.95064 + 8.02215i −0.270204 + 0.364267i
\(486\) 14.0991 31.4173i 0.639547 1.42512i
\(487\) 33.2558i 1.50696i −0.657469 0.753482i \(-0.728373\pi\)
0.657469 0.753482i \(-0.271627\pi\)
\(488\) 26.5632i 1.20246i
\(489\) −11.5318 + 27.3879i −0.521487 + 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i −0.818043 0.575157i \(-0.804941\pi\)
0.818043 0.575157i \(-0.195059\pi\)
\(492\) −16.1410 6.79624i −0.727691 0.306398i
\(493\) −6.62373 −0.298318
\(494\) 29.2255i 1.31492i
\(495\) −3.45957 25.3698i −0.155496 1.14029i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) −3.95447 + 9.39179i −0.177204 + 0.420856i
\(499\) −33.6716 −1.50735 −0.753673 0.657249i \(-0.771720\pi\)
−0.753673 + 0.657249i \(0.771720\pi\)
\(500\) 30.3141 + 10.8548i 1.35569 + 0.485442i
\(501\) −6.45648 + 15.3340i −0.288454 + 0.685074i
\(502\) 20.1632 0.899926
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) 25.3003i 1.12474i
\(507\) −46.7257 19.6741i −2.07516 0.873758i
\(508\) 1.72028i 0.0763252i
\(509\) −23.1829 −1.02756 −0.513782 0.857921i \(-0.671756\pi\)
−0.513782 + 0.857921i \(0.671756\pi\)
\(510\) 12.8061 + 21.6547i 0.567062 + 0.958884i
\(511\) 0 0
\(512\) 16.1430 0.713426
\(513\) 9.83779 3.87493i 0.434349 0.171082i
\(514\) 14.7705i 0.651497i
\(515\) −1.76170 + 2.37498i −0.0776299 + 0.104654i
\(516\) −13.6223 + 32.3528i −0.599689 + 1.42425i
\(517\) 19.1334 0.841484
\(518\) 0 0
\(519\) 6.83735 16.2386i 0.300126 0.712795i
\(520\) −16.8365 + 22.6976i −0.738329 + 0.995354i
\(521\) 14.3752 0.629791 0.314895 0.949126i \(-0.398031\pi\)
0.314895 + 0.949126i \(0.398031\pi\)
\(522\) −10.6782 + 10.4322i −0.467373 + 0.456606i
\(523\) 25.2484 1.10404 0.552018 0.833832i \(-0.313858\pi\)
0.552018 + 0.833832i \(0.313858\pi\)
\(524\) 16.7378 0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) −19.5987 −0.853734
\(528\) −3.76037 + 8.93080i −0.163649 + 0.388663i
\(529\) −13.9965 −0.608543
\(530\) −5.69213 + 7.67366i −0.247250 + 0.333322i
\(531\) −16.6253 17.0173i −0.721477 0.738489i
\(532\) 0 0
\(533\) 22.8268 0.988737
\(534\) 47.6619 + 20.0683i 2.06253 + 0.868441i
\(535\) 4.42871 5.97042i 0.191470 0.258124i
\(536\) 20.9674i 0.905652i
\(537\) −15.8991 + 37.7601i −0.686097 + 1.62947i
\(538\) 41.9896 1.81030
\(539\) 0 0
\(540\) 32.3115 + 8.69928i 1.39047 + 0.374357i
\(541\) 15.7795 0.678412 0.339206 0.940712i \(-0.389842\pi\)
0.339206 + 0.940712i \(0.389842\pi\)
\(542\) 26.1742i 1.12428i
\(543\) −10.5076 + 24.9553i −0.450922 + 1.07093i
\(544\) 20.9531i 0.898357i
\(545\) −16.3837 + 22.0872i −0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) −3.14978 −0.134552
\(549\) 29.3236 28.6481i 1.25150 1.22267i
\(550\) 40.3456 12.2316i 1.72034 0.521558i
\(551\) −4.58370 −0.195272
\(552\) −9.31100 3.92045i −0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 6.63718 + 11.2233i 0.281733 + 0.476401i
\(556\) 21.1956i 0.898893i
\(557\) 28.9351 1.22602 0.613011 0.790075i \(-0.289958\pi\)
0.613011 + 0.790075i \(0.289958\pi\)
\(558\) −31.5954 + 30.8675i −1.33754 + 1.30673i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 + 7.54382i 0.756433 + 0.318500i
\(562\) 22.3283i 0.941862i
\(563\) 6.22808i 0.262482i −0.991350 0.131241i \(-0.958104\pi\)
0.991350 0.131241i \(-0.0418962\pi\)
\(564\) −9.70342 + 23.0454i −0.408588 + 0.970388i
\(565\) −27.2549 + 36.7428i −1.14662 + 1.54578i
\(566\) 13.2589 0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 9.89419i 0.414786i 0.978258 + 0.207393i \(0.0664979\pi\)
−0.978258 + 0.207393i \(0.933502\pi\)
\(570\) 8.86194 + 14.9853i 0.371186 + 0.627664i
\(571\) 19.2094 0.803890 0.401945 0.915664i \(-0.368334\pi\)
0.401945 + 0.915664i \(0.368334\pi\)
\(572\) 71.4693i 2.98828i
\(573\) 7.24509 17.2070i 0.302668 0.718831i
\(574\) 0 0
\(575\) −4.35281 14.3576i −0.181525 0.598753i
\(576\) −26.8549 27.4881i −1.11895 1.14534i
\(577\) −38.0753 −1.58510 −0.792549 0.609809i \(-0.791246\pi\)
−0.792549 + 0.609809i \(0.791246\pi\)
\(578\) 18.4534 0.767560
\(579\) 1.24091 2.94713i 0.0515704 0.122479i
\(580\) −11.6508 8.64228i −0.483773 0.358851i
\(581\) 0 0
\(582\) −15.7519 6.63241i −0.652935 0.274922i
\(583\) 7.38277i 0.305763i
\(584\) 6.43228 0.266170
\(585\) −43.2142 + 5.89293i −1.78669 + 0.243643i
\(586\) 7.85033i 0.324294i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) 23.3373 31.4614i 0.960782 1.29525i
\(591\) 12.9292 + 5.44393i 0.531838 + 0.223933i
\(592\) 4.93465i 0.202813i
\(593\) 16.8579i 0.692272i −0.938184 0.346136i \(-0.887494\pi\)
0.938184 0.346136i \(-0.112506\pi\)
\(594\) 40.7647 16.0565i 1.67260 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) −6.79044 + 16.1272i −0.277914 + 0.660041i
\(598\) 43.0958 1.76232
\(599\) 13.5950i 0.555477i −0.960657 0.277739i \(-0.910415\pi\)
0.960657 0.277739i \(-0.0895849\pi\)
\(600\) −1.75035 + 16.7433i −0.0714577 + 0.683544i
\(601\) 46.2155i 1.88517i 0.333966 + 0.942585i \(0.391613\pi\)
−0.333966 + 0.942585i \(0.608387\pi\)
\(602\) 0 0
\(603\) 23.1462 22.6130i 0.942588 0.920874i
\(604\) −23.8921 −0.972156
\(605\) 4.75426 6.40930i 0.193288 0.260575i
\(606\) −31.2805 13.1708i −1.27068 0.535029i
\(607\) 8.74327 0.354878 0.177439 0.984132i \(-0.443219\pi\)
0.177439 + 0.984132i \(0.443219\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) 32.5912i 1.31850i
\(612\) −18.1725 + 17.7539i −0.734581 + 0.717658i
\(613\) 24.3570i 0.983771i −0.870660 0.491885i \(-0.836308\pi\)
0.870660 0.491885i \(-0.163692\pi\)
\(614\) −64.1391 −2.58845
\(615\) 11.7043 6.92167i 0.471964 0.279109i
\(616\) 0 0
\(617\) −25.3125 −1.01904 −0.509522 0.860458i \(-0.670178\pi\)
−0.509522 + 0.860458i \(0.670178\pi\)
\(618\) −4.66338 1.96354i −0.187589 0.0789853i
\(619\) 30.2552i 1.21606i 0.793915 + 0.608029i \(0.208040\pi\)
−0.793915 + 0.608029i \(0.791960\pi\)
\(620\) −34.4731 25.5713i −1.38447 1.02697i
\(621\) −5.71394 14.5067i −0.229293 0.582135i
\(622\) −19.0958 −0.765673
\(623\) 0 0
\(624\) 15.2125 + 6.40529i 0.608986 + 0.256417i
\(625\) −20.7912 + 13.8826i −0.831648 + 0.555303i
\(626\) 23.9731 0.958157
\(627\) 12.3984 + 5.22041i 0.495143 + 0.208483i
\(628\) −15.5859 −0.621946
\(629\) −9.89959 −0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) −11.3713 −0.452326
\(633\) −17.0516 7.17967i −0.677740 0.285366i
\(634\) −20.6347 −0.819507
\(635\) 1.07275 + 0.795743i 0.0425710 + 0.0315781i
\(636\) −8.89228 3.74415i −0.352602 0.148465i
\(637\) 0 0
\(638\) −18.9934 −0.751956
\(639\) −23.5889 + 23.0454i −0.933161 + 0.911664i
\(640\) 18.7115 25.2253i 0.739637 0.997118i
\(641\) 0.128699i 0.00508330i 0.999997 + 0.00254165i \(0.000809034\pi\)
−0.999997 + 0.00254165i \(0.999191\pi\)
\(642\) 11.7232 + 4.93612i 0.462677 + 0.194813i
\(643\) 0.150563 0.00593763 0.00296881 0.999996i \(-0.499055\pi\)
0.00296881 + 0.999996i \(0.499055\pi\)
\(644\) 0 0
\(645\) −13.8737 23.4600i −0.546277 0.923737i
\(646\) −13.2179 −0.520051
\(647\) 41.3552i 1.62584i 0.582375 + 0.812920i \(0.302124\pi\)
−0.582375 + 0.812920i \(0.697876\pi\)
\(648\) −0.407664 + 17.4903i −0.0160146 + 0.687082i
\(649\) 30.2688i 1.18816i
\(650\) −20.8350 68.7235i −0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) −29.4608 −1.15289 −0.576446 0.817136i \(-0.695561\pi\)
−0.576446 + 0.817136i \(0.695561\pi\)
\(654\) −43.3692 18.2608i −1.69587 0.714056i
\(655\) −7.74233 + 10.4376i −0.302518 + 0.407830i
\(656\) −5.14615 −0.200924
\(657\) 6.93713 + 7.10071i 0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i −0.899165 0.437610i \(-0.855825\pi\)
0.899165 0.437610i \(-0.144175\pi\)
\(660\) 21.6713 + 36.6456i 0.843556 + 1.42643i
\(661\) 23.4594i 0.912465i 0.889861 + 0.456233i \(0.150802\pi\)
−0.889861 + 0.456233i \(0.849198\pi\)
\(662\) 6.42656 0.249776
\(663\) 12.8499 30.5183i 0.499049 1.18523i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 + 15.5916i −0.618409 + 0.604163i
\(667\) 6.75909i 0.261713i
\(668\) 27.6646i 1.07037i
\(669\) 6.59571 + 2.77716i 0.255005 + 0.107371i
\(670\) 42.7925 + 31.7424i 1.65322 + 1.22632i
\(671\) 52.1580 2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) 33.7788i 1.30111i
\(675\) −20.3710 + 16.1252i −0.784080 + 0.620660i
\(676\) 84.2991 3.24227
\(677\) 45.7011i 1.75643i −0.478262 0.878217i \(-0.658733\pi\)
0.478262 0.878217i \(-0.341267\pi\)
\(678\) −72.1462 30.3776i −2.77076 1.16664i
\(679\) 0 0
\(680\) −10.2655 7.61467i −0.393663 0.292009i
\(681\) 4.82303 11.4546i 0.184819 0.438942i
\(682\) −56.1989 −2.15197
\(683\) −38.6888 −1.48038 −0.740192 0.672395i \(-0.765266\pi\)
−0.740192 + 0.672395i \(0.765266\pi\)
\(684\) −12.5756 + 12.2859i −0.480839 + 0.469763i
\(685\) 1.45698 1.96418i 0.0556682 0.0750473i
\(686\) 0 0
\(687\) 7.02460 16.6833i 0.268005 0.636508i
\(688\) 10.3149i 0.393252i
\(689\) 12.5756 0.479092
\(690\) 22.0972 13.0678i 0.841225 0.497481i
\(691\) 19.2567i 0.732559i −0.930505 0.366279i \(-0.880631\pi\)
0.930505 0.366279i \(-0.119369\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) −13.2174 9.80433i −0.501364 0.371899i
\(696\) 2.94315 6.98994i 0.111560 0.264953i
\(697\) 10.3239i 0.391046i
\(698\) 18.2253i 0.689838i
\(699\) 6.22794 + 2.62231i 0.235562 + 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i −0.991823 0.127619i \(-0.959267\pi\)
0.991823 0.127619i \(-0.0407334\pi\)
\(702\) −27.3501 69.4373i −1.03226 2.62074i
\(703\) −6.85063 −0.258376
\(704\) 48.8933i 1.84273i
\(705\) −9.88249 16.7110i −0.372196 0.629372i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) 36.4577 + 15.3507i 1.37016 + 0.576916i
\(709\) 4.89171 0.183712 0.0918561 0.995772i \(-0.470720\pi\)
0.0918561 + 0.995772i \(0.470720\pi\)
\(710\) −43.6108 32.3494i −1.63668 1.21405i
\(711\) −12.2638 12.5530i −0.459929 0.470774i
\(712\) −26.2733 −0.984635
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) 68.1241i 2.54592i
\(717\) 15.9884 37.9721i 0.597096 1.41809i
\(718\) 15.7624i 0.588248i
\(719\) 38.0217 1.41797 0.708985 0.705224i \(-0.249154\pi\)
0.708985 + 0.705224i \(0.249154\pi\)
\(720\) 9.74237 1.32852i 0.363077 0.0495112i
\(721\) 0 0
\(722\) 32.8253 1.22163
\(723\) −8.92770 + 21.2031i −0.332025 + 0.788553i
\(724\) 45.0225i 1.67325i
\(725\) 10.7785 3.26773i 0.400304 0.121360i
\(726\) 12.5849 + 5.29896i 0.467071 + 0.196663i
\(727\) 18.6502 0.691699 0.345849 0.938290i \(-0.387591\pi\)
0.345849 + 0.938290i \(0.387591\pi\)
\(728\) 0 0
\(729\) −19.7475 + 18.4130i −0.731387 + 0.681962i
\(730\) −9.73780 + 13.1277i −0.360412 + 0.485878i
\(731\) 20.6931 0.765363
\(732\) −26.4517 + 62.8224i −0.977684 + 2.32198i
\(733\) 37.5933 1.38854 0.694271 0.719714i \(-0.255727\pi\)
0.694271 + 0.719714i \(0.255727\pi\)
\(734\) 53.8821 1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) 41.1703 1.51653
\(738\) 16.2599 + 16.6433i 0.598536 + 0.612649i
\(739\) −49.4378 −1.81860 −0.909300 0.416142i \(-0.863382\pi\)
−0.909300 + 0.416142i \(0.863382\pi\)
\(740\) −17.4129 12.9164i −0.640110 0.474818i
\(741\) 8.89228 21.1190i 0.326666 0.775826i
\(742\) 0 0
\(743\) −42.7477 −1.56826 −0.784131 0.620596i \(-0.786891\pi\)
−0.784131 + 0.620596i \(0.786891\pi\)
\(744\) 8.70839 20.6823i 0.319265 0.758249i
\(745\) 19.4309 + 14.4134i 0.711893 + 0.528065i
\(746\) 48.7202i 1.78377i
\(747\) 5.71517 5.58351i 0.209107 0.204290i
\(748\) −32.3236 −1.18187
\(749\) 0 0
\(750\) −31.5218 28.9200i −1.15101 1.05601i
\(751\) 5.59051 0.204001 0.102000 0.994784i \(-0.467476\pi\)
0.102000 + 0.994784i \(0.467476\pi\)
\(752\) 7.34748i 0.267935i
\(753\) −14.5703 6.13492i −0.530973 0.223569i
\(754\) 32.3528i 1.17822i
\(755\) 11.0517 14.8989i 0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) 2.55811 0.0929148
\(759\) 7.69798 18.2826i 0.279419 0.663615i
\(760\) −7.10382 5.26944i −0.257683 0.191143i
\(761\) 49.1430 1.78143 0.890716 0.454561i \(-0.150204\pi\)
0.890716 + 0.454561i \(0.150204\pi\)
\(762\) −0.886912 + 2.10640i −0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) −2.66521 19.5446i −0.0963608 0.706635i
\(766\) 4.70376i 0.169954i
\(767\) −51.5590 −1.86169
\(768\) 8.63447 + 3.63559i 0.311570 + 0.131188i
\(769\) 27.0203i 0.974376i 0.873297 + 0.487188i \(0.161977\pi\)
−0.873297 + 0.487188i \(0.838023\pi\)
\(770\) 0 0
\(771\) 4.49412 10.6735i 0.161852 0.384395i
\(772\) 5.31701i 0.191363i
\(773\) 52.9162i 1.90326i −0.307244 0.951631i \(-0.599407\pi\)
0.307244 0.951631i \(-0.400593\pi\)
\(774\) 33.3597 32.5912i 1.19909 1.17147i
\(775\) 31.8921 9.66877i 1.14560 0.347312i
\(776\) 8.68312 0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 7.14426i 0.255970i
\(780\) 62.4209 36.9143i 2.23503 1.32174i
\(781\) −41.9576 −1.50136
\(782\) 19.4910i 0.696997i
\(783\) 10.8905 4.28956i 0.389193 0.153296i
\(784\) 0 0
\(785\) 7.20950 9.71926i 0.257318 0.346895i
\(786\) −20.4946 8.62938i −0.731019 0.307800i
\(787\) 16.7576 0.597344 0.298672 0.954356i \(-0.403456\pi\)
0.298672 + 0.954356i \(0.403456\pi\)
\(788\) −23.3260 −0.830954
\(789\) −38.5165 16.2176i −1.37122 0.577361i
\(790\) 17.2150 23.2078i 0.612481 0.825697i
\(791\) 0 0
\(792\) −15.9218 + 15.5550i −0.565756 + 0.552723i
\(793\) 88.8443i 3.15495i
\(794\) −26.5437 −0.942002
\(795\) 6.44807 3.81324i 0.228690 0.135242i
\(796\) 29.0955i 1.03126i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) 10.3369 + 34.0960i 0.365466 + 1.20548i
\(801\) −28.3355 29.0036i −1.00118 1.02479i
\(802\) 68.1058i 2.40490i
\(803\) 12.6301i 0.445705i
\(804\) −20.8794 + 49.5882i −0.736359 + 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) −30.3426 12.7759i −1.06811 0.449734i
\(808\) 17.2432 0.606614
\(809\) 42.1009i 1.48019i 0.672503 + 0.740094i \(0.265219\pi\)
−0.672503 + 0.740094i \(0.734781\pi\)
\(810\) −35.0788 27.3104i −1.23254 0.959590i
\(811\) 1.35051i 0.0474227i 0.999719 + 0.0237113i \(0.00754826\pi\)
−0.999719 + 0.0237113i \(0.992452\pi\)
\(812\) 0 0
\(813\) −7.96388 + 18.9141i −0.279306 + 0.663346i
\(814\) −28.3868 −0.994958
\(815\) 30.8124 + 22.8559i 1.07931 + 0.800608i
\(816\) −2.89693 + 6.88016i −0.101413 + 0.240854i
\(817\) 14.3199 0.500989
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) 11.3444i 0.395923i −0.980210 0.197962i \(-0.936568\pi\)
0.980210 0.197962i \(-0.0634322\pi\)
\(822\) 3.85674 + 1.62390i 0.134519 + 0.0566402i
\(823\) 30.1779i 1.05193i −0.850505 0.525967i \(-0.823703\pi\)
0.850505 0.525967i \(-0.176297\pi\)
\(824\) 2.57066 0.0895533
\(825\) −32.8763 3.43689i −1.14460 0.119657i
\(826\) 0 0
\(827\) −34.7911 −1.20981 −0.604903 0.796299i \(-0.706788\pi\)
−0.604903 + 0.796299i \(0.706788\pi\)
\(828\) 18.1167 + 18.5439i 0.629598 + 0.644444i
\(829\) 4.04928i 0.140637i 0.997525 + 0.0703187i \(0.0224016\pi\)
−0.997525 + 0.0703187i \(0.977598\pi\)
\(830\) 10.5661 + 7.83769i 0.366756 + 0.272050i
\(831\) 11.1025 26.3682i 0.385140 0.914701i
\(832\) −83.2833 −2.88733
\(833\) 0 0
\(834\) 10.9276 25.9529i 0.378393 0.898676i
\(835\) 17.2514 + 12.7967i 0.597009 + 0.442846i
\(836\) −22.3683 −0.773622
\(837\) 32.2234 12.6922i 1.11380 0.438707i
\(838\) −43.2920 −1.49550
\(839\) −25.8653 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) −71.9692 −2.48022
\(843\) −6.79370 + 16.1349i −0.233987 + 0.555716i
\(844\) 30.7632 1.05891
\(845\) −38.9938 + 52.5682i −1.34143 + 1.80840i
\(846\) 23.7627 23.2153i 0.816978 0.798158i
\(847\) 0 0
\(848\) −2.83509 −0.0973573
\(849\) −9.58114 4.03420i −0.328824 0.138453i
\(850\) 31.0817 9.42307i 1.06609 0.323209i
\(851\) 10.1019i 0.346288i
\(852\) 21.2787 50.5364i 0.728995 1.73135i
\(853\) −37.5709 −1.28640 −0.643201 0.765697i \(-0.722394\pi\)
−0.643201 + 0.765697i \(0.722394\pi\)
\(854\) 0 0
\(855\) −1.84435 13.5250i −0.0630755 0.462547i
\(856\) −6.46234 −0.220878
\(857\) 22.9281i 0.783208i 0.920134 + 0.391604i \(0.128080\pi\)
−0.920134 + 0.391604i \(0.871920\pi\)
\(858\) 36.8468 87.5106i 1.25793 2.98756i
\(859\) 18.7653i 0.640263i 0.947373 + 0.320132i \(0.103727\pi\)
−0.947373 + 0.320132i \(0.896273\pi\)
\(860\) 36.3981 + 26.9992i 1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) 8.46172 0.288040 0.144020 0.989575i \(-0.453997\pi\)
0.144020 + 0.989575i \(0.453997\pi\)
\(864\) 13.5693 + 34.4502i 0.461638 + 1.17202i
\(865\) −18.2690 13.5515i −0.621166 0.460766i
\(866\) 7.67319 0.260746
\(867\) −13.3348 5.61470i −0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 9.81019 + 16.5887i 0.332597 + 0.562411i
\(871\) 70.1283i 2.37621i
\(872\) 23.9070 0.809594
\(873\) 9.36463 + 9.58544i 0.316945 + 0.324418i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 6.40529i −0.513981 0.216415i
\(877\) 3.78589i 0.127840i −0.997955 0.0639201i \(-0.979640\pi\)
0.997955 0.0639201i \(-0.0203603\pi\)
\(878\) 8.72146i 0.294335i
\(879\) 2.38857 5.67282i 0.0805646 0.191340i
\(880\) 10.0475 + 7.45299i 0.338701 + 0.251240i
\(881\) −54.6531 −1.84131 −0.920654 0.390379i \(-0.872344\pi\)
−0.920654 + 0.390379i \(0.872344\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) 55.0589i 1.85183i
\(885\) −26.4366 + 15.6340i −0.888658 + 0.525532i
\(886\) −35.4130 −1.18972
\(887\) 30.0235i 1.00809i 0.863677 + 0.504045i \(0.168155\pi\)
−0.863677 + 0.504045i \(0.831845\pi\)
\(888\) 4.39873 10.4469i 0.147612 0.350575i
\(889\) 0 0
\(890\) 39.7751 53.6215i 1.33326 1.79740i
\(891\) −34.3429 0.800467i −1.15053 0.0268166i
\(892\) −11.8995 −0.398425
\(893\) 10.2003 0.341340
\(894\) −16.0647 + 38.1534i −0.537284 + 1.27604i
\(895\) 42.4816 + 31.5118i 1.42000 + 1.05332i
\(896\) 0 0
\(897\) −31.1420 13.1125i −1.03980 0.437814i
\(898\) 46.6116i 1.55545i
\(899\) −15.0138 −0.500737
\(900\) 20.8127 37.8553i 0.693756 1.26184i
\(901\) 5.68758i 0.189481i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) 28.0756 + 20.8258i 0.933266 + 0.692274i
\(906\) 29.2547 + 12.3179i 0.971922 + 0.409233i
\(907\) 19.4331i 0.645264i 0.946524 + 0.322632i \(0.104568\pi\)
−0.946524 + 0.322632i \(0.895432\pi\)
\(908\) 20.6656i 0.685812i
\(909\) 18.5966 + 19.0351i 0.616809 + 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i 0.469982 + 0.882676i \(0.344261\pi\)
−0.469982 + 0.882676i \(0.655739\pi\)
\(912\) −2.00471 + 4.76115i −0.0663826 + 0.157657i
\(913\) 10.1656 0.336432
\(914\) 21.2219i 0.701959i
\(915\) −26.9399 45.5545i −0.890605 1.50599i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) 31.4046 12.3697i 1.03650 0.408261i
\(919\) 45.0127 1.48483 0.742416 0.669939i \(-0.233680\pi\)
0.742416 + 0.669939i \(0.233680\pi\)
\(920\) −7.77028 + 10.4752i −0.256178 + 0.345358i
\(921\) 46.3484 + 19.5152i 1.52723 + 0.643049i
\(922\) −54.2030 −1.78508
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) 32.2246i 1.05897i
\(927\) 2.77243 + 2.83780i 0.0910584 + 0.0932056i
\(928\) 16.0513i 0.526910i
\(929\) −42.6990 −1.40091 −0.700455 0.713696i \(-0.747020\pi\)
−0.700455 + 0.713696i \(0.747020\pi\)
\(930\) 29.0270 + 49.0838i 0.951834 + 1.60952i
\(931\) 0 0
\(932\) −11.2360 −0.368048
\(933\) 13.7991 + 5.81018i 0.451761 + 0.190217i
\(934\) 39.5832i 1.29520i
\(935\) 14.9517 20.1567i 0.488974 0.659195i
\(936\) 26.4959 + 27.1207i 0.866046 + 0.886467i
\(937\) 26.4685 0.864688 0.432344 0.901709i \(-0.357687\pi\)
0.432344 + 0.901709i \(0.357687\pi\)
\(938\) 0 0
\(939\) −17.3235 7.29415i −0.565330 0.238036i
\(940\) 25.9270 + 19.2320i 0.845646 + 0.627280i
\(941\) 31.7091 1.03369 0.516843 0.856080i \(-0.327107\pi\)
0.516843 + 0.856080i \(0.327107\pi\)
\(942\) 19.0842 + 8.03550i 0.621796 + 0.261811i
\(943\) 10.5349 0.343063
\(944\) 11.6237 0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) 11.9455 0.388177 0.194089 0.980984i \(-0.437825\pi\)
0.194089 + 0.980984i \(0.437825\pi\)
\(948\) 26.8933 + 11.3236i 0.873455 + 0.367773i
\(949\) 21.5137 0.698363
\(950\) 21.5089 6.52087i 0.697840 0.211565i
\(951\) 14.9111 + 6.27839i 0.483524 + 0.203591i
\(952\) 0 0
\(953\) −1.76384 −0.0571364 −0.0285682 0.999592i \(-0.509095\pi\)
−0.0285682 + 0.999592i \(0.509095\pi\)
\(954\) 8.95781 + 9.16903i 0.290020 + 0.296858i
\(955\) −19.3585 14.3597i −0.626426 0.464668i
\(956\) 68.5065i 2.21566i
\(957\) 13.7250 + 5.77901i 0.443668 + 0.186809i
\(958\) −6.54980 −0.211614
\(959\) 0 0
\(960\) −42.7031 + 25.2536i −1.37824 + 0.815058i
\(961\) −13.4237 −0.433023
\(962\) 48.3533i 1.55897i
\(963\) −6.96955 7.13389i −0.224591 0.229886i
\(964\) 38.2532i 1.23205i
\(965\) −3.31564 2.45946i −0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) −6.93738 −0.222976
\(969\) 9.55154 + 4.02173i 0.306840 + 0.129197i
\(970\) −13.1453 + 17.7214i −0.422071 + 0.569001i
\(971\) 47.9153 1.53768 0.768838 0.639444i \(-0.220835\pi\)
0.768838 + 0.639444i \(0.220835\pi\)
\(972\) 18.3810 40.9588i 0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) −5.85428 + 56.0004i −0.187487 + 1.79345i
\(976\) 20.0294i 0.641125i
\(977\) −8.14823 −0.260685 −0.130342 0.991469i \(-0.541608\pi\)
−0.130342 + 0.991469i \(0.541608\pi\)
\(978\) −25.4745 + 60.5016i −0.814586 + 1.93463i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 + 26.3914i 0.823201 + 0.842612i
\(982\) 56.3073i 1.79684i
\(983\) 14.6023i 0.465742i −0.972508 0.232871i \(-0.925188\pi\)
0.972508 0.232871i \(-0.0748120\pi\)
\(984\) −10.8947 4.58727i −0.347310 0.146237i
\(985\) 10.7898 14.5459i 0.343791 0.463471i
\(986\) −14.6322 −0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) 21.1160i 0.671449i
\(990\) −7.64242 56.0435i −0.242892 1.78118i
\(991\) 15.6824 0.498166 0.249083 0.968482i \(-0.419871\pi\)
0.249083 + 0.968482i \(0.419871\pi\)
\(992\) 47.4936i 1.50792i
\(993\) −4.64398 1.95537i −0.147372 0.0620519i
\(994\) 0 0
\(995\) 18.1437 + 13.4585i 0.575194 + 0.426664i
\(996\) −5.15544 + 12.2441i −0.163357 + 0.387969i
\(997\) −27.0422 −0.856436 −0.428218 0.903676i \(-0.640858\pi\)
−0.428218 + 0.903676i \(0.640858\pi\)
\(998\) −74.3826 −2.35454
\(999\) 16.2765 6.41102i 0.514965 0.202836i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.g.c.734.29 yes 32
3.2 odd 2 inner 735.2.g.c.734.2 yes 32
5.4 even 2 inner 735.2.g.c.734.4 yes 32
7.2 even 3 735.2.p.g.374.4 64
7.3 odd 6 735.2.p.g.509.2 64
7.4 even 3 735.2.p.g.509.3 64
7.5 odd 6 735.2.p.g.374.1 64
7.6 odd 2 inner 735.2.g.c.734.32 yes 32
15.14 odd 2 inner 735.2.g.c.734.31 yes 32
21.2 odd 6 735.2.p.g.374.31 64
21.5 even 6 735.2.p.g.374.30 64
21.11 odd 6 735.2.p.g.509.32 64
21.17 even 6 735.2.p.g.509.29 64
21.20 even 2 inner 735.2.g.c.734.3 yes 32
35.4 even 6 735.2.p.g.509.30 64
35.9 even 6 735.2.p.g.374.29 64
35.19 odd 6 735.2.p.g.374.32 64
35.24 odd 6 735.2.p.g.509.31 64
35.34 odd 2 inner 735.2.g.c.734.1 32
105.44 odd 6 735.2.p.g.374.2 64
105.59 even 6 735.2.p.g.509.4 64
105.74 odd 6 735.2.p.g.509.1 64
105.89 even 6 735.2.p.g.374.3 64
105.104 even 2 inner 735.2.g.c.734.30 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 35.34 odd 2 inner
735.2.g.c.734.2 yes 32 3.2 odd 2 inner
735.2.g.c.734.3 yes 32 21.20 even 2 inner
735.2.g.c.734.4 yes 32 5.4 even 2 inner
735.2.g.c.734.29 yes 32 1.1 even 1 trivial
735.2.g.c.734.30 yes 32 105.104 even 2 inner
735.2.g.c.734.31 yes 32 15.14 odd 2 inner
735.2.g.c.734.32 yes 32 7.6 odd 2 inner
735.2.p.g.374.1 64 7.5 odd 6
735.2.p.g.374.2 64 105.44 odd 6
735.2.p.g.374.3 64 105.89 even 6
735.2.p.g.374.4 64 7.2 even 3
735.2.p.g.374.29 64 35.9 even 6
735.2.p.g.374.30 64 21.5 even 6
735.2.p.g.374.31 64 21.2 odd 6
735.2.p.g.374.32 64 35.19 odd 6
735.2.p.g.509.1 64 105.74 odd 6
735.2.p.g.509.2 64 7.3 odd 6
735.2.p.g.509.3 64 7.4 even 3
735.2.p.g.509.4 64 105.59 even 6
735.2.p.g.509.29 64 21.17 even 6
735.2.p.g.509.30 64 35.4 even 6
735.2.p.g.509.31 64 35.24 odd 6
735.2.p.g.509.32 64 21.11 odd 6