Properties

Label 735.2.p.g.509.29
Level $735$
Weight $2$
Character 735.509
Analytic conductor $5.869$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(374,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.374");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 509.29
Character \(\chi\) \(=\) 735.509
Dual form 735.2.p.g.374.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10453 - 1.91310i) q^{2} +(-1.38025 - 1.04638i) q^{3} +(-1.43998 - 2.49412i) q^{4} +(-0.889228 - 2.05165i) q^{5} +(-3.52637 + 1.48480i) q^{6} -1.94389 q^{8} +(0.810168 + 2.88853i) q^{9} +(-4.90720 - 0.564929i) q^{10} +(-3.30554 + 1.90846i) q^{11} +(-0.622272 + 4.94927i) q^{12} -6.50161 q^{13} +(-0.919457 + 3.76226i) q^{15} +(0.732874 - 1.26937i) q^{16} +(2.54654 - 1.47025i) q^{17} +(6.42092 + 1.64054i) q^{18} +(1.76224 + 1.01743i) q^{19} +(-3.83659 + 5.17218i) q^{20} +8.43180i q^{22} +(1.50029 - 2.59858i) q^{23} +(2.68305 + 2.03405i) q^{24} +(-3.41855 + 3.64877i) q^{25} +(-7.18123 + 12.4383i) q^{26} +(1.90428 - 4.83464i) q^{27} -2.25259i q^{29} +(6.18203 + 5.91455i) q^{30} +(-5.77216 + 3.33256i) q^{31} +(-3.56285 - 6.17104i) q^{32} +(6.55944 + 0.824719i) q^{33} -6.49574i q^{34} +(6.03772 - 6.18009i) q^{36} +(-2.91560 - 1.68332i) q^{37} +(3.89289 - 2.24756i) q^{38} +(8.97383 + 6.80317i) q^{39} +(1.72856 + 3.98818i) q^{40} +3.51094 q^{41} -7.03729i q^{43} +(9.51983 + 5.49628i) q^{44} +(5.20584 - 4.23075i) q^{45} +(-3.31424 - 5.74043i) q^{46} +(4.34120 + 2.50639i) q^{47} +(-2.33980 + 0.985185i) q^{48} +(3.20459 + 10.5702i) q^{50} +(-5.05330 - 0.635352i) q^{51} +(9.36219 + 16.2158i) q^{52} +(0.967113 + 1.67509i) q^{53} +(-7.14584 - 8.98309i) q^{54} +(6.85487 + 5.08477i) q^{55} +(-1.36770 - 3.24827i) q^{57} +(-4.30944 - 2.48806i) q^{58} +(3.96509 + 6.86774i) q^{59} +(10.7075 - 3.12434i) q^{60} +(-11.8342 - 6.83249i) q^{61} +14.7237i q^{62} -12.8096 q^{64} +(5.78141 + 13.3390i) q^{65} +(8.82289 - 11.6380i) q^{66} +(-9.34121 + 5.39315i) q^{67} +(-7.33395 - 4.23426i) q^{68} +(-4.78988 + 2.01681i) q^{69} -10.9926i q^{71} +(-1.57488 - 5.61499i) q^{72} +(1.65449 + 2.86566i) q^{73} +(-6.44074 + 3.71856i) q^{74} +(8.53645 - 1.45910i) q^{75} -5.86030i q^{76} +(22.9271 - 9.65357i) q^{78} +(2.92489 - 5.06605i) q^{79} +(-3.25601 - 0.374839i) q^{80} +(-7.68725 + 4.68040i) q^{81} +(3.87795 - 6.71680i) q^{82} -2.66330i q^{83} +(-5.28089 - 3.91724i) q^{85} +(-13.4631 - 7.77291i) q^{86} +(-2.35707 + 3.10913i) q^{87} +(6.42561 - 3.70983i) q^{88} +(6.75793 - 11.7051i) q^{89} +(-2.34385 - 14.6323i) q^{90} -8.64156 q^{92} +(11.4541 + 1.44013i) q^{93} +(9.58999 - 5.53678i) q^{94} +(0.520378 - 4.52022i) q^{95} +(-1.53965 + 12.2457i) q^{96} -4.46688 q^{97} +(-8.19069 - 8.00200i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 16 q^{4} - 40 q^{9} + 32 q^{15} + 16 q^{16} - 64 q^{25} - 56 q^{30} - 32 q^{36} + 56 q^{39} + 32 q^{46} + 40 q^{51} - 8 q^{60} - 352 q^{64} - 48 q^{79} + 40 q^{81} - 128 q^{85} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10453 1.91310i 0.781022 1.35277i −0.150325 0.988637i \(-0.548032\pi\)
0.931347 0.364133i \(-0.118635\pi\)
\(3\) −1.38025 1.04638i −0.796886 0.604129i
\(4\) −1.43998 2.49412i −0.719990 1.24706i
\(5\) −0.889228 2.05165i −0.397675 0.917526i
\(6\) −3.52637 + 1.48480i −1.43963 + 0.606166i
\(7\) 0 0
\(8\) −1.94389 −0.687269
\(9\) 0.810168 + 2.88853i 0.270056 + 0.962845i
\(10\) −4.90720 0.564929i −1.55179 0.178646i
\(11\) −3.30554 + 1.90846i −0.996659 + 0.575421i −0.907258 0.420575i \(-0.861828\pi\)
−0.0894006 + 0.995996i \(0.528495\pi\)
\(12\) −0.622272 + 4.94927i −0.179635 + 1.42873i
\(13\) −6.50161 −1.80322 −0.901611 0.432548i \(-0.857615\pi\)
−0.901611 + 0.432548i \(0.857615\pi\)
\(14\) 0 0
\(15\) −0.919457 + 3.76226i −0.237403 + 0.971411i
\(16\) 0.732874 1.26937i 0.183218 0.317344i
\(17\) 2.54654 1.47025i 0.617628 0.356587i −0.158317 0.987388i \(-0.550607\pi\)
0.775945 + 0.630801i \(0.217274\pi\)
\(18\) 6.42092 + 1.64054i 1.51343 + 0.386679i
\(19\) 1.76224 + 1.01743i 0.404285 + 0.233414i 0.688331 0.725397i \(-0.258344\pi\)
−0.284046 + 0.958811i \(0.591677\pi\)
\(20\) −3.83659 + 5.17218i −0.857888 + 1.15653i
\(21\) 0 0
\(22\) 8.43180i 1.79767i
\(23\) 1.50029 2.59858i 0.312832 0.541842i −0.666142 0.745825i \(-0.732056\pi\)
0.978974 + 0.203983i \(0.0653888\pi\)
\(24\) 2.68305 + 2.03405i 0.547675 + 0.415199i
\(25\) −3.41855 + 3.64877i −0.683710 + 0.729754i
\(26\) −7.18123 + 12.4383i −1.40836 + 2.43934i
\(27\) 1.90428 4.83464i 0.366478 0.930427i
\(28\) 0 0
\(29\) 2.25259i 0.418296i −0.977884 0.209148i \(-0.932931\pi\)
0.977884 0.209148i \(-0.0670690\pi\)
\(30\) 6.18203 + 5.91455i 1.12868 + 1.07984i
\(31\) −5.77216 + 3.33256i −1.03671 + 0.598545i −0.918900 0.394491i \(-0.870921\pi\)
−0.117810 + 0.993036i \(0.537587\pi\)
\(32\) −3.56285 6.17104i −0.629829 1.09090i
\(33\) 6.55944 + 0.824719i 1.14185 + 0.143565i
\(34\) 6.49574i 1.11401i
\(35\) 0 0
\(36\) 6.03772 6.18009i 1.00629 1.03001i
\(37\) −2.91560 1.68332i −0.479321 0.276736i 0.240812 0.970572i \(-0.422586\pi\)
−0.720134 + 0.693835i \(0.755919\pi\)
\(38\) 3.89289 2.24756i 0.631510 0.364603i
\(39\) 8.97383 + 6.80317i 1.43696 + 1.08938i
\(40\) 1.72856 + 3.98818i 0.273309 + 0.630587i
\(41\) 3.51094 0.548317 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(42\) 0 0
\(43\) 7.03729i 1.07318i −0.843844 0.536588i \(-0.819713\pi\)
0.843844 0.536588i \(-0.180287\pi\)
\(44\) 9.51983 + 5.49628i 1.43517 + 0.828595i
\(45\) 5.20584 4.23075i 0.776041 0.630683i
\(46\) −3.31424 5.74043i −0.488658 0.846380i
\(47\) 4.34120 + 2.50639i 0.633229 + 0.365595i 0.782002 0.623276i \(-0.214199\pi\)
−0.148772 + 0.988871i \(0.547532\pi\)
\(48\) −2.33980 + 0.985185i −0.337721 + 0.142199i
\(49\) 0 0
\(50\) 3.20459 + 10.5702i 0.453197 + 1.49486i
\(51\) −5.05330 0.635352i −0.707604 0.0889671i
\(52\) 9.36219 + 16.2158i 1.29830 + 2.24873i
\(53\) 0.967113 + 1.67509i 0.132843 + 0.230091i 0.924771 0.380523i \(-0.124256\pi\)
−0.791928 + 0.610614i \(0.790923\pi\)
\(54\) −7.14584 8.98309i −0.972425 1.22244i
\(55\) 6.85487 + 5.08477i 0.924310 + 0.685630i
\(56\) 0 0
\(57\) −1.36770 3.24827i −0.181157 0.430244i
\(58\) −4.30944 2.48806i −0.565858 0.326698i
\(59\) 3.96509 + 6.86774i 0.516211 + 0.894104i 0.999823 + 0.0188214i \(0.00599139\pi\)
−0.483612 + 0.875283i \(0.660675\pi\)
\(60\) 10.7075 3.12434i 1.38234 0.403351i
\(61\) −11.8342 6.83249i −1.51522 0.874810i −0.999841 0.0178455i \(-0.994319\pi\)
−0.515375 0.856965i \(-0.672347\pi\)
\(62\) 14.7237i 1.86991i
\(63\) 0 0
\(64\) −12.8096 −1.60121
\(65\) 5.78141 + 13.3390i 0.717096 + 1.65450i
\(66\) 8.82289 11.6380i 1.08602 1.43254i
\(67\) −9.34121 + 5.39315i −1.14121 + 0.658878i −0.946730 0.322029i \(-0.895635\pi\)
−0.194480 + 0.980906i \(0.562302\pi\)
\(68\) −7.33395 4.23426i −0.889372 0.513479i
\(69\) −4.78988 + 2.01681i −0.576634 + 0.242795i
\(70\) 0 0
\(71\) 10.9926i 1.30458i −0.757971 0.652288i \(-0.773809\pi\)
0.757971 0.652288i \(-0.226191\pi\)
\(72\) −1.57488 5.61499i −0.185601 0.661733i
\(73\) 1.65449 + 2.86566i 0.193643 + 0.335400i 0.946455 0.322836i \(-0.104636\pi\)
−0.752812 + 0.658236i \(0.771303\pi\)
\(74\) −6.44074 + 3.71856i −0.748721 + 0.432274i
\(75\) 8.53645 1.45910i 0.985705 0.168482i
\(76\) 5.86030i 0.672223i
\(77\) 0 0
\(78\) 22.9271 9.65357i 2.59598 1.09305i
\(79\) 2.92489 5.06605i 0.329075 0.569975i −0.653253 0.757140i \(-0.726596\pi\)
0.982329 + 0.187164i \(0.0599296\pi\)
\(80\) −3.25601 0.374839i −0.364032 0.0419082i
\(81\) −7.68725 + 4.68040i −0.854139 + 0.520044i
\(82\) 3.87795 6.71680i 0.428248 0.741746i
\(83\) 2.66330i 0.292336i −0.989260 0.146168i \(-0.953306\pi\)
0.989260 0.146168i \(-0.0466939\pi\)
\(84\) 0 0
\(85\) −5.28089 3.91724i −0.572793 0.424884i
\(86\) −13.4631 7.77291i −1.45176 0.838175i
\(87\) −2.35707 + 3.10913i −0.252705 + 0.333334i
\(88\) 6.42561 3.70983i 0.684972 0.395469i
\(89\) 6.75793 11.7051i 0.716339 1.24074i −0.246101 0.969244i \(-0.579150\pi\)
0.962441 0.271492i \(-0.0875170\pi\)
\(90\) −2.34385 14.6323i −0.247063 1.54238i
\(91\) 0 0
\(92\) −8.64156 −0.900945
\(93\) 11.4541 + 1.44013i 1.18774 + 0.149334i
\(94\) 9.58999 5.53678i 0.989132 0.571075i
\(95\) 0.520378 4.52022i 0.0533896 0.463765i
\(96\) −1.53965 + 12.2457i −0.157140 + 1.24982i
\(97\) −4.46688 −0.453543 −0.226771 0.973948i \(-0.572817\pi\)
−0.226771 + 0.973948i \(0.572817\pi\)
\(98\) 0 0
\(99\) −8.19069 8.00200i −0.823195 0.804231i
\(100\) 14.0231 + 3.27211i 1.40231 + 0.327211i
\(101\) −4.43523 7.68205i −0.441322 0.764392i 0.556466 0.830871i \(-0.312157\pi\)
−0.997788 + 0.0664781i \(0.978824\pi\)
\(102\) −6.79703 + 8.96573i −0.673006 + 0.887740i
\(103\) 0.661216 1.14526i 0.0651516 0.112846i −0.831610 0.555361i \(-0.812580\pi\)
0.896761 + 0.442515i \(0.145914\pi\)
\(104\) 12.6384 1.23930
\(105\) 0 0
\(106\) 4.27283 0.415014
\(107\) −1.66222 + 2.87905i −0.160693 + 0.278328i −0.935117 0.354338i \(-0.884706\pi\)
0.774425 + 0.632666i \(0.218040\pi\)
\(108\) −14.8003 + 2.21229i −1.42416 + 0.212878i
\(109\) −6.14927 10.6509i −0.588994 1.02017i −0.994365 0.106015i \(-0.966191\pi\)
0.405371 0.914152i \(-0.367142\pi\)
\(110\) 17.2991 7.49779i 1.64941 0.714886i
\(111\) 2.26285 + 5.37423i 0.214780 + 0.510099i
\(112\) 0 0
\(113\) −20.4591 −1.92463 −0.962314 0.271941i \(-0.912334\pi\)
−0.962314 + 0.271941i \(0.912334\pi\)
\(114\) −7.72496 0.971260i −0.723509 0.0909668i
\(115\) −6.66548 0.767346i −0.621560 0.0715553i
\(116\) −5.61823 + 3.24369i −0.521640 + 0.301169i
\(117\) −5.26740 18.7801i −0.486971 1.73622i
\(118\) 17.5183 1.61269
\(119\) 0 0
\(120\) 1.78732 7.31342i 0.163160 0.667620i
\(121\) 1.78441 3.09068i 0.162219 0.280971i
\(122\) −26.1425 + 15.0934i −2.36683 + 1.36649i
\(123\) −4.84597 3.67379i −0.436946 0.331254i
\(124\) 16.6236 + 9.59763i 1.49284 + 0.861893i
\(125\) 10.5259 + 3.76908i 0.941463 + 0.337117i
\(126\) 0 0
\(127\) 0.597329i 0.0530044i −0.999649 0.0265022i \(-0.991563\pi\)
0.999649 0.0265022i \(-0.00843689\pi\)
\(128\) −7.02295 + 12.1641i −0.620747 + 1.07517i
\(129\) −7.36370 + 9.71321i −0.648337 + 0.855200i
\(130\) 31.9047 + 3.67294i 2.79823 + 0.322139i
\(131\) −2.90591 + 5.03319i −0.253891 + 0.439752i −0.964594 0.263741i \(-0.915044\pi\)
0.710703 + 0.703492i \(0.248377\pi\)
\(132\) −7.38852 17.5476i −0.643088 1.52732i
\(133\) 0 0
\(134\) 23.8276i 2.05839i
\(135\) −11.6123 + 0.392180i −0.999430 + 0.0337535i
\(136\) −4.95020 + 2.85800i −0.424476 + 0.245071i
\(137\) −0.546844 0.947161i −0.0467200 0.0809215i 0.841720 0.539915i \(-0.181544\pi\)
−0.888440 + 0.458993i \(0.848210\pi\)
\(138\) −1.43221 + 11.3912i −0.121918 + 0.969681i
\(139\) 7.35968i 0.624240i −0.950043 0.312120i \(-0.898961\pi\)
0.950043 0.312120i \(-0.101039\pi\)
\(140\) 0 0
\(141\) −3.36929 8.00200i −0.283745 0.673890i
\(142\) −21.0299 12.1416i −1.76479 1.01890i
\(143\) 21.4913 12.4080i 1.79720 1.03761i
\(144\) 4.26038 + 1.08852i 0.355032 + 0.0907103i
\(145\) −4.62153 + 2.00307i −0.383797 + 0.166346i
\(146\) 7.30973 0.604958
\(147\) 0 0
\(148\) 9.69579i 0.796989i
\(149\) −9.36993 5.40973i −0.767615 0.443183i 0.0644082 0.997924i \(-0.479484\pi\)
−0.832023 + 0.554741i \(0.812817\pi\)
\(150\) 6.63737 17.9428i 0.541939 1.46502i
\(151\) 4.14799 + 7.18453i 0.337559 + 0.584669i 0.983973 0.178318i \(-0.0570655\pi\)
−0.646414 + 0.762987i \(0.723732\pi\)
\(152\) −3.42559 1.97777i −0.277852 0.160418i
\(153\) 6.30999 + 6.16463i 0.510132 + 0.498381i
\(154\) 0 0
\(155\) 11.9700 + 8.87905i 0.961454 + 0.713183i
\(156\) 4.04577 32.1782i 0.323921 2.57632i
\(157\) −2.70593 4.68680i −0.215957 0.374048i 0.737612 0.675225i \(-0.235954\pi\)
−0.953568 + 0.301178i \(0.902620\pi\)
\(158\) −6.46126 11.1912i −0.514030 0.890326i
\(159\) 0.417928 3.32401i 0.0331438 0.263611i
\(160\) −9.49264 + 12.7972i −0.750459 + 1.01171i
\(161\) 0 0
\(162\) 0.463276 + 19.8762i 0.0363984 + 1.56162i
\(163\) 14.8583 + 8.57846i 1.16379 + 0.671917i 0.952210 0.305443i \(-0.0988046\pi\)
0.211584 + 0.977360i \(0.432138\pi\)
\(164\) −5.05569 8.75671i −0.394783 0.683784i
\(165\) −4.14080 14.1911i −0.322361 1.10477i
\(166\) −5.09518 2.94170i −0.395463 0.228320i
\(167\) 9.60588i 0.743325i −0.928368 0.371663i \(-0.878788\pi\)
0.928368 0.371663i \(-0.121212\pi\)
\(168\) 0 0
\(169\) 29.2709 2.25161
\(170\) −13.3270 + 5.77619i −1.02213 + 0.443014i
\(171\) −1.51117 + 5.91457i −0.115562 + 0.452298i
\(172\) −17.5518 + 10.1336i −1.33832 + 0.772677i
\(173\) −8.80967 5.08627i −0.669787 0.386702i 0.126209 0.992004i \(-0.459719\pi\)
−0.795996 + 0.605302i \(0.793052\pi\)
\(174\) 3.34464 + 7.94346i 0.253556 + 0.602192i
\(175\) 0 0
\(176\) 5.59463i 0.421711i
\(177\) 1.71347 13.6282i 0.128793 1.02436i
\(178\) −14.9287 25.8573i −1.11895 1.93808i
\(179\) 20.4854 11.8273i 1.53115 0.884011i 0.531843 0.846843i \(-0.321500\pi\)
0.999309 0.0371678i \(-0.0118336\pi\)
\(180\) −18.0483 6.89180i −1.34524 0.513684i
\(181\) 15.6330i 1.16199i 0.813906 + 0.580997i \(0.197337\pi\)
−0.813906 + 0.580997i \(0.802663\pi\)
\(182\) 0 0
\(183\) 9.18476 + 21.8136i 0.678957 + 1.61251i
\(184\) −2.91640 + 5.05135i −0.215000 + 0.372391i
\(185\) −0.860958 + 7.47864i −0.0632989 + 0.549841i
\(186\) 15.4066 20.3223i 1.12966 1.49010i
\(187\) −5.61181 + 9.71993i −0.410376 + 0.710792i
\(188\) 14.4366i 1.05290i
\(189\) 0 0
\(190\) −8.07288 5.98826i −0.585668 0.434434i
\(191\) 9.33503 + 5.38958i 0.675459 + 0.389976i 0.798142 0.602470i \(-0.205817\pi\)
−0.122683 + 0.992446i \(0.539150\pi\)
\(192\) 17.6805 + 13.4038i 1.27598 + 0.967335i
\(193\) 1.59886 0.923104i 0.115089 0.0664465i −0.441351 0.897335i \(-0.645500\pi\)
0.556439 + 0.830888i \(0.312167\pi\)
\(194\) −4.93381 + 8.54561i −0.354227 + 0.613539i
\(195\) 5.97795 24.4607i 0.428090 1.75167i
\(196\) 0 0
\(197\) 8.09941 0.577059 0.288530 0.957471i \(-0.406834\pi\)
0.288530 + 0.957471i \(0.406834\pi\)
\(198\) −24.3555 + 6.83118i −1.73087 + 0.485471i
\(199\) 8.74922 5.05137i 0.620216 0.358082i −0.156737 0.987640i \(-0.550098\pi\)
0.776953 + 0.629559i \(0.216764\pi\)
\(200\) 6.64528 7.09281i 0.469892 0.501537i
\(201\) 18.5365 + 2.33059i 1.30746 + 0.164387i
\(202\) −19.5954 −1.37873
\(203\) 0 0
\(204\) 5.69201 + 13.5184i 0.398521 + 0.946480i
\(205\) −3.12203 7.20323i −0.218052 0.503095i
\(206\) −1.46067 2.52995i −0.101770 0.176270i
\(207\) 8.72158 + 2.22835i 0.606192 + 0.154881i
\(208\) −4.76486 + 8.25298i −0.330383 + 0.572241i
\(209\) −7.76686 −0.537245
\(210\) 0 0
\(211\) 10.6818 0.735367 0.367684 0.929951i \(-0.380151\pi\)
0.367684 + 0.929951i \(0.380151\pi\)
\(212\) 2.78525 4.82419i 0.191292 0.331327i
\(213\) −11.5024 + 15.1725i −0.788133 + 1.03960i
\(214\) 3.67195 + 6.36000i 0.251009 + 0.434761i
\(215\) −14.4381 + 6.25775i −0.984668 + 0.426775i
\(216\) −3.70170 + 9.39800i −0.251869 + 0.639453i
\(217\) 0 0
\(218\) −27.1683 −1.84007
\(219\) 0.714969 5.68654i 0.0483131 0.384261i
\(220\) 2.81115 24.4188i 0.189528 1.64632i
\(221\) −16.5566 + 9.55898i −1.11372 + 0.643006i
\(222\) 12.7809 + 1.60694i 0.857795 + 0.107851i
\(223\) 4.13183 0.276688 0.138344 0.990384i \(-0.455822\pi\)
0.138344 + 0.990384i \(0.455822\pi\)
\(224\) 0 0
\(225\) −13.3092 6.91848i −0.887280 0.461232i
\(226\) −22.5977 + 39.1404i −1.50318 + 2.60358i
\(227\) 6.21430 3.58783i 0.412458 0.238132i −0.279388 0.960178i \(-0.590131\pi\)
0.691845 + 0.722046i \(0.256798\pi\)
\(228\) −6.13212 + 8.08867i −0.406109 + 0.535685i
\(229\) 9.05093 + 5.22556i 0.598102 + 0.345315i 0.768295 0.640096i \(-0.221106\pi\)
−0.170192 + 0.985411i \(0.554439\pi\)
\(230\) −8.83025 + 11.9042i −0.582250 + 0.784941i
\(231\) 0 0
\(232\) 4.37879i 0.287481i
\(233\) −1.95072 + 3.37875i −0.127796 + 0.221349i −0.922822 0.385226i \(-0.874124\pi\)
0.795026 + 0.606575i \(0.207457\pi\)
\(234\) −41.7463 10.6661i −2.72904 0.697268i
\(235\) 1.28193 11.1354i 0.0836240 0.726393i
\(236\) 11.4193 19.7788i 0.743334 1.28749i
\(237\) −9.33810 + 3.93186i −0.606574 + 0.255402i
\(238\) 0 0
\(239\) 23.7873i 1.53867i −0.638844 0.769336i \(-0.720587\pi\)
0.638844 0.769336i \(-0.279413\pi\)
\(240\) 4.10187 + 3.92440i 0.264775 + 0.253319i
\(241\) 11.5030 6.64126i 0.740974 0.427801i −0.0814495 0.996677i \(-0.525955\pi\)
0.822423 + 0.568876i \(0.192622\pi\)
\(242\) −3.94187 6.82752i −0.253393 0.438889i
\(243\) 15.5078 + 1.58370i 0.994826 + 0.101594i
\(244\) 39.3546i 2.51942i
\(245\) 0 0
\(246\) −12.3809 + 5.21303i −0.789375 + 0.332371i
\(247\) −11.4574 6.61492i −0.729015 0.420897i
\(248\) 11.2204 6.47812i 0.712498 0.411361i
\(249\) −2.78683 + 3.67602i −0.176608 + 0.232958i
\(250\) 18.8368 15.9740i 1.19134 1.01029i
\(251\) 9.12747 0.576121 0.288060 0.957612i \(-0.406990\pi\)
0.288060 + 0.957612i \(0.406990\pi\)
\(252\) 0 0
\(253\) 11.4530i 0.720041i
\(254\) −1.14275 0.659769i −0.0717027 0.0413976i
\(255\) 3.19001 + 10.9326i 0.199766 + 0.684625i
\(256\) 2.70450 + 4.68433i 0.169031 + 0.292770i
\(257\) −5.79051 3.34315i −0.361202 0.208540i 0.308406 0.951255i \(-0.400205\pi\)
−0.669608 + 0.742715i \(0.733538\pi\)
\(258\) 10.4489 + 24.8161i 0.650523 + 1.54498i
\(259\) 0 0
\(260\) 24.9440 33.6275i 1.54696 2.08549i
\(261\) 6.50669 1.82498i 0.402754 0.112963i
\(262\) 6.41935 + 11.1186i 0.396588 + 0.686911i
\(263\) 12.0642 + 20.8958i 0.743908 + 1.28849i 0.950703 + 0.310103i \(0.100363\pi\)
−0.206795 + 0.978384i \(0.566303\pi\)
\(264\) −12.7508 1.60316i −0.784759 0.0986678i
\(265\) 2.57672 3.47371i 0.158286 0.213389i
\(266\) 0 0
\(267\) −21.5756 + 9.08453i −1.32041 + 0.555964i
\(268\) 26.9023 + 15.5321i 1.64332 + 0.948771i
\(269\) −9.50393 16.4613i −0.579465 1.00366i −0.995541 0.0943328i \(-0.969928\pi\)
0.416076 0.909330i \(-0.363405\pi\)
\(270\) −12.0759 + 22.6488i −0.734916 + 1.37836i
\(271\) −10.2612 5.92429i −0.623321 0.359875i 0.154840 0.987940i \(-0.450514\pi\)
−0.778161 + 0.628065i \(0.783847\pi\)
\(272\) 4.31002i 0.261334i
\(273\) 0 0
\(274\) −2.41603 −0.145957
\(275\) 4.33664 18.5853i 0.261509 1.12074i
\(276\) 11.9275 + 9.04238i 0.717951 + 0.544287i
\(277\) 14.3051 8.25906i 0.859511 0.496239i −0.00433762 0.999991i \(-0.501381\pi\)
0.863848 + 0.503752i \(0.168047\pi\)
\(278\) −14.0798 8.12900i −0.844452 0.487545i
\(279\) −14.3026 13.9731i −0.856275 0.836550i
\(280\) 0 0
\(281\) 10.1076i 0.602968i 0.953471 + 0.301484i \(0.0974820\pi\)
−0.953471 + 0.301484i \(0.902518\pi\)
\(282\) −19.0302 2.39266i −1.13323 0.142481i
\(283\) 3.00101 + 5.19791i 0.178392 + 0.308984i 0.941330 0.337488i \(-0.109577\pi\)
−0.762938 + 0.646472i \(0.776244\pi\)
\(284\) −27.4167 + 15.8291i −1.62688 + 0.939282i
\(285\) −5.44813 + 5.69451i −0.322719 + 0.337314i
\(286\) 54.8203i 3.24159i
\(287\) 0 0
\(288\) 14.9388 15.2910i 0.880275 0.901031i
\(289\) −4.17674 + 7.23433i −0.245691 + 0.425549i
\(290\) −1.27255 + 11.0539i −0.0747269 + 0.649109i
\(291\) 6.16540 + 4.67406i 0.361422 + 0.273998i
\(292\) 4.76486 8.25298i 0.278842 0.482969i
\(293\) 3.55369i 0.207609i 0.994598 + 0.103805i \(0.0331016\pi\)
−0.994598 + 0.103805i \(0.966898\pi\)
\(294\) 0 0
\(295\) 10.5643 14.2420i 0.615080 0.829200i
\(296\) 5.66760 + 3.27219i 0.329422 + 0.190192i
\(297\) 2.93202 + 19.6153i 0.170133 + 1.13820i
\(298\) −20.6988 + 11.9504i −1.19905 + 0.692271i
\(299\) −9.75431 + 16.8950i −0.564106 + 0.977061i
\(300\) −15.9315 19.1899i −0.919805 1.10793i
\(301\) 0 0
\(302\) 18.3264 1.05456
\(303\) −1.91664 + 15.2441i −0.110108 + 0.875750i
\(304\) 2.58299 1.49129i 0.148145 0.0855314i
\(305\) −3.49457 + 30.3553i −0.200099 + 1.73814i
\(306\) 18.7632 5.26264i 1.07262 0.300845i
\(307\) 29.0345 1.65709 0.828544 0.559923i \(-0.189169\pi\)
0.828544 + 0.559923i \(0.189169\pi\)
\(308\) 0 0
\(309\) −2.11102 + 0.888858i −0.120092 + 0.0505654i
\(310\) 30.2078 13.0927i 1.71569 0.743614i
\(311\) 4.32216 + 7.48620i 0.245087 + 0.424503i 0.962156 0.272499i \(-0.0878501\pi\)
−0.717069 + 0.697002i \(0.754517\pi\)
\(312\) −17.4441 13.2246i −0.987580 0.748696i
\(313\) 5.42607 9.39824i 0.306700 0.531220i −0.670938 0.741513i \(-0.734109\pi\)
0.977638 + 0.210293i \(0.0674419\pi\)
\(314\) −11.9551 −0.674667
\(315\) 0 0
\(316\) −16.8471 −0.947724
\(317\) −4.67046 + 8.08947i −0.262319 + 0.454350i −0.966858 0.255316i \(-0.917821\pi\)
0.704539 + 0.709665i \(0.251154\pi\)
\(318\) −5.89756 4.47101i −0.330719 0.250722i
\(319\) 4.29897 + 7.44604i 0.240696 + 0.416898i
\(320\) 11.3907 + 26.2809i 0.636759 + 1.46915i
\(321\) 5.30686 2.23448i 0.296200 0.124717i
\(322\) 0 0
\(323\) 5.98348 0.332930
\(324\) 22.7430 + 12.4332i 1.26350 + 0.690736i
\(325\) 22.2261 23.7229i 1.23288 1.31591i
\(326\) 32.8230 18.9504i 1.81790 1.04956i
\(327\) −2.65734 + 21.1353i −0.146951 + 1.16879i
\(328\) −6.82488 −0.376841
\(329\) 0 0
\(330\) −31.7226 7.75268i −1.74627 0.426771i
\(331\) −1.45459 + 2.51942i −0.0799515 + 0.138480i −0.903229 0.429159i \(-0.858810\pi\)
0.823277 + 0.567639i \(0.192143\pi\)
\(332\) −6.64260 + 3.83511i −0.364560 + 0.210479i
\(333\) 2.50020 9.78557i 0.137010 0.536246i
\(334\) −18.3771 10.6100i −1.00555 0.580553i
\(335\) 19.3713 + 14.3692i 1.05837 + 0.785071i
\(336\) 0 0
\(337\) 15.2910i 0.832954i −0.909146 0.416477i \(-0.863265\pi\)
0.909146 0.416477i \(-0.136735\pi\)
\(338\) 32.3307 55.9983i 1.75856 3.04591i
\(339\) 28.2386 + 21.4080i 1.53371 + 1.16272i
\(340\) −2.16567 + 18.8119i −0.117450 + 1.02022i
\(341\) 12.7201 22.0318i 0.688830 1.19309i
\(342\) 9.64606 + 9.42384i 0.521599 + 0.509583i
\(343\) 0 0
\(344\) 13.6797i 0.737561i
\(345\) 8.39708 + 8.03377i 0.452084 + 0.432524i
\(346\) −19.4611 + 11.2359i −1.04624 + 0.604045i
\(347\) −15.7892 27.3477i −0.847609 1.46810i −0.883336 0.468739i \(-0.844708\pi\)
0.0357279 0.999362i \(-0.488625\pi\)
\(348\) 11.1487 + 1.40172i 0.597632 + 0.0751403i
\(349\) 8.25024i 0.441625i −0.975316 0.220813i \(-0.929129\pi\)
0.975316 0.220813i \(-0.0708709\pi\)
\(350\) 0 0
\(351\) −12.3809 + 31.4329i −0.660842 + 1.67777i
\(352\) 23.5543 + 13.5991i 1.25545 + 0.724834i
\(353\) −3.71360 + 2.14405i −0.197655 + 0.114116i −0.595561 0.803310i \(-0.703070\pi\)
0.397906 + 0.917426i \(0.369737\pi\)
\(354\) −24.1796 18.3308i −1.28513 0.974272i
\(355\) −22.5529 + 9.77488i −1.19698 + 0.518797i
\(356\) −38.9252 −2.06303
\(357\) 0 0
\(358\) 52.2543i 2.76173i
\(359\) −6.17938 3.56767i −0.326135 0.188294i 0.327989 0.944682i \(-0.393629\pi\)
−0.654124 + 0.756387i \(0.726963\pi\)
\(360\) −10.1196 + 8.22410i −0.533349 + 0.433448i
\(361\) −7.42968 12.8686i −0.391036 0.677294i
\(362\) 29.9076 + 17.2672i 1.57191 + 0.907542i
\(363\) −5.69696 + 2.39874i −0.299013 + 0.125901i
\(364\) 0 0
\(365\) 4.40811 5.94265i 0.230731 0.311053i
\(366\) 51.8766 + 6.52245i 2.71163 + 0.340934i
\(367\) 12.1957 + 21.1235i 0.636609 + 1.10264i 0.986172 + 0.165726i \(0.0529969\pi\)
−0.349563 + 0.936913i \(0.613670\pi\)
\(368\) −2.19905 3.80886i −0.114633 0.198551i
\(369\) 2.84445 + 10.1415i 0.148076 + 0.527944i
\(370\) 13.3565 + 9.90750i 0.694370 + 0.515067i
\(371\) 0 0
\(372\) −12.9019 30.6417i −0.668931 1.58870i
\(373\) −19.0999 11.0273i −0.988956 0.570974i −0.0839940 0.996466i \(-0.526768\pi\)
−0.904962 + 0.425492i \(0.860101\pi\)
\(374\) 12.3968 + 21.4719i 0.641025 + 1.11029i
\(375\) −10.5844 16.2164i −0.546577 0.837409i
\(376\) −8.43881 4.87215i −0.435199 0.251262i
\(377\) 14.6455i 0.754280i
\(378\) 0 0
\(379\) 1.15801 0.0594828 0.0297414 0.999558i \(-0.490532\pi\)
0.0297414 + 0.999558i \(0.490532\pi\)
\(380\) −12.0233 + 5.21114i −0.616782 + 0.267326i
\(381\) −0.625034 + 0.824462i −0.0320215 + 0.0422385i
\(382\) 20.6217 11.9059i 1.05510 0.609160i
\(383\) −1.84403 1.06465i −0.0942255 0.0544011i 0.452147 0.891944i \(-0.350658\pi\)
−0.546372 + 0.837542i \(0.683992\pi\)
\(384\) 22.4217 9.44079i 1.14420 0.481773i
\(385\) 0 0
\(386\) 4.07839i 0.207585i
\(387\) 20.3275 5.70139i 1.03330 0.289818i
\(388\) 6.43222 + 11.1409i 0.326546 + 0.565595i
\(389\) 20.9207 12.0785i 1.06072 0.612406i 0.135088 0.990834i \(-0.456868\pi\)
0.925631 + 0.378427i \(0.123535\pi\)
\(390\) −40.1931 38.4541i −2.03526 1.94720i
\(391\) 8.82320i 0.446208i
\(392\) 0 0
\(393\) 9.27752 3.90635i 0.467989 0.197049i
\(394\) 8.94606 15.4950i 0.450696 0.780628i
\(395\) −12.9947 1.49598i −0.653832 0.0752707i
\(396\) −8.16352 + 31.9513i −0.410232 + 1.60561i
\(397\) −6.00792 + 10.4060i −0.301529 + 0.522263i −0.976482 0.215597i \(-0.930830\pi\)
0.674954 + 0.737860i \(0.264164\pi\)
\(398\) 22.3176i 1.11868i
\(399\) 0 0
\(400\) 2.12629 + 7.01351i 0.106315 + 0.350675i
\(401\) 26.6997 + 15.4151i 1.33332 + 0.769792i 0.985807 0.167883i \(-0.0536930\pi\)
0.347513 + 0.937675i \(0.387026\pi\)
\(402\) 24.9328 32.8880i 1.24353 1.64030i
\(403\) 37.5283 21.6670i 1.86942 1.07931i
\(404\) −12.7733 + 22.1240i −0.635495 + 1.10071i
\(405\) 16.4383 + 11.6096i 0.816824 + 0.576887i
\(406\) 0 0
\(407\) 12.8502 0.636959
\(408\) 9.82306 + 1.23505i 0.486314 + 0.0611443i
\(409\) −13.5699 + 7.83456i −0.670986 + 0.387394i −0.796450 0.604704i \(-0.793291\pi\)
0.125464 + 0.992098i \(0.459958\pi\)
\(410\) −17.2289 1.98343i −0.850875 0.0979547i
\(411\) −0.236313 + 1.87953i −0.0116564 + 0.0927101i
\(412\) −3.80855 −0.187634
\(413\) 0 0
\(414\) 13.8963 14.2240i 0.682968 0.699072i
\(415\) −5.46417 + 2.36828i −0.268226 + 0.116254i
\(416\) 23.1643 + 40.1217i 1.13572 + 1.96713i
\(417\) −7.70103 + 10.1582i −0.377121 + 0.497448i
\(418\) −8.57874 + 14.8588i −0.419600 + 0.726769i
\(419\) −19.5975 −0.957399 −0.478699 0.877979i \(-0.658892\pi\)
−0.478699 + 0.877979i \(0.658892\pi\)
\(420\) 0 0
\(421\) −32.5791 −1.58781 −0.793903 0.608044i \(-0.791954\pi\)
−0.793903 + 0.608044i \(0.791954\pi\)
\(422\) 11.7984 20.4355i 0.574338 0.994782i
\(423\) −3.72270 + 14.5703i −0.181004 + 0.708433i
\(424\) −1.87996 3.25619i −0.0912990 0.158134i
\(425\) −3.34089 + 14.3179i −0.162057 + 0.694518i
\(426\) 16.3217 + 38.7638i 0.790789 + 1.87811i
\(427\) 0 0
\(428\) 9.57425 0.462789
\(429\) −42.6469 5.36200i −2.05901 0.258880i
\(430\) −3.97557 + 34.5334i −0.191719 + 1.66535i
\(431\) 24.1528 13.9447i 1.16340 0.671690i 0.211285 0.977425i \(-0.432235\pi\)
0.952117 + 0.305734i \(0.0989019\pi\)
\(432\) −4.74137 5.96042i −0.228119 0.286771i
\(433\) −3.47350 −0.166926 −0.0834629 0.996511i \(-0.526598\pi\)
−0.0834629 + 0.996511i \(0.526598\pi\)
\(434\) 0 0
\(435\) 8.47483 + 2.07116i 0.406337 + 0.0993046i
\(436\) −17.7097 + 30.6740i −0.848139 + 1.46902i
\(437\) 5.28774 3.05288i 0.252947 0.146039i
\(438\) −10.0892 7.64878i −0.482083 0.365473i
\(439\) 3.41910 + 1.97402i 0.163185 + 0.0942147i 0.579368 0.815066i \(-0.303299\pi\)
−0.416184 + 0.909281i \(0.636633\pi\)
\(440\) −13.3251 9.88423i −0.635249 0.471212i
\(441\) 0 0
\(442\) 42.2328i 2.00881i
\(443\) −8.01539 + 13.8831i −0.380823 + 0.659604i −0.991180 0.132522i \(-0.957693\pi\)
0.610357 + 0.792126i \(0.291026\pi\)
\(444\) 10.1455 13.3826i 0.481484 0.635110i
\(445\) −30.0241 3.45644i −1.42328 0.163851i
\(446\) 4.56373 7.90462i 0.216099 0.374295i
\(447\) 7.27218 + 17.2713i 0.343962 + 0.816905i
\(448\) 0 0
\(449\) 21.1001i 0.995777i −0.867241 0.497889i \(-0.834109\pi\)
0.867241 0.497889i \(-0.165891\pi\)
\(450\) −27.9362 + 17.8202i −1.31692 + 0.840053i
\(451\) −11.6056 + 6.70048i −0.546485 + 0.315513i
\(452\) 29.4607 + 51.0274i 1.38571 + 2.40013i
\(453\) 1.79251 14.2568i 0.0842195 0.669844i
\(454\) 15.8515i 0.743947i
\(455\) 0 0
\(456\) 2.65867 + 6.31429i 0.124503 + 0.295694i
\(457\) 8.31969 + 4.80338i 0.389179 + 0.224692i 0.681804 0.731535i \(-0.261196\pi\)
−0.292625 + 0.956227i \(0.594529\pi\)
\(458\) 19.9941 11.5436i 0.934262 0.539397i
\(459\) −2.25879 15.1114i −0.105431 0.705339i
\(460\) 7.68432 + 17.7295i 0.358283 + 0.826641i
\(461\) −24.5367 −1.14279 −0.571393 0.820676i \(-0.693597\pi\)
−0.571393 + 0.820676i \(0.693597\pi\)
\(462\) 0 0
\(463\) 14.5875i 0.677937i 0.940798 + 0.338968i \(0.110078\pi\)
−0.940798 + 0.338968i \(0.889922\pi\)
\(464\) −2.85938 1.65086i −0.132743 0.0766395i
\(465\) −7.23069 24.7805i −0.335315 1.14917i
\(466\) 4.30927 + 7.46387i 0.199623 + 0.345757i
\(467\) 15.5179 + 8.95926i 0.718083 + 0.414585i 0.814047 0.580800i \(-0.197260\pi\)
−0.0959639 + 0.995385i \(0.530593\pi\)
\(468\) −39.2549 + 40.1805i −1.81456 + 1.85735i
\(469\) 0 0
\(470\) −19.8872 14.7519i −0.917330 0.680452i
\(471\) −1.16934 + 9.30039i −0.0538802 + 0.428539i
\(472\) −7.70770 13.3501i −0.354776 0.614490i
\(473\) 13.4304 + 23.2621i 0.617529 + 1.06959i
\(474\) −2.79216 + 22.2076i −0.128248 + 1.02003i
\(475\) −9.73665 + 2.95187i −0.446748 + 0.135441i
\(476\) 0 0
\(477\) −4.05503 + 4.15064i −0.185667 + 0.190045i
\(478\) −45.5076 26.2738i −2.08147 1.20174i
\(479\) 1.48248 + 2.56774i 0.0677364 + 0.117323i 0.897905 0.440190i \(-0.145089\pi\)
−0.830168 + 0.557513i \(0.811756\pi\)
\(480\) 26.4930 7.73037i 1.20923 0.352841i
\(481\) 18.9561 + 10.9443i 0.864322 + 0.499017i
\(482\) 29.3419i 1.33649i
\(483\) 0 0
\(484\) −10.2780 −0.467184
\(485\) 3.97207 + 9.16448i 0.180362 + 0.416138i
\(486\) 20.1586 27.9188i 0.914414 1.26642i
\(487\) −28.8004 + 16.6279i −1.30507 + 0.753482i −0.981269 0.192644i \(-0.938294\pi\)
−0.323800 + 0.946125i \(0.604961\pi\)
\(488\) 23.0044 + 13.2816i 1.04136 + 0.601230i
\(489\) −11.5318 27.3879i −0.521487 1.23852i
\(490\) 0 0
\(491\) 25.4892i 1.15031i 0.818043 + 0.575157i \(0.195059\pi\)
−0.818043 + 0.575157i \(0.804941\pi\)
\(492\) −2.18476 + 17.3766i −0.0984966 + 0.783398i
\(493\) −3.31187 5.73632i −0.149159 0.258351i
\(494\) −25.3101 + 14.6128i −1.13875 + 0.657460i
\(495\) −9.13393 + 23.9200i −0.410540 + 1.07513i
\(496\) 9.76937i 0.438658i
\(497\) 0 0
\(498\) 3.95447 + 9.39179i 0.177204 + 0.420856i
\(499\) 16.8358 29.1604i 0.753673 1.30540i −0.192358 0.981325i \(-0.561613\pi\)
0.946031 0.324076i \(-0.105053\pi\)
\(500\) −5.75651 31.6802i −0.257439 1.41678i
\(501\) −10.0514 + 13.2585i −0.449064 + 0.592346i
\(502\) 10.0816 17.4618i 0.449963 0.779358i
\(503\) 35.2418i 1.57135i −0.618637 0.785677i \(-0.712315\pi\)
0.618637 0.785677i \(-0.287685\pi\)
\(504\) 0 0
\(505\) −11.8170 + 15.9306i −0.525848 + 0.708904i
\(506\) 21.9107 + 12.6502i 0.974050 + 0.562368i
\(507\) −40.4011 30.6286i −1.79428 1.36026i
\(508\) −1.48981 + 0.860142i −0.0660996 + 0.0381626i
\(509\) 11.5914 20.0770i 0.513782 0.889896i −0.486090 0.873908i \(-0.661577\pi\)
0.999872 0.0159875i \(-0.00508920\pi\)
\(510\) 24.4387 + 5.97256i 1.08216 + 0.264469i
\(511\) 0 0
\(512\) −16.1430 −0.713426
\(513\) 8.27468 6.58231i 0.365336 0.290616i
\(514\) −12.7916 + 7.38523i −0.564213 + 0.325749i
\(515\) −2.93765 0.338189i −0.129448 0.0149024i
\(516\) 34.8295 + 4.37911i 1.53328 + 0.192780i
\(517\) −19.1334 −0.841484
\(518\) 0 0
\(519\) 6.83735 + 16.2386i 0.300126 + 0.712795i
\(520\) −11.2384 25.9296i −0.492837 1.13709i
\(521\) −7.18762 12.4493i −0.314895 0.545415i 0.664520 0.747271i \(-0.268636\pi\)
−0.979415 + 0.201856i \(0.935303\pi\)
\(522\) 3.69547 14.4637i 0.161746 0.633060i
\(523\) 12.6242 21.8658i 0.552018 0.956124i −0.446110 0.894978i \(-0.647191\pi\)
0.998129 0.0611461i \(-0.0194755\pi\)
\(524\) 16.7378 0.731195
\(525\) 0 0
\(526\) 53.3010 2.32403
\(527\) −9.79936 + 16.9730i −0.426867 + 0.739355i
\(528\) 5.85412 7.72197i 0.254768 0.336056i
\(529\) 6.99825 + 12.1213i 0.304272 + 0.527014i
\(530\) −3.79952 8.76636i −0.165040 0.380786i
\(531\) −16.6253 + 17.0173i −0.721477 + 0.738489i
\(532\) 0 0
\(533\) −22.8268 −0.988737
\(534\) −6.45128 + 51.3106i −0.279174 + 2.22042i
\(535\) 7.38490 + 0.850166i 0.319277 + 0.0367559i
\(536\) 18.1583 10.4837i 0.784318 0.452826i
\(537\) −40.6508 5.11102i −1.75421 0.220557i
\(538\) −41.9896 −1.81030
\(539\) 0 0
\(540\) 17.6997 + 28.3978i 0.761673 + 1.22205i
\(541\) −7.88973 + 13.6654i −0.339206 + 0.587522i −0.984284 0.176595i \(-0.943492\pi\)
0.645078 + 0.764117i \(0.276825\pi\)
\(542\) −22.6676 + 13.0871i −0.973655 + 0.562140i
\(543\) 16.3581 21.5774i 0.701994 0.925977i
\(544\) −18.1459 10.4766i −0.778000 0.449179i
\(545\) −16.3837 + 22.0872i −0.701802 + 0.946112i
\(546\) 0 0
\(547\) 8.23195i 0.351973i 0.984393 + 0.175986i \(0.0563115\pi\)
−0.984393 + 0.175986i \(0.943689\pi\)
\(548\) −1.57489 + 2.72779i −0.0672759 + 0.116525i
\(549\) 10.1482 39.7190i 0.433113 1.69517i
\(550\) −30.7657 28.8245i −1.31185 1.22908i
\(551\) 2.29185 3.96960i 0.0976360 0.169111i
\(552\) 9.31100 3.92045i 0.396303 0.166865i
\(553\) 0 0
\(554\) 36.4896i 1.55029i
\(555\) 9.01386 9.42149i 0.382617 0.399920i
\(556\) −18.3559 + 10.5978i −0.778464 + 0.449446i
\(557\) 14.4676 + 25.0586i 0.613011 + 1.06177i 0.990730 + 0.135845i \(0.0433750\pi\)
−0.377719 + 0.925920i \(0.623292\pi\)
\(558\) −42.5298 + 11.9286i −1.80043 + 0.504980i
\(559\) 45.7537i 1.93518i
\(560\) 0 0
\(561\) 17.9164 7.54382i 0.756433 0.318500i
\(562\) 19.3369 + 11.1641i 0.815677 + 0.470931i
\(563\) −5.39368 + 3.11404i −0.227316 + 0.131241i −0.609333 0.792914i \(-0.708563\pi\)
0.382017 + 0.924155i \(0.375230\pi\)
\(564\) −15.1062 + 19.9261i −0.636087 + 0.839041i
\(565\) 18.1928 + 41.9749i 0.765376 + 1.76590i
\(566\) 13.2589 0.557312
\(567\) 0 0
\(568\) 21.3683i 0.896594i
\(569\) 8.56862 + 4.94710i 0.359215 + 0.207393i 0.668736 0.743500i \(-0.266835\pi\)
−0.309521 + 0.950893i \(0.600169\pi\)
\(570\) 4.87656 + 16.7126i 0.204257 + 0.700014i
\(571\) −9.60472 16.6359i −0.401945 0.696189i 0.592015 0.805927i \(-0.298332\pi\)
−0.993961 + 0.109737i \(0.964999\pi\)
\(572\) −61.8942 35.7347i −2.58793 1.49414i
\(573\) −7.24509 17.2070i −0.302668 0.718831i
\(574\) 0 0
\(575\) 4.35281 + 14.3576i 0.181525 + 0.598753i
\(576\) −10.3780 37.0011i −0.432415 1.54171i
\(577\) −19.0377 32.9742i −0.792549 1.37273i −0.924384 0.381463i \(-0.875420\pi\)
0.131835 0.991272i \(-0.457913\pi\)
\(578\) 9.22669 + 15.9811i 0.383780 + 0.664726i
\(579\) −3.17275 0.398910i −0.131855 0.0165781i
\(580\) 11.6508 + 8.64228i 0.483773 + 0.358851i
\(581\) 0 0
\(582\) 15.7519 6.63241i 0.652935 0.274922i
\(583\) −6.39367 3.69139i −0.264799 0.152882i
\(584\) −3.21614 5.57052i −0.133085 0.230510i
\(585\) −33.8463 + 27.5067i −1.39937 + 1.13726i
\(586\) 6.79859 + 3.92517i 0.280847 + 0.162147i
\(587\) 11.9232i 0.492124i 0.969254 + 0.246062i \(0.0791367\pi\)
−0.969254 + 0.246062i \(0.920863\pi\)
\(588\) 0 0
\(589\) −13.5625 −0.558835
\(590\) −15.5777 35.9414i −0.641326 1.47968i
\(591\) −11.1792 8.47508i −0.459851 0.348618i
\(592\) −4.27353 + 2.46732i −0.175641 + 0.101406i
\(593\) 14.5994 + 8.42896i 0.599525 + 0.346136i 0.768855 0.639424i \(-0.220827\pi\)
−0.169330 + 0.985559i \(0.554160\pi\)
\(594\) 40.7647 + 16.0565i 1.67260 + 0.658806i
\(595\) 0 0
\(596\) 31.1596i 1.27635i
\(597\) −17.3618 2.18289i −0.710569 0.0893399i
\(598\) 21.5479 + 37.3220i 0.881159 + 1.52621i
\(599\) 11.7736 6.79751i 0.481058 0.277739i −0.239800 0.970822i \(-0.577082\pi\)
0.720857 + 0.693084i \(0.243748\pi\)
\(600\) −16.5939 + 2.83633i −0.677444 + 0.115793i
\(601\) 46.2155i 1.88517i −0.333966 0.942585i \(-0.608387\pi\)
0.333966 0.942585i \(-0.391613\pi\)
\(602\) 0 0
\(603\) −23.1462 22.6130i −0.942588 0.920874i
\(604\) 11.9461 20.6912i 0.486078 0.841912i
\(605\) −7.92775 0.912661i −0.322309 0.0371049i
\(606\) 27.0465 + 20.5043i 1.09869 + 0.832930i
\(607\) 4.37164 7.57190i 0.177439 0.307334i −0.763563 0.645733i \(-0.776552\pi\)
0.941003 + 0.338399i \(0.109885\pi\)
\(608\) 14.4998i 0.588044i
\(609\) 0 0
\(610\) 54.2130 + 40.2139i 2.19502 + 1.62821i
\(611\) −28.2248 16.2956i −1.14185 0.659249i
\(612\) 6.28906 24.6148i 0.254220 0.994995i
\(613\) −21.0938 + 12.1785i −0.851970 + 0.491885i −0.861315 0.508071i \(-0.830359\pi\)
0.00934480 + 0.999956i \(0.497025\pi\)
\(614\) 32.0696 55.5461i 1.29422 2.24166i
\(615\) −3.22816 + 13.2091i −0.130172 + 0.532641i
\(616\) 0 0
\(617\) 25.3125 1.01904 0.509522 0.860458i \(-0.329822\pi\)
0.509522 + 0.860458i \(0.329822\pi\)
\(618\) −0.631212 + 5.02038i −0.0253911 + 0.201949i
\(619\) −26.2018 + 15.1276i −1.05314 + 0.608029i −0.923526 0.383535i \(-0.874706\pi\)
−0.129612 + 0.991565i \(0.541373\pi\)
\(620\) 4.90885 42.6403i 0.197144 1.71247i
\(621\) −9.70623 12.2018i −0.389498 0.489641i
\(622\) 19.0958 0.765673
\(623\) 0 0
\(624\) 15.2125 6.40529i 0.608986 0.256417i
\(625\) −1.62705 24.9470i −0.0650820 0.997880i
\(626\) −11.9865 20.7613i −0.479079 0.829788i
\(627\) 10.7202 + 8.12711i 0.428123 + 0.324565i
\(628\) −7.79296 + 13.4978i −0.310973 + 0.538621i
\(629\) −9.89959 −0.394723
\(630\) 0 0
\(631\) −5.90652 −0.235135 −0.117568 0.993065i \(-0.537510\pi\)
−0.117568 + 0.993065i \(0.537510\pi\)
\(632\) −5.68566 + 9.84784i −0.226163 + 0.391726i
\(633\) −14.7436 11.1773i −0.586004 0.444257i
\(634\) 10.3173 + 17.8701i 0.409754 + 0.709714i
\(635\) −1.22551 + 0.531161i −0.0486329 + 0.0210785i
\(636\) −8.89228 + 3.74415i −0.352602 + 0.148465i
\(637\) 0 0
\(638\) 18.9934 0.751956
\(639\) 31.7524 8.90582i 1.25610 0.352309i
\(640\) 31.2015 + 3.59199i 1.23335 + 0.141986i
\(641\) −0.111457 + 0.0643495i −0.00440227 + 0.00254165i −0.502200 0.864752i \(-0.667476\pi\)
0.497797 + 0.867293i \(0.334142\pi\)
\(642\) 1.58679 12.6206i 0.0626257 0.498097i
\(643\) −0.150563 −0.00593763 −0.00296881 0.999996i \(-0.500945\pi\)
−0.00296881 + 0.999996i \(0.500945\pi\)
\(644\) 0 0
\(645\) 26.4761 + 6.47049i 1.04250 + 0.254775i
\(646\) 6.60894 11.4470i 0.260025 0.450377i
\(647\) 35.8147 20.6776i 1.40802 0.812920i 0.412822 0.910812i \(-0.364543\pi\)
0.995197 + 0.0978912i \(0.0312097\pi\)
\(648\) 14.9432 9.09817i 0.587023 0.357410i
\(649\) −26.2136 15.1344i −1.02897 0.594078i
\(650\) −20.8350 68.7235i −0.817214 2.69556i
\(651\) 0 0
\(652\) 49.4113i 1.93509i
\(653\) −14.7304 + 25.5138i −0.576446 + 0.998433i 0.419437 + 0.907784i \(0.362227\pi\)
−0.995883 + 0.0906487i \(0.971106\pi\)
\(654\) 37.4990 + 28.4284i 1.46633 + 1.11164i
\(655\) 12.9104 + 1.48627i 0.504450 + 0.0580734i
\(656\) 2.57308 4.45670i 0.100462 0.174005i
\(657\) −6.93713 + 7.10071i −0.270643 + 0.277025i
\(658\) 0 0
\(659\) 22.4678i 0.875220i 0.899165 + 0.437610i \(0.144175\pi\)
−0.899165 + 0.437610i \(0.855825\pi\)
\(660\) −29.4315 + 30.7625i −1.14562 + 1.19743i
\(661\) −20.3164 + 11.7297i −0.790218 + 0.456233i −0.840039 0.542526i \(-0.817468\pi\)
0.0498213 + 0.998758i \(0.484135\pi\)
\(662\) 3.21328 + 5.56557i 0.124888 + 0.216312i
\(663\) 32.8546 + 4.13081i 1.27597 + 0.160427i
\(664\) 5.17717i 0.200913i
\(665\) 0 0
\(666\) −15.9593 15.5916i −0.618409 0.604163i
\(667\) −5.85354 3.37954i −0.226650 0.130856i
\(668\) −23.9582 + 13.8323i −0.926971 + 0.535187i
\(669\) −5.70294 4.32347i −0.220489 0.167155i
\(670\) 48.8860 21.1882i 1.88863 0.818570i
\(671\) 52.1580 2.01354
\(672\) 0 0
\(673\) 44.5504i 1.71729i 0.512570 + 0.858645i \(0.328693\pi\)
−0.512570 + 0.858645i \(0.671307\pi\)
\(674\) −29.2533 16.8894i −1.12680 0.650555i
\(675\) 11.1306 + 23.4757i 0.428418 + 0.903581i
\(676\) −42.1496 73.0052i −1.62114 2.80789i
\(677\) 39.5783 + 22.8505i 1.52112 + 0.878217i 0.999689 + 0.0249214i \(0.00793355\pi\)
0.521427 + 0.853296i \(0.325400\pi\)
\(678\) 72.1462 30.3776i 2.77076 1.16664i
\(679\) 0 0
\(680\) 10.2655 + 7.61467i 0.393663 + 0.292009i
\(681\) −12.3315 1.55044i −0.472545 0.0594130i
\(682\) −28.0994 48.6697i −1.07598 1.86366i
\(683\) −19.3444 33.5055i −0.740192 1.28205i −0.952407 0.304828i \(-0.901401\pi\)
0.212215 0.977223i \(-0.431932\pi\)
\(684\) 16.9277 4.74783i 0.647246 0.181538i
\(685\) −1.45698 + 1.96418i −0.0556682 + 0.0750473i
\(686\) 0 0
\(687\) −7.02460 16.6833i −0.268005 0.636508i
\(688\) −8.93296 5.15745i −0.340566 0.196626i
\(689\) −6.28779 10.8908i −0.239546 0.414905i
\(690\) 24.6443 7.19095i 0.938192 0.273755i
\(691\) −16.6768 9.62834i −0.634415 0.366279i 0.148045 0.988981i \(-0.452702\pi\)
−0.782460 + 0.622701i \(0.786035\pi\)
\(692\) 29.2965i 1.11369i
\(693\) 0 0
\(694\) −69.7587 −2.64800
\(695\) −15.0995 + 6.54443i −0.572756 + 0.248244i
\(696\) 4.58189 6.04381i 0.173676 0.229090i
\(697\) 8.94077 5.16195i 0.338656 0.195523i
\(698\) −15.7836 9.11265i −0.597417 0.344919i
\(699\) 6.22794 2.62231i 0.235562 0.0991849i
\(700\) 0 0
\(701\) 6.75777i 0.255238i 0.991823 + 0.127619i \(0.0407334\pi\)
−0.991823 + 0.127619i \(0.959267\pi\)
\(702\) 46.4594 + 58.4046i 1.75350 + 2.20434i
\(703\) −3.42531 5.93282i −0.129188 0.223760i
\(704\) 42.3428 24.4466i 1.59586 0.921367i
\(705\) −13.4213 + 14.0282i −0.505474 + 0.528333i
\(706\) 9.47268i 0.356509i
\(707\) 0 0
\(708\) −36.4577 + 15.3507i −1.37016 + 0.576916i
\(709\) −2.44586 + 4.23635i −0.0918561 + 0.159099i −0.908292 0.418336i \(-0.862613\pi\)
0.816436 + 0.577436i \(0.195947\pi\)
\(710\) −6.21001 + 53.9427i −0.233057 + 2.02443i
\(711\) 17.0031 + 4.34428i 0.637667 + 0.162923i
\(712\) −13.1367 + 22.7534i −0.492318 + 0.852719i
\(713\) 19.9992i 0.748977i
\(714\) 0 0
\(715\) −44.5677 33.0592i −1.66674 1.23634i
\(716\) −58.9972 34.0620i −2.20483 1.27296i
\(717\) −24.8906 + 32.8324i −0.929557 + 1.22615i
\(718\) −13.6506 + 7.88121i −0.509438 + 0.294124i
\(719\) −19.0108 + 32.9277i −0.708985 + 1.22800i 0.256249 + 0.966611i \(0.417513\pi\)
−0.965234 + 0.261387i \(0.915820\pi\)
\(720\) −1.55518 9.70876i −0.0579581 0.361824i
\(721\) 0 0
\(722\) −32.8253 −1.22163
\(723\) −22.8263 2.86995i −0.848919 0.106735i
\(724\) 38.9906 22.5112i 1.44907 0.836624i
\(725\) 8.21919 + 7.70059i 0.305253 + 0.285993i
\(726\) −1.70344 + 13.5484i −0.0632205 + 0.502827i
\(727\) −18.6502 −0.691699 −0.345849 0.938290i \(-0.612409\pi\)
−0.345849 + 0.938290i \(0.612409\pi\)
\(728\) 0 0
\(729\) −19.7475 18.4130i −0.731387 0.681962i
\(730\) −6.50002 14.9970i −0.240576 0.555065i
\(731\) −10.3466 17.9208i −0.382681 0.662824i
\(732\) 41.1799 54.3191i 1.52205 2.00769i
\(733\) 18.7967 32.5568i 0.694271 1.20251i −0.276155 0.961113i \(-0.589060\pi\)
0.970426 0.241399i \(-0.0776062\pi\)
\(734\) 53.8821 1.98882
\(735\) 0 0
\(736\) −21.3813 −0.788124
\(737\) 20.5852 35.6546i 0.758264 1.31335i
\(738\) 22.5435 + 5.75984i 0.829837 + 0.212023i
\(739\) 24.7189 + 42.8144i 0.909300 + 1.57495i 0.815039 + 0.579406i \(0.196715\pi\)
0.0942603 + 0.995548i \(0.469951\pi\)
\(740\) 19.8924 8.62177i 0.731259 0.316942i
\(741\) 8.89228 + 21.1190i 0.326666 + 0.775826i
\(742\) 0 0
\(743\) 42.7477 1.56826 0.784131 0.620596i \(-0.213109\pi\)
0.784131 + 0.620596i \(0.213109\pi\)
\(744\) −22.2656 2.79945i −0.816295 0.102633i
\(745\) −2.76689 + 24.0343i −0.101371 + 0.880550i
\(746\) −42.1929 + 24.3601i −1.54479 + 0.891886i
\(747\) 7.69304 2.15772i 0.281474 0.0789470i
\(748\) 32.3236 1.18187
\(749\) 0 0
\(750\) −42.7144 + 2.33761i −1.55971 + 0.0853575i
\(751\) −2.79526 + 4.84152i −0.102000 + 0.176670i −0.912509 0.409057i \(-0.865858\pi\)
0.810508 + 0.585727i \(0.199191\pi\)
\(752\) 6.36310 3.67374i 0.232039 0.133968i
\(753\) −12.5982 9.55082i −0.459103 0.348051i
\(754\) 28.0183 + 16.1764i 1.02037 + 0.589109i
\(755\) 11.0517 14.8989i 0.402211 0.542227i
\(756\) 0 0
\(757\) 42.9931i 1.56261i −0.624150 0.781305i \(-0.714555\pi\)
0.624150 0.781305i \(-0.285445\pi\)
\(758\) 1.27906 2.21539i 0.0464574 0.0804666i
\(759\) 11.9842 15.8079i 0.434998 0.573791i
\(760\) −1.01156 + 8.78681i −0.0366930 + 0.318731i
\(761\) −24.5715 + 42.5591i −0.890716 + 1.54277i −0.0516970 + 0.998663i \(0.516463\pi\)
−0.839019 + 0.544102i \(0.816870\pi\)
\(762\) 0.886912 + 2.10640i 0.0321294 + 0.0763068i
\(763\) 0 0
\(764\) 31.0436i 1.12312i
\(765\) 7.03665 18.4277i 0.254411 0.666253i
\(766\) −4.07358 + 2.35188i −0.147184 + 0.0849769i
\(767\) −25.7795 44.6514i −0.930843 1.61227i
\(768\) 1.16872 9.29547i 0.0421725 0.335421i
\(769\) 27.0203i 0.974376i −0.873297 0.487188i \(-0.838023\pi\)
0.873297 0.487188i \(-0.161977\pi\)
\(770\) 0 0
\(771\) 4.49412 + 10.6735i 0.161852 + 0.384395i
\(772\) −4.60466 2.65850i −0.165725 0.0956816i
\(773\) −45.8267 + 26.4581i −1.64827 + 0.951631i −0.670515 + 0.741896i \(0.733927\pi\)
−0.977758 + 0.209735i \(0.932740\pi\)
\(774\) 11.5450 45.1859i 0.414975 1.62417i
\(775\) 7.57267 32.4538i 0.272018 1.16577i
\(776\) 8.68312 0.311706
\(777\) 0 0
\(778\) 53.3645i 1.91321i
\(779\) 6.18711 + 3.57213i 0.221676 + 0.127985i
\(780\) −69.6161 + 20.3133i −2.49266 + 0.727331i
\(781\) 20.9788 + 36.3364i 0.750681 + 1.30022i
\(782\) −16.8797 9.74550i −0.603617 0.348499i
\(783\) −10.8905 4.28956i −0.389193 0.153296i
\(784\) 0 0
\(785\) −7.20950 + 9.71926i −0.257318 + 0.346895i
\(786\) 2.77405 22.0636i 0.0989471 0.786981i
\(787\) 8.37879 + 14.5125i 0.298672 + 0.517315i 0.975832 0.218521i \(-0.0701231\pi\)
−0.677161 + 0.735835i \(0.736790\pi\)
\(788\) −11.6630 20.2009i −0.415477 0.719627i
\(789\) 5.21340 41.4650i 0.185602 1.47619i
\(790\) −17.2150 + 23.2078i −0.612481 + 0.825697i
\(791\) 0 0
\(792\) 15.9218 + 15.5550i 0.565756 + 0.552723i
\(793\) 76.9414 + 44.4222i 2.73227 + 1.57748i
\(794\) 13.2719 + 22.9876i 0.471001 + 0.815798i
\(795\) −7.19134 + 2.09836i −0.255051 + 0.0744211i
\(796\) −25.1974 14.5477i −0.893099 0.515631i
\(797\) 55.9724i 1.98264i −0.131462 0.991321i \(-0.541967\pi\)
0.131462 0.991321i \(-0.458033\pi\)
\(798\) 0 0
\(799\) 14.7401 0.521466
\(800\) 34.6965 + 8.09598i 1.22671 + 0.286236i
\(801\) 39.2856 + 10.0374i 1.38809 + 0.354655i
\(802\) 58.9813 34.0529i 2.08270 1.20245i
\(803\) −10.9380 6.31503i −0.385992 0.222853i
\(804\) −20.8794 49.5882i −0.736359 1.74884i
\(805\) 0 0
\(806\) 95.7274i 3.37186i
\(807\) −4.10702 + 32.6654i −0.144574 + 1.14988i
\(808\) 8.62160 + 14.9331i 0.303307 + 0.525343i
\(809\) −36.4604 + 21.0504i −1.28188 + 0.740094i −0.977192 0.212358i \(-0.931886\pi\)
−0.304689 + 0.952452i \(0.598553\pi\)
\(810\) 40.3670 18.6249i 1.41835 0.654413i
\(811\) 1.35051i 0.0474227i −0.999719 0.0237113i \(-0.992452\pi\)
0.999719 0.0237113i \(-0.00754826\pi\)
\(812\) 0 0
\(813\) 7.96388 + 18.9141i 0.279306 + 0.663346i
\(814\) 14.1934 24.5837i 0.497479 0.861659i
\(815\) 4.38758 38.1123i 0.153690 1.33502i
\(816\) −4.50993 + 5.94890i −0.157879 + 0.208253i
\(817\) 7.15993 12.4014i 0.250494 0.433869i
\(818\) 34.6141i 1.21025i
\(819\) 0 0
\(820\) −13.4701 + 18.1592i −0.470395 + 0.634147i
\(821\) −9.82457 5.67222i −0.342880 0.197962i 0.318665 0.947867i \(-0.396765\pi\)
−0.661545 + 0.749906i \(0.730099\pi\)
\(822\) 3.33471 + 2.52809i 0.116312 + 0.0881771i
\(823\) −26.1348 + 15.0889i −0.911002 + 0.525967i −0.880754 0.473575i \(-0.842963\pi\)
−0.0302488 + 0.999542i \(0.509630\pi\)
\(824\) −1.28533 + 2.22626i −0.0447766 + 0.0775554i
\(825\) −25.4330 + 21.1146i −0.885463 + 0.735114i
\(826\) 0 0
\(827\) 34.7911 1.20981 0.604903 0.796299i \(-0.293212\pi\)
0.604903 + 0.796299i \(0.293212\pi\)
\(828\) −7.00112 24.9614i −0.243306 0.867470i
\(829\) −3.50678 + 2.02464i −0.121796 + 0.0703187i −0.559660 0.828722i \(-0.689068\pi\)
0.437864 + 0.899041i \(0.355735\pi\)
\(830\) −1.50458 + 13.0694i −0.0522246 + 0.453645i
\(831\) −28.3867 3.56906i −0.984725 0.123809i
\(832\) 83.2833 2.88733
\(833\) 0 0
\(834\) 10.9276 + 25.9529i 0.378393 + 0.898676i
\(835\) −19.7079 + 8.54181i −0.682021 + 0.295602i
\(836\) 11.1841 + 19.3715i 0.386811 + 0.669977i
\(837\) 5.11992 + 34.2524i 0.176970 + 1.18394i
\(838\) −21.6460 + 37.4920i −0.747749 + 1.29514i
\(839\) −25.8653 −0.892969 −0.446485 0.894791i \(-0.647324\pi\)
−0.446485 + 0.894791i \(0.647324\pi\)
\(840\) 0 0
\(841\) 23.9258 0.825029
\(842\) −35.9846 + 62.3272i −1.24011 + 2.14794i
\(843\) 10.5764 13.9510i 0.364271 0.480497i
\(844\) −15.3816 26.6417i −0.529457 0.917047i
\(845\) −26.0285 60.0537i −0.895408 2.06591i
\(846\) 23.7627 + 23.2153i 0.816978 + 0.798158i
\(847\) 0 0
\(848\) 2.83509 0.0973573
\(849\) 1.29686 10.3146i 0.0445080 0.353997i
\(850\) 23.7015 + 22.2060i 0.812953 + 0.761660i
\(851\) −8.74849 + 5.05094i −0.299894 + 0.173144i
\(852\) 54.4052 + 6.84036i 1.86389 + 0.234347i
\(853\) 37.5709 1.28640 0.643201 0.765697i \(-0.277606\pi\)
0.643201 + 0.765697i \(0.277606\pi\)
\(854\) 0 0
\(855\) 13.4784 2.15901i 0.460952 0.0738366i
\(856\) 3.23117 5.59655i 0.110439 0.191286i
\(857\) 19.8563 11.4640i 0.678278 0.391604i −0.120928 0.992661i \(-0.538587\pi\)
0.799206 + 0.601057i \(0.205254\pi\)
\(858\) −57.3630 + 75.6656i −1.95834 + 2.58318i
\(859\) 16.2512 + 9.38264i 0.554484 + 0.320132i 0.750929 0.660383i \(-0.229606\pi\)
−0.196444 + 0.980515i \(0.562940\pi\)
\(860\) 36.3981 + 26.9992i 1.24117 + 0.920666i
\(861\) 0 0
\(862\) 61.6092i 2.09842i
\(863\) 4.23086 7.32807i 0.144020 0.249450i −0.784987 0.619512i \(-0.787330\pi\)
0.929007 + 0.370062i \(0.120664\pi\)
\(864\) −36.6194 + 5.47373i −1.24582 + 0.186220i
\(865\) −2.60144 + 22.5972i −0.0884517 + 0.768329i
\(866\) −3.83659 + 6.64517i −0.130373 + 0.225812i
\(867\) 13.3348 5.61470i 0.452874 0.190685i
\(868\) 0 0
\(869\) 22.3281i 0.757428i
\(870\) 13.3231 13.9256i 0.451694 0.472121i
\(871\) 60.7329 35.0641i 2.05785 1.18810i
\(872\) 11.9535 + 20.7041i 0.404797 + 0.701129i
\(873\) −3.61892 12.9027i −0.122482 0.436691i
\(874\) 13.4880i 0.456238i
\(875\) 0 0
\(876\) −15.2125 + 6.40529i −0.513981 + 0.216415i
\(877\) 3.27867 + 1.89294i 0.110713 + 0.0639201i 0.554334 0.832294i \(-0.312973\pi\)
−0.443621 + 0.896214i \(0.646306\pi\)
\(878\) 7.55301 4.36073i 0.254902 0.147168i
\(879\) 3.71852 4.90498i 0.125423 0.165441i
\(880\) 11.4782 4.97490i 0.386931 0.167704i
\(881\) −54.6531 −1.84131 −0.920654 0.390379i \(-0.872344\pi\)
−0.920654 + 0.390379i \(0.872344\pi\)
\(882\) 0 0
\(883\) 28.1492i 0.947295i 0.880715 + 0.473647i \(0.157063\pi\)
−0.880715 + 0.473647i \(0.842937\pi\)
\(884\) 47.6824 + 27.5295i 1.60373 + 0.925916i
\(885\) −29.4840 + 8.60311i −0.991093 + 0.289191i
\(886\) 17.7065 + 30.6686i 0.594862 + 1.03033i
\(887\) −26.0011 15.0117i −0.873032 0.504045i −0.00467726 0.999989i \(-0.501489\pi\)
−0.868355 + 0.495944i \(0.834822\pi\)
\(888\) −4.39873 10.4469i −0.147612 0.350575i
\(889\) 0 0
\(890\) −39.7751 + 53.6215i −1.33326 + 1.79740i
\(891\) 16.4782 30.1420i 0.552041 1.00980i
\(892\) −5.94975 10.3053i −0.199212 0.345046i
\(893\) 5.10015 + 8.83371i 0.170670 + 0.295609i
\(894\) 41.0742 + 5.16426i 1.37373 + 0.172719i
\(895\) −42.4816 31.5118i −1.42000 1.05332i
\(896\) 0 0
\(897\) 31.1420 13.1125i 1.03980 0.437814i
\(898\) −40.3668 23.3058i −1.34706 0.777724i
\(899\) 7.50689 + 13.0023i 0.250369 + 0.433651i
\(900\) 1.90948 + 43.1572i 0.0636493 + 1.43857i
\(901\) 4.92559 + 2.84379i 0.164095 + 0.0947404i
\(902\) 29.6036i 0.985691i
\(903\) 0 0
\(904\) 39.7702 1.32274
\(905\) 32.0735 13.9013i 1.06616 0.462095i
\(906\) −25.2949 19.1764i −0.840367 0.637092i
\(907\) 16.8295 9.71653i 0.558815 0.322632i −0.193855 0.981030i \(-0.562099\pi\)
0.752670 + 0.658398i \(0.228766\pi\)
\(908\) −17.8969 10.3328i −0.593931 0.342906i
\(909\) 18.5966 19.0351i 0.616809 0.631354i
\(910\) 0 0
\(911\) 53.2832i 1.76535i −0.469982 0.882676i \(-0.655739\pi\)
0.469982 0.882676i \(-0.344261\pi\)
\(912\) −5.12563 0.644446i −0.169727 0.0213397i
\(913\) 5.08280 + 8.80366i 0.168216 + 0.291359i
\(914\) 18.3787 10.6110i 0.607914 0.350979i
\(915\) 36.5866 38.2412i 1.20952 1.26422i
\(916\) 30.0988i 0.994493i
\(917\) 0 0
\(918\) −31.4046 12.3697i −1.03650 0.408261i
\(919\) −22.5064 + 38.9822i −0.742416 + 1.28590i 0.208976 + 0.977921i \(0.432987\pi\)
−0.951392 + 0.307982i \(0.900346\pi\)
\(920\) 12.9570 + 1.49163i 0.427178 + 0.0491777i
\(921\) −40.0749 30.3812i −1.32051 1.00110i
\(922\) −27.1015 + 46.9412i −0.892541 + 1.54593i
\(923\) 71.4693i 2.35244i
\(924\) 0 0
\(925\) 16.1092 4.88383i 0.529666 0.160579i
\(926\) 27.9073 + 16.1123i 0.917092 + 0.529483i
\(927\) 3.84382 + 0.982092i 0.126248 + 0.0322561i
\(928\) −13.9008 + 8.02565i −0.456317 + 0.263455i
\(929\) 21.3495 36.9785i 0.700455 1.21322i −0.267852 0.963460i \(-0.586314\pi\)
0.968307 0.249764i \(-0.0803530\pi\)
\(930\) −55.3942 13.5378i −1.81645 0.443921i
\(931\) 0 0
\(932\) 11.2360 0.368048
\(933\) 1.86777 14.8554i 0.0611482 0.486345i
\(934\) 34.2800 19.7916i 1.12168 0.647600i
\(935\) 24.9321 + 2.87024i 0.815366 + 0.0938668i
\(936\) 10.2392 + 36.5065i 0.334680 + 1.19325i
\(937\) −26.4685 −0.864688 −0.432344 0.901709i \(-0.642313\pi\)
−0.432344 + 0.901709i \(0.642313\pi\)
\(938\) 0 0
\(939\) −17.3235 + 7.29415i −0.565330 + 0.238036i
\(940\) −29.6189 + 12.8375i −0.966063 + 0.418711i
\(941\) −15.8545 27.4609i −0.516843 0.895199i −0.999809 0.0195596i \(-0.993774\pi\)
0.482965 0.875640i \(-0.339560\pi\)
\(942\) 16.5010 + 12.5096i 0.537633 + 0.407586i
\(943\) 5.26744 9.12347i 0.171531 0.297101i
\(944\) 11.6237 0.378318
\(945\) 0 0
\(946\) 59.3370 1.92921
\(947\) 5.97276 10.3451i 0.194089 0.336171i −0.752513 0.658578i \(-0.771158\pi\)
0.946601 + 0.322406i \(0.104492\pi\)
\(948\) 23.2532 + 17.6285i 0.755229 + 0.572548i
\(949\) −10.7568 18.6314i −0.349181 0.604800i
\(950\) −5.10720 + 21.8877i −0.165699 + 0.710130i
\(951\) 14.9111 6.27839i 0.483524 0.203591i
\(952\) 0 0
\(953\) 1.76384 0.0571364 0.0285682 0.999592i \(-0.490905\pi\)
0.0285682 + 0.999592i \(0.490905\pi\)
\(954\) 3.46171 + 12.3422i 0.112077 + 0.399594i
\(955\) 2.75658 23.9448i 0.0892008 0.774835i
\(956\) −59.3284 + 34.2532i −1.91882 + 1.10783i
\(957\) 1.85775 14.7757i 0.0600527 0.477632i
\(958\) 6.54980 0.211614
\(959\) 0 0
\(960\) 11.7779 48.1932i 0.380131 1.55543i
\(961\) 6.71186 11.6253i 0.216511 0.375009i
\(962\) 41.8752 24.1766i 1.35011 0.779486i
\(963\) −9.66291 2.46886i −0.311383 0.0795580i
\(964\) −33.1282 19.1266i −1.06699 0.616026i
\(965\) −3.31564 2.45946i −0.106734 0.0791728i
\(966\) 0 0
\(967\) 53.4014i 1.71727i 0.512584 + 0.858637i \(0.328688\pi\)
−0.512584 + 0.858637i \(0.671312\pi\)
\(968\) −3.46869 + 6.00795i −0.111488 + 0.193103i
\(969\) −8.25869 6.26101i −0.265307 0.201133i
\(970\) 21.9199 + 2.52347i 0.703805 + 0.0810236i
\(971\) −23.9577 + 41.4959i −0.768838 + 1.33167i 0.169356 + 0.985555i \(0.445831\pi\)
−0.938193 + 0.346111i \(0.887502\pi\)
\(972\) −18.3810 40.9588i −0.589571 1.31375i
\(973\) 0 0
\(974\) 73.4642i 2.35394i
\(975\) −55.5007 + 9.48649i −1.77744 + 0.303811i
\(976\) −17.3460 + 10.0147i −0.555231 + 0.320563i
\(977\) −4.07411 7.05657i −0.130342 0.225760i 0.793466 0.608614i \(-0.208274\pi\)
−0.923809 + 0.382855i \(0.874941\pi\)
\(978\) −65.1332 8.18920i −2.08273 0.261862i
\(979\) 51.5889i 1.64879i
\(980\) 0 0
\(981\) 25.7834 26.3914i 0.823201 0.842612i
\(982\) 48.7636 + 28.1537i 1.55611 + 0.898420i
\(983\) −12.6460 + 7.30116i −0.403344 + 0.232871i −0.687926 0.725781i \(-0.741479\pi\)
0.284582 + 0.958652i \(0.408145\pi\)
\(984\) 9.42003 + 7.14143i 0.300300 + 0.227661i
\(985\) −7.20222 16.6172i −0.229482 0.529467i
\(986\) −14.6322 −0.465986
\(987\) 0 0
\(988\) 38.1014i 1.21217i
\(989\) −18.2870 10.5580i −0.581492 0.335725i
\(990\) 35.6728 + 43.8946i 1.13376 + 1.39506i
\(991\) −7.84118 13.5813i −0.249083 0.431425i 0.714188 0.699953i \(-0.246796\pi\)
−0.963272 + 0.268529i \(0.913463\pi\)
\(992\) 41.1307 + 23.7468i 1.30590 + 0.753962i
\(993\) 4.64398 1.95537i 0.147372 0.0620519i
\(994\) 0 0
\(995\) −18.1437 13.4585i −0.575194 0.426664i
\(996\) 13.1814 + 1.65730i 0.417669 + 0.0525136i
\(997\) −13.5211 23.4192i −0.428218 0.741695i 0.568497 0.822685i \(-0.307525\pi\)
−0.996715 + 0.0809903i \(0.974192\pi\)
\(998\) −37.1913 64.4173i −1.17727 2.03909i
\(999\) −13.6904 + 10.8903i −0.433144 + 0.344555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.p.g.509.29 64
3.2 odd 2 inner 735.2.p.g.509.2 64
5.4 even 2 inner 735.2.p.g.509.4 64
7.2 even 3 735.2.g.c.734.3 yes 32
7.3 odd 6 inner 735.2.p.g.374.31 64
7.4 even 3 inner 735.2.p.g.374.30 64
7.5 odd 6 735.2.g.c.734.2 yes 32
7.6 odd 2 inner 735.2.p.g.509.32 64
15.14 odd 2 inner 735.2.p.g.509.31 64
21.2 odd 6 735.2.g.c.734.32 yes 32
21.5 even 6 735.2.g.c.734.29 yes 32
21.11 odd 6 inner 735.2.p.g.374.1 64
21.17 even 6 inner 735.2.p.g.374.4 64
21.20 even 2 inner 735.2.p.g.509.3 64
35.4 even 6 inner 735.2.p.g.374.3 64
35.9 even 6 735.2.g.c.734.30 yes 32
35.19 odd 6 735.2.g.c.734.31 yes 32
35.24 odd 6 inner 735.2.p.g.374.2 64
35.34 odd 2 inner 735.2.p.g.509.1 64
105.44 odd 6 735.2.g.c.734.1 32
105.59 even 6 inner 735.2.p.g.374.29 64
105.74 odd 6 inner 735.2.p.g.374.32 64
105.89 even 6 735.2.g.c.734.4 yes 32
105.104 even 2 inner 735.2.p.g.509.30 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.g.c.734.1 32 105.44 odd 6
735.2.g.c.734.2 yes 32 7.5 odd 6
735.2.g.c.734.3 yes 32 7.2 even 3
735.2.g.c.734.4 yes 32 105.89 even 6
735.2.g.c.734.29 yes 32 21.5 even 6
735.2.g.c.734.30 yes 32 35.9 even 6
735.2.g.c.734.31 yes 32 35.19 odd 6
735.2.g.c.734.32 yes 32 21.2 odd 6
735.2.p.g.374.1 64 21.11 odd 6 inner
735.2.p.g.374.2 64 35.24 odd 6 inner
735.2.p.g.374.3 64 35.4 even 6 inner
735.2.p.g.374.4 64 21.17 even 6 inner
735.2.p.g.374.29 64 105.59 even 6 inner
735.2.p.g.374.30 64 7.4 even 3 inner
735.2.p.g.374.31 64 7.3 odd 6 inner
735.2.p.g.374.32 64 105.74 odd 6 inner
735.2.p.g.509.1 64 35.34 odd 2 inner
735.2.p.g.509.2 64 3.2 odd 2 inner
735.2.p.g.509.3 64 21.20 even 2 inner
735.2.p.g.509.4 64 5.4 even 2 inner
735.2.p.g.509.29 64 1.1 even 1 trivial
735.2.p.g.509.30 64 105.104 even 2 inner
735.2.p.g.509.31 64 15.14 odd 2 inner
735.2.p.g.509.32 64 7.6 odd 2 inner