L(s) = 1 | + (0.686 − 0.396i)2-s + (−0.5 − 1.65i)3-s + (−0.686 + 1.18i)4-s + (−0.5 − 0.866i)5-s + (−1 − 0.939i)6-s + 2.67i·8-s + (−2.5 + 1.65i)9-s + (−0.686 − 0.396i)10-s + (−2.18 − 1.26i)11-s + (2.31 + 0.543i)12-s − 4.10i·13-s + (−1.18 + 1.26i)15-s + (−0.313 − 0.543i)16-s + (−2.18 + 3.78i)17-s + (−1.05 + 2.12i)18-s + (−3 + 1.73i)19-s + ⋯ |
L(s) = 1 | + (0.485 − 0.280i)2-s + (−0.288 − 0.957i)3-s + (−0.343 + 0.594i)4-s + (−0.223 − 0.387i)5-s + (−0.408 − 0.383i)6-s + 0.944i·8-s + (−0.833 + 0.552i)9-s + (−0.216 − 0.125i)10-s + (−0.659 − 0.380i)11-s + (0.667 + 0.156i)12-s − 1.13i·13-s + (−0.306 + 0.325i)15-s + (−0.0784 − 0.135i)16-s + (−0.530 + 0.918i)17-s + (−0.249 + 0.501i)18-s + (−0.688 + 0.397i)19-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(−0.683−0.729i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(−0.683−0.729i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
−0.683−0.729i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(521,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 735, ( :1/2), −0.683−0.729i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+1.65i)T |
| 5 | 1+(0.5+0.866i)T |
| 7 | 1 |
good | 2 | 1+(−0.686+0.396i)T+(1−1.73i)T2 |
| 11 | 1+(2.18+1.26i)T+(5.5+9.52i)T2 |
| 13 | 1+4.10iT−13T2 |
| 17 | 1+(2.18−3.78i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3−1.73i)T+(9.5−16.4i)T2 |
| 23 | 1+(7.37−4.25i)T+(11.5−19.9i)T2 |
| 29 | 1+0.939iT−29T2 |
| 31 | 1+(3+1.73i)T+(15.5+26.8i)T2 |
| 37 | 1+(−3.37−5.84i)T+(−18.5+32.0i)T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4.74T+43T2 |
| 47 | 1+(−0.813−1.40i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.62+0.939i)T+(26.5+45.8i)T2 |
| 59 | 1+(−4.37+7.57i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6+3.46i)T+(30.5−52.8i)T2 |
| 67 | 1+(2.37−4.10i)T+(−33.5−58.0i)T2 |
| 71 | 1+0.294iT−71T2 |
| 73 | 1+(6+3.46i)T+(36.5+63.2i)T2 |
| 79 | 1+(−1.18−2.05i)T+(−39.5+68.4i)T2 |
| 83 | 1+17.4T+83T2 |
| 89 | 1+(7.37+12.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+11.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.993520351858491363006438214363, −8.443609824283572369113302410814, −8.238031433223495609439805565836, −7.43605306084102291681294566740, −6.03882635594684108175454790410, −5.42473902684477284679254674194, −4.23488849194746780979303160692, −3.14665007656182472523434853285, −1.94704036782126069818120258769, 0,
2.42043711468817377514870868992, 4.00077382364220416236385425962, 4.49292449248453140819467458082, 5.43987791663344200418010095689, 6.36647405910844552689341622122, 7.14573780348509903700571580083, 8.593490888608196655393025055681, 9.351901992941828904131818680931, 10.12919248947150458968448577343