Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [735,2,Mod(734,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.734");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 735.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.86900454856\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
734.1 | −2.20906 | −1.59632 | − | 0.672139i | 2.87996 | 1.33217 | + | 1.79592i | 3.52637 | + | 1.48480i | 0 | −1.94389 | 2.09646 | + | 2.14589i | −2.94284 | − | 3.96730i | ||||||||
734.2 | −2.20906 | −1.59632 | + | 0.672139i | 2.87996 | 1.33217 | − | 1.79592i | 3.52637 | − | 1.48480i | 0 | −1.94389 | 2.09646 | − | 2.14589i | −2.94284 | + | 3.96730i | ||||||||
734.3 | −2.20906 | 1.59632 | − | 0.672139i | 2.87996 | −1.33217 | + | 1.79592i | −3.52637 | + | 1.48480i | 0 | −1.94389 | 2.09646 | − | 2.14589i | 2.94284 | − | 3.96730i | ||||||||
734.4 | −2.20906 | 1.59632 | + | 0.672139i | 2.87996 | −1.33217 | − | 1.79592i | −3.52637 | − | 1.48480i | 0 | −1.94389 | 2.09646 | + | 2.14589i | 2.94284 | + | 3.96730i | ||||||||
734.5 | −2.04548 | −0.965325 | − | 1.43811i | 2.18398 | 2.23143 | − | 0.144014i | 1.97455 | + | 2.94161i | 0 | −0.376326 | −1.13630 | + | 2.77648i | −4.56433 | + | 0.294577i | ||||||||
734.6 | −2.04548 | −0.965325 | + | 1.43811i | 2.18398 | 2.23143 | + | 0.144014i | 1.97455 | − | 2.94161i | 0 | −0.376326 | −1.13630 | − | 2.77648i | −4.56433 | − | 0.294577i | ||||||||
734.7 | −2.04548 | 0.965325 | − | 1.43811i | 2.18398 | −2.23143 | − | 0.144014i | −1.97455 | + | 2.94161i | 0 | −0.376326 | −1.13630 | − | 2.77648i | 4.56433 | + | 0.294577i | ||||||||
734.8 | −2.04548 | 0.965325 | + | 1.43811i | 2.18398 | −2.23143 | + | 0.144014i | −1.97455 | − | 2.94161i | 0 | −0.376326 | −1.13630 | + | 2.77648i | 4.56433 | − | 0.294577i | ||||||||
734.9 | −0.903339 | −1.72180 | − | 0.188163i | −1.18398 | −1.94641 | − | 1.10068i | 1.55537 | + | 0.169975i | 0 | 2.87621 | 2.92919 | + | 0.647957i | 1.75827 | + | 0.994285i | ||||||||
734.10 | −0.903339 | −1.72180 | + | 0.188163i | −1.18398 | −1.94641 | + | 1.10068i | 1.55537 | − | 0.169975i | 0 | 2.87621 | 2.92919 | − | 0.647957i | 1.75827 | − | 0.994285i | ||||||||
734.11 | −0.903339 | 1.72180 | − | 0.188163i | −1.18398 | 1.94641 | − | 1.10068i | −1.55537 | + | 0.169975i | 0 | 2.87621 | 2.92919 | − | 0.647957i | −1.75827 | + | 0.994285i | ||||||||
734.12 | −0.903339 | 1.72180 | + | 0.188163i | −1.18398 | 1.94641 | + | 1.10068i | −1.55537 | − | 0.169975i | 0 | 2.87621 | 2.92919 | + | 0.647957i | −1.75827 | − | 0.994285i | ||||||||
734.13 | −0.346467 | −1.43364 | − | 0.971945i | −1.87996 | 1.85945 | + | 1.24195i | 0.496709 | + | 0.336746i | 0 | 1.34428 | 1.11065 | + | 2.78684i | −0.644238 | − | 0.430294i | ||||||||
734.14 | −0.346467 | −1.43364 | + | 0.971945i | −1.87996 | 1.85945 | − | 1.24195i | 0.496709 | − | 0.336746i | 0 | 1.34428 | 1.11065 | − | 2.78684i | −0.644238 | + | 0.430294i | ||||||||
734.15 | −0.346467 | 1.43364 | − | 0.971945i | −1.87996 | −1.85945 | + | 1.24195i | −0.496709 | + | 0.336746i | 0 | 1.34428 | 1.11065 | − | 2.78684i | 0.644238 | − | 0.430294i | ||||||||
734.16 | −0.346467 | 1.43364 | + | 0.971945i | −1.87996 | −1.85945 | − | 1.24195i | −0.496709 | − | 0.336746i | 0 | 1.34428 | 1.11065 | + | 2.78684i | 0.644238 | + | 0.430294i | ||||||||
734.17 | 0.346467 | −1.43364 | − | 0.971945i | −1.87996 | −1.85945 | + | 1.24195i | −0.496709 | − | 0.336746i | 0 | −1.34428 | 1.11065 | + | 2.78684i | −0.644238 | + | 0.430294i | ||||||||
734.18 | 0.346467 | −1.43364 | + | 0.971945i | −1.87996 | −1.85945 | − | 1.24195i | −0.496709 | + | 0.336746i | 0 | −1.34428 | 1.11065 | − | 2.78684i | −0.644238 | − | 0.430294i | ||||||||
734.19 | 0.346467 | 1.43364 | − | 0.971945i | −1.87996 | 1.85945 | + | 1.24195i | 0.496709 | − | 0.336746i | 0 | −1.34428 | 1.11065 | − | 2.78684i | 0.644238 | + | 0.430294i | ||||||||
734.20 | 0.346467 | 1.43364 | + | 0.971945i | −1.87996 | 1.85945 | − | 1.24195i | 0.496709 | + | 0.336746i | 0 | −1.34428 | 1.11065 | + | 2.78684i | 0.644238 | − | 0.430294i | ||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
35.c | odd | 2 | 1 | inner |
105.g | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.g.c | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
5.b | even | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
7.b | odd | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
7.c | even | 3 | 2 | 735.2.p.g | 64 | ||
7.d | odd | 6 | 2 | 735.2.p.g | 64 | ||
15.d | odd | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
21.c | even | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
21.g | even | 6 | 2 | 735.2.p.g | 64 | ||
21.h | odd | 6 | 2 | 735.2.p.g | 64 | ||
35.c | odd | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
35.i | odd | 6 | 2 | 735.2.p.g | 64 | ||
35.j | even | 6 | 2 | 735.2.p.g | 64 | ||
105.g | even | 2 | 1 | inner | 735.2.g.c | ✓ | 32 |
105.o | odd | 6 | 2 | 735.2.p.g | 64 | ||
105.p | even | 6 | 2 | 735.2.p.g | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
735.2.g.c | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
735.2.g.c | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
735.2.g.c | ✓ | 32 | 5.b | even | 2 | 1 | inner |
735.2.g.c | ✓ | 32 | 7.b | odd | 2 | 1 | inner |
735.2.g.c | ✓ | 32 | 15.d | odd | 2 | 1 | inner |
735.2.g.c | ✓ | 32 | 21.c | even | 2 | 1 | inner |
735.2.g.c | ✓ | 32 | 35.c | odd | 2 | 1 | inner |
735.2.g.c | ✓ | 32 | 105.g | even | 2 | 1 | inner |
735.2.p.g | 64 | 7.c | even | 3 | 2 | ||
735.2.p.g | 64 | 7.d | odd | 6 | 2 | ||
735.2.p.g | 64 | 21.g | even | 6 | 2 | ||
735.2.p.g | 64 | 21.h | odd | 6 | 2 | ||
735.2.p.g | 64 | 35.i | odd | 6 | 2 | ||
735.2.p.g | 64 | 35.j | even | 6 | 2 | ||
735.2.p.g | 64 | 105.o | odd | 6 | 2 | ||
735.2.p.g | 64 | 105.p | even | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 10T_{2}^{6} + 29T_{2}^{4} - 20T_{2}^{2} + 2 \) acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\).