Properties

Label 735.2.s.g.521.2
Level $735$
Weight $2$
Character 735.521
Analytic conductor $5.869$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(521,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 521.2
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 735.521
Dual form 735.2.s.g.656.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.686141 - 0.396143i) q^{2} +(-0.500000 - 1.65831i) q^{3} +(-0.686141 + 1.18843i) q^{4} +(-0.500000 - 0.866025i) q^{5} +(-1.00000 - 0.939764i) q^{6} +2.67181i q^{8} +(-2.50000 + 1.65831i) q^{9} +(-0.686141 - 0.396143i) q^{10} +(-2.18614 - 1.26217i) q^{11} +(2.31386 + 0.543620i) q^{12} -4.10891i q^{13} +(-1.18614 + 1.26217i) q^{15} +(-0.313859 - 0.543620i) q^{16} +(-2.18614 + 3.78651i) q^{17} +(-1.05842 + 2.12819i) q^{18} +(-3.00000 + 1.73205i) q^{19} +1.37228 q^{20} -2.00000 q^{22} +(-7.37228 + 4.25639i) q^{23} +(4.43070 - 1.33591i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(-1.62772 - 2.81929i) q^{26} +(4.00000 + 3.31662i) q^{27} -0.939764i q^{29} +(-0.313859 + 1.33591i) q^{30} +(-3.00000 - 1.73205i) q^{31} +(-5.05842 - 2.92048i) q^{32} +(-1.00000 + 4.25639i) q^{33} +3.46410i q^{34} +(-0.255437 - 4.10891i) q^{36} +(3.37228 + 5.84096i) q^{37} +(-1.37228 + 2.37686i) q^{38} +(-6.81386 + 2.05446i) q^{39} +(2.31386 - 1.33591i) q^{40} -6.00000 q^{41} +4.74456 q^{43} +(3.00000 - 1.73205i) q^{44} +(2.68614 + 1.33591i) q^{45} +(-3.37228 + 5.84096i) q^{46} +(0.813859 + 1.40965i) q^{47} +(-0.744563 + 0.792287i) q^{48} +0.792287i q^{50} +(7.37228 + 1.73205i) q^{51} +(4.88316 + 2.81929i) q^{52} +(-1.62772 - 0.939764i) q^{53} +(4.05842 + 0.691097i) q^{54} +2.52434i q^{55} +(4.37228 + 4.10891i) q^{57} +(-0.372281 - 0.644810i) q^{58} +(4.37228 - 7.57301i) q^{59} +(-0.686141 - 2.27567i) q^{60} +(6.00000 - 3.46410i) q^{61} -2.74456 q^{62} -3.37228 q^{64} +(-3.55842 + 2.05446i) q^{65} +(1.00000 + 3.31662i) q^{66} +(-2.37228 + 4.10891i) q^{67} +(-3.00000 - 5.19615i) q^{68} +(10.7446 + 10.0974i) q^{69} -0.294954i q^{71} +(-4.43070 - 6.67954i) q^{72} +(-6.00000 - 3.46410i) q^{73} +(4.62772 + 2.67181i) q^{74} +(1.68614 + 0.396143i) q^{75} -4.75372i q^{76} +(-3.86141 + 4.10891i) q^{78} +(1.18614 + 2.05446i) q^{79} +(-0.313859 + 0.543620i) q^{80} +(3.50000 - 8.29156i) q^{81} +(-4.11684 + 2.37686i) q^{82} -17.4891 q^{83} +4.37228 q^{85} +(3.25544 - 1.87953i) q^{86} +(-1.55842 + 0.469882i) q^{87} +(3.37228 - 5.84096i) q^{88} +(-7.37228 - 12.7692i) q^{89} +(2.37228 - 0.147477i) q^{90} -11.6819i q^{92} +(-1.37228 + 5.84096i) q^{93} +(1.11684 + 0.644810i) q^{94} +(3.00000 + 1.73205i) q^{95} +(-2.31386 + 9.84868i) q^{96} -11.0371i q^{97} +(7.55842 - 0.469882i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 2 q^{3} + 3 q^{4} - 2 q^{5} - 4 q^{6} - 10 q^{9} + 3 q^{10} - 3 q^{11} + 15 q^{12} + q^{15} - 7 q^{16} - 3 q^{17} + 13 q^{18} - 12 q^{19} - 6 q^{20} - 8 q^{22} - 18 q^{23} - 11 q^{24} - 2 q^{25}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.686141 0.396143i 0.485175 0.280116i −0.237396 0.971413i \(-0.576294\pi\)
0.722570 + 0.691297i \(0.242960\pi\)
\(3\) −0.500000 1.65831i −0.288675 0.957427i
\(4\) −0.686141 + 1.18843i −0.343070 + 0.594215i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.00000 0.939764i −0.408248 0.383657i
\(7\) 0 0
\(8\) 2.67181i 0.944629i
\(9\) −2.50000 + 1.65831i −0.833333 + 0.552771i
\(10\) −0.686141 0.396143i −0.216977 0.125272i
\(11\) −2.18614 1.26217i −0.659146 0.380558i 0.132805 0.991142i \(-0.457601\pi\)
−0.791952 + 0.610584i \(0.790935\pi\)
\(12\) 2.31386 + 0.543620i 0.667954 + 0.156930i
\(13\) 4.10891i 1.13961i −0.821781 0.569804i \(-0.807019\pi\)
0.821781 0.569804i \(-0.192981\pi\)
\(14\) 0 0
\(15\) −1.18614 + 1.26217i −0.306260 + 0.325891i
\(16\) −0.313859 0.543620i −0.0784648 0.135905i
\(17\) −2.18614 + 3.78651i −0.530217 + 0.918363i 0.469162 + 0.883112i \(0.344556\pi\)
−0.999379 + 0.0352504i \(0.988777\pi\)
\(18\) −1.05842 + 2.12819i −0.249472 + 0.501620i
\(19\) −3.00000 + 1.73205i −0.688247 + 0.397360i −0.802955 0.596040i \(-0.796740\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 1.37228 0.306851
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −7.37228 + 4.25639i −1.53723 + 0.887518i −0.538227 + 0.842800i \(0.680906\pi\)
−0.999000 + 0.0447187i \(0.985761\pi\)
\(24\) 4.43070 1.33591i 0.904414 0.272691i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) −1.62772 2.81929i −0.319222 0.552909i
\(27\) 4.00000 + 3.31662i 0.769800 + 0.638285i
\(28\) 0 0
\(29\) 0.939764i 0.174510i −0.996186 0.0872549i \(-0.972191\pi\)
0.996186 0.0872549i \(-0.0278095\pi\)
\(30\) −0.313859 + 1.33591i −0.0573026 + 0.243902i
\(31\) −3.00000 1.73205i −0.538816 0.311086i 0.205783 0.978598i \(-0.434026\pi\)
−0.744599 + 0.667512i \(0.767359\pi\)
\(32\) −5.05842 2.92048i −0.894211 0.516273i
\(33\) −1.00000 + 4.25639i −0.174078 + 0.740942i
\(34\) 3.46410i 0.594089i
\(35\) 0 0
\(36\) −0.255437 4.10891i −0.0425729 0.684819i
\(37\) 3.37228 + 5.84096i 0.554400 + 0.960248i 0.997950 + 0.0639989i \(0.0203854\pi\)
−0.443550 + 0.896249i \(0.646281\pi\)
\(38\) −1.37228 + 2.37686i −0.222613 + 0.385578i
\(39\) −6.81386 + 2.05446i −1.09109 + 0.328976i
\(40\) 2.31386 1.33591i 0.365853 0.211225i
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.74456 0.723539 0.361770 0.932268i \(-0.382173\pi\)
0.361770 + 0.932268i \(0.382173\pi\)
\(44\) 3.00000 1.73205i 0.452267 0.261116i
\(45\) 2.68614 + 1.33591i 0.400426 + 0.199145i
\(46\) −3.37228 + 5.84096i −0.497216 + 0.861203i
\(47\) 0.813859 + 1.40965i 0.118714 + 0.205618i 0.919258 0.393655i \(-0.128790\pi\)
−0.800545 + 0.599273i \(0.795456\pi\)
\(48\) −0.744563 + 0.792287i −0.107468 + 0.114357i
\(49\) 0 0
\(50\) 0.792287i 0.112046i
\(51\) 7.37228 + 1.73205i 1.03233 + 0.242536i
\(52\) 4.88316 + 2.81929i 0.677172 + 0.390965i
\(53\) −1.62772 0.939764i −0.223584 0.129086i 0.384024 0.923323i \(-0.374538\pi\)
−0.607609 + 0.794236i \(0.707871\pi\)
\(54\) 4.05842 + 0.691097i 0.552281 + 0.0940464i
\(55\) 2.52434i 0.340382i
\(56\) 0 0
\(57\) 4.37228 + 4.10891i 0.579123 + 0.544239i
\(58\) −0.372281 0.644810i −0.0488829 0.0846677i
\(59\) 4.37228 7.57301i 0.569223 0.985922i −0.427421 0.904053i \(-0.640578\pi\)
0.996643 0.0818694i \(-0.0260891\pi\)
\(60\) −0.686141 2.27567i −0.0885804 0.293788i
\(61\) 6.00000 3.46410i 0.768221 0.443533i −0.0640184 0.997949i \(-0.520392\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) −2.74456 −0.348560
\(63\) 0 0
\(64\) −3.37228 −0.421535
\(65\) −3.55842 + 2.05446i −0.441368 + 0.254824i
\(66\) 1.00000 + 3.31662i 0.123091 + 0.408248i
\(67\) −2.37228 + 4.10891i −0.289820 + 0.501983i −0.973767 0.227549i \(-0.926929\pi\)
0.683946 + 0.729532i \(0.260262\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 10.7446 + 10.0974i 1.29349 + 1.21558i
\(70\) 0 0
\(71\) 0.294954i 0.0350046i −0.999847 0.0175023i \(-0.994429\pi\)
0.999847 0.0175023i \(-0.00557143\pi\)
\(72\) −4.43070 6.67954i −0.522163 0.787191i
\(73\) −6.00000 3.46410i −0.702247 0.405442i 0.105937 0.994373i \(-0.466216\pi\)
−0.808184 + 0.588930i \(0.799549\pi\)
\(74\) 4.62772 + 2.67181i 0.537961 + 0.310592i
\(75\) 1.68614 + 0.396143i 0.194699 + 0.0457427i
\(76\) 4.75372i 0.545289i
\(77\) 0 0
\(78\) −3.86141 + 4.10891i −0.437218 + 0.465243i
\(79\) 1.18614 + 2.05446i 0.133451 + 0.231144i 0.925005 0.379956i \(-0.124061\pi\)
−0.791554 + 0.611100i \(0.790727\pi\)
\(80\) −0.313859 + 0.543620i −0.0350905 + 0.0607786i
\(81\) 3.50000 8.29156i 0.388889 0.921285i
\(82\) −4.11684 + 2.37686i −0.454629 + 0.262480i
\(83\) −17.4891 −1.91968 −0.959840 0.280546i \(-0.909484\pi\)
−0.959840 + 0.280546i \(0.909484\pi\)
\(84\) 0 0
\(85\) 4.37228 0.474240
\(86\) 3.25544 1.87953i 0.351043 0.202675i
\(87\) −1.55842 + 0.469882i −0.167080 + 0.0503766i
\(88\) 3.37228 5.84096i 0.359486 0.622649i
\(89\) −7.37228 12.7692i −0.781460 1.35353i −0.931091 0.364787i \(-0.881142\pi\)
0.149631 0.988742i \(-0.452192\pi\)
\(90\) 2.37228 0.147477i 0.250060 0.0155454i
\(91\) 0 0
\(92\) 11.6819i 1.21792i
\(93\) −1.37228 + 5.84096i −0.142299 + 0.605680i
\(94\) 1.11684 + 0.644810i 0.115194 + 0.0665071i
\(95\) 3.00000 + 1.73205i 0.307794 + 0.177705i
\(96\) −2.31386 + 9.84868i −0.236157 + 1.00518i
\(97\) 11.0371i 1.12065i −0.828273 0.560325i \(-0.810676\pi\)
0.828273 0.560325i \(-0.189324\pi\)
\(98\) 0 0
\(99\) 7.55842 0.469882i 0.759650 0.0472249i
\(100\) −0.686141 1.18843i −0.0686141 0.118843i
\(101\) −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i \(-0.929823\pi\)
0.677284 + 0.735721i \(0.263157\pi\)
\(102\) 5.74456 1.73205i 0.568796 0.171499i
\(103\) −5.44158 + 3.14170i −0.536175 + 0.309561i −0.743527 0.668706i \(-0.766849\pi\)
0.207353 + 0.978266i \(0.433515\pi\)
\(104\) 10.9783 1.07651
\(105\) 0 0
\(106\) −1.48913 −0.144637
\(107\) 5.74456 3.31662i 0.555348 0.320630i −0.195928 0.980618i \(-0.562772\pi\)
0.751276 + 0.659988i \(0.229439\pi\)
\(108\) −6.68614 + 2.47805i −0.643374 + 0.238451i
\(109\) 8.55842 14.8236i 0.819748 1.41985i −0.0861196 0.996285i \(-0.527447\pi\)
0.905868 0.423561i \(-0.139220\pi\)
\(110\) 1.00000 + 1.73205i 0.0953463 + 0.165145i
\(111\) 8.00000 8.51278i 0.759326 0.807997i
\(112\) 0 0
\(113\) 3.16915i 0.298128i 0.988828 + 0.149064i \(0.0476261\pi\)
−0.988828 + 0.149064i \(0.952374\pi\)
\(114\) 4.62772 + 1.08724i 0.433426 + 0.101829i
\(115\) 7.37228 + 4.25639i 0.687469 + 0.396910i
\(116\) 1.11684 + 0.644810i 0.103696 + 0.0598691i
\(117\) 6.81386 + 10.2723i 0.629942 + 0.949673i
\(118\) 6.92820i 0.637793i
\(119\) 0 0
\(120\) −3.37228 3.16915i −0.307846 0.289302i
\(121\) −2.31386 4.00772i −0.210351 0.364338i
\(122\) 2.74456 4.75372i 0.248481 0.430382i
\(123\) 3.00000 + 9.94987i 0.270501 + 0.897150i
\(124\) 4.11684 2.37686i 0.369704 0.213448i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −0.744563 −0.0660693 −0.0330346 0.999454i \(-0.510517\pi\)
−0.0330346 + 0.999454i \(0.510517\pi\)
\(128\) 7.80298 4.50506i 0.689693 0.398194i
\(129\) −2.37228 7.86797i −0.208868 0.692736i
\(130\) −1.62772 + 2.81929i −0.142760 + 0.247268i
\(131\) −2.74456 4.75372i −0.239794 0.415335i 0.720861 0.693079i \(-0.243746\pi\)
−0.960655 + 0.277745i \(0.910413\pi\)
\(132\) −4.37228 4.10891i −0.380558 0.357635i
\(133\) 0 0
\(134\) 3.75906i 0.324733i
\(135\) 0.872281 5.12241i 0.0750740 0.440867i
\(136\) −10.1168 5.84096i −0.867512 0.500858i
\(137\) 11.4891 + 6.63325i 0.981582 + 0.566717i 0.902747 0.430171i \(-0.141547\pi\)
0.0788348 + 0.996888i \(0.474880\pi\)
\(138\) 11.3723 + 2.67181i 0.968073 + 0.227440i
\(139\) 18.6101i 1.57849i 0.614078 + 0.789245i \(0.289528\pi\)
−0.614078 + 0.789245i \(0.710472\pi\)
\(140\) 0 0
\(141\) 1.93070 2.05446i 0.162595 0.173016i
\(142\) −0.116844 0.202380i −0.00980533 0.0169833i
\(143\) −5.18614 + 8.98266i −0.433687 + 0.751168i
\(144\) 1.68614 + 0.838574i 0.140512 + 0.0698812i
\(145\) −0.813859 + 0.469882i −0.0675873 + 0.0390216i
\(146\) −5.48913 −0.454283
\(147\) 0 0
\(148\) −9.25544 −0.760792
\(149\) 2.74456 1.58457i 0.224843 0.129813i −0.383348 0.923604i \(-0.625229\pi\)
0.608191 + 0.793791i \(0.291896\pi\)
\(150\) 1.31386 0.396143i 0.107276 0.0323450i
\(151\) 1.18614 2.05446i 0.0965268 0.167189i −0.813718 0.581260i \(-0.802560\pi\)
0.910245 + 0.414071i \(0.135893\pi\)
\(152\) −4.62772 8.01544i −0.375358 0.650138i
\(153\) −0.813859 13.0916i −0.0657966 1.05839i
\(154\) 0 0
\(155\) 3.46410i 0.278243i
\(156\) 2.23369 9.50744i 0.178838 0.761205i
\(157\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(158\) 1.62772 + 0.939764i 0.129494 + 0.0747636i
\(159\) −0.744563 + 3.16915i −0.0590477 + 0.251330i
\(160\) 5.84096i 0.461769i
\(161\) 0 0
\(162\) −0.883156 7.07568i −0.0693873 0.555918i
\(163\) −4.00000 6.92820i −0.313304 0.542659i 0.665771 0.746156i \(-0.268103\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 4.11684 7.13058i 0.321472 0.556805i
\(165\) 4.18614 1.26217i 0.325891 0.0982597i
\(166\) −12.0000 + 6.92820i −0.931381 + 0.537733i
\(167\) −4.88316 −0.377870 −0.188935 0.981990i \(-0.560504\pi\)
−0.188935 + 0.981990i \(0.560504\pi\)
\(168\) 0 0
\(169\) −3.88316 −0.298704
\(170\) 3.00000 1.73205i 0.230089 0.132842i
\(171\) 4.62772 9.30506i 0.353890 0.711576i
\(172\) −3.25544 + 5.63858i −0.248225 + 0.429938i
\(173\) 0.558422 + 0.967215i 0.0424560 + 0.0735360i 0.886473 0.462781i \(-0.153148\pi\)
−0.844017 + 0.536317i \(0.819815\pi\)
\(174\) −0.883156 + 0.939764i −0.0669519 + 0.0712433i
\(175\) 0 0
\(176\) 1.58457i 0.119442i
\(177\) −14.7446 3.46410i −1.10827 0.260378i
\(178\) −10.1168 5.84096i −0.758290 0.437799i
\(179\) −5.74456 3.31662i −0.429369 0.247896i 0.269709 0.962942i \(-0.413073\pi\)
−0.699078 + 0.715046i \(0.746406\pi\)
\(180\) −3.43070 + 2.27567i −0.255710 + 0.169619i
\(181\) 1.28962i 0.0958567i 0.998851 + 0.0479284i \(0.0152619\pi\)
−0.998851 + 0.0479284i \(0.984738\pi\)
\(182\) 0 0
\(183\) −8.74456 8.21782i −0.646417 0.607479i
\(184\) −11.3723 19.6974i −0.838376 1.45211i
\(185\) 3.37228 5.84096i 0.247935 0.429436i
\(186\) 1.37228 + 4.55134i 0.100621 + 0.333721i
\(187\) 9.55842 5.51856i 0.698981 0.403557i
\(188\) −2.23369 −0.162908
\(189\) 0 0
\(190\) 2.74456 0.199112
\(191\) −18.0475 + 10.4198i −1.30587 + 0.753947i −0.981405 0.191949i \(-0.938519\pi\)
−0.324470 + 0.945896i \(0.605186\pi\)
\(192\) 1.68614 + 5.59230i 0.121687 + 0.403589i
\(193\) 6.11684 10.5947i 0.440300 0.762622i −0.557411 0.830236i \(-0.688205\pi\)
0.997712 + 0.0676143i \(0.0215387\pi\)
\(194\) −4.37228 7.57301i −0.313912 0.543711i
\(195\) 5.18614 + 4.87375i 0.371387 + 0.349016i
\(196\) 0 0
\(197\) 15.7359i 1.12114i 0.828107 + 0.560569i \(0.189418\pi\)
−0.828107 + 0.560569i \(0.810582\pi\)
\(198\) 5.00000 3.31662i 0.355335 0.235702i
\(199\) 23.2337 + 13.4140i 1.64699 + 0.950892i 0.978258 + 0.207390i \(0.0664969\pi\)
0.668734 + 0.743502i \(0.266836\pi\)
\(200\) −2.31386 1.33591i −0.163615 0.0944629i
\(201\) 8.00000 + 1.87953i 0.564276 + 0.132572i
\(202\) 4.75372i 0.334471i
\(203\) 0 0
\(204\) −7.11684 + 7.57301i −0.498279 + 0.530217i
\(205\) 3.00000 + 5.19615i 0.209529 + 0.362915i
\(206\) −2.48913 + 4.31129i −0.173426 + 0.300382i
\(207\) 11.3723 22.8665i 0.790428 1.58933i
\(208\) −2.23369 + 1.28962i −0.154878 + 0.0894191i
\(209\) 8.74456 0.604874
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) 2.23369 1.28962i 0.153410 0.0885715i
\(213\) −0.489125 + 0.147477i −0.0335143 + 0.0101049i
\(214\) 2.62772 4.55134i 0.179627 0.311123i
\(215\) −2.37228 4.10891i −0.161788 0.280225i
\(216\) −8.86141 + 10.6873i −0.602942 + 0.727176i
\(217\) 0 0
\(218\) 13.5615i 0.918497i
\(219\) −2.74456 + 11.6819i −0.185460 + 0.789391i
\(220\) −3.00000 1.73205i −0.202260 0.116775i
\(221\) 15.5584 + 8.98266i 1.04657 + 0.604239i
\(222\) 2.11684 9.01011i 0.142073 0.604719i
\(223\) 8.86263i 0.593486i −0.954957 0.296743i \(-0.904100\pi\)
0.954957 0.296743i \(-0.0959004\pi\)
\(224\) 0 0
\(225\) −0.186141 2.99422i −0.0124094 0.199615i
\(226\) 1.25544 + 2.17448i 0.0835105 + 0.144644i
\(227\) −12.3030 + 21.3094i −0.816578 + 1.41435i 0.0916117 + 0.995795i \(0.470798\pi\)
−0.908189 + 0.418559i \(0.862535\pi\)
\(228\) −7.88316 + 2.37686i −0.522075 + 0.157411i
\(229\) 13.1168 7.57301i 0.866785 0.500439i 0.000506770 1.00000i \(-0.499839\pi\)
0.866279 + 0.499561i \(0.166505\pi\)
\(230\) 6.74456 0.444723
\(231\) 0 0
\(232\) 2.51087 0.164847
\(233\) 14.7446 8.51278i 0.965948 0.557691i 0.0679497 0.997689i \(-0.478354\pi\)
0.897999 + 0.439998i \(0.145021\pi\)
\(234\) 8.74456 + 4.34896i 0.571650 + 0.284301i
\(235\) 0.813859 1.40965i 0.0530903 0.0919551i
\(236\) 6.00000 + 10.3923i 0.390567 + 0.676481i
\(237\) 2.81386 2.99422i 0.182780 0.194495i
\(238\) 0 0
\(239\) 20.8395i 1.34800i −0.738733 0.673998i \(-0.764576\pi\)
0.738733 0.673998i \(-0.235424\pi\)
\(240\) 1.05842 + 0.248667i 0.0683208 + 0.0160514i
\(241\) 14.2337 + 8.21782i 0.916872 + 0.529357i 0.882636 0.470057i \(-0.155767\pi\)
0.0342365 + 0.999414i \(0.489100\pi\)
\(242\) −3.17527 1.83324i −0.204114 0.117845i
\(243\) −15.5000 1.65831i −0.994325 0.106381i
\(244\) 9.50744i 0.608652i
\(245\) 0 0
\(246\) 6.00000 + 5.63858i 0.382546 + 0.359503i
\(247\) 7.11684 + 12.3267i 0.452834 + 0.784331i
\(248\) 4.62772 8.01544i 0.293860 0.508981i
\(249\) 8.74456 + 29.0024i 0.554164 + 1.83795i
\(250\) 0.686141 0.396143i 0.0433953 0.0250543i
\(251\) −5.48913 −0.346471 −0.173235 0.984880i \(-0.555422\pi\)
−0.173235 + 0.984880i \(0.555422\pi\)
\(252\) 0 0
\(253\) 21.4891 1.35101
\(254\) −0.510875 + 0.294954i −0.0320551 + 0.0185070i
\(255\) −2.18614 7.25061i −0.136901 0.454051i
\(256\) 6.94158 12.0232i 0.433849 0.751448i
\(257\) −0.255437 0.442430i −0.0159337 0.0275981i 0.857949 0.513736i \(-0.171739\pi\)
−0.873882 + 0.486137i \(0.838405\pi\)
\(258\) −4.74456 4.45877i −0.295384 0.277591i
\(259\) 0 0
\(260\) 5.63858i 0.349690i
\(261\) 1.55842 + 2.34941i 0.0964639 + 0.145425i
\(262\) −3.76631 2.17448i −0.232684 0.134340i
\(263\) 0.255437 + 0.147477i 0.0157509 + 0.00909381i 0.507855 0.861443i \(-0.330439\pi\)
−0.492104 + 0.870536i \(0.663772\pi\)
\(264\) −11.3723 2.67181i −0.699916 0.164439i
\(265\) 1.87953i 0.115458i
\(266\) 0 0
\(267\) −17.4891 + 18.6101i −1.07032 + 1.13892i
\(268\) −3.25544 5.63858i −0.198857 0.344431i
\(269\) −1.37228 + 2.37686i −0.0836695 + 0.144920i −0.904823 0.425787i \(-0.859997\pi\)
0.821154 + 0.570707i \(0.193331\pi\)
\(270\) −1.43070 3.86025i −0.0870698 0.234927i
\(271\) −4.11684 + 2.37686i −0.250080 + 0.144384i −0.619801 0.784759i \(-0.712787\pi\)
0.369721 + 0.929143i \(0.379453\pi\)
\(272\) 2.74456 0.166414
\(273\) 0 0
\(274\) 10.5109 0.634985
\(275\) 2.18614 1.26217i 0.131829 0.0761116i
\(276\) −19.3723 + 5.84096i −1.16607 + 0.351585i
\(277\) −14.1168 + 24.4511i −0.848199 + 1.46912i 0.0346149 + 0.999401i \(0.488980\pi\)
−0.882814 + 0.469723i \(0.844354\pi\)
\(278\) 7.37228 + 12.7692i 0.442160 + 0.765844i
\(279\) 10.3723 0.644810i 0.620972 0.0386038i
\(280\) 0 0
\(281\) 28.0627i 1.67408i 0.547143 + 0.837039i \(0.315715\pi\)
−0.547143 + 0.837039i \(0.684285\pi\)
\(282\) 0.510875 2.17448i 0.0304221 0.129488i
\(283\) −0.558422 0.322405i −0.0331947 0.0191650i 0.483311 0.875449i \(-0.339434\pi\)
−0.516506 + 0.856284i \(0.672767\pi\)
\(284\) 0.350532 + 0.202380i 0.0208002 + 0.0120090i
\(285\) 1.37228 5.84096i 0.0812869 0.345989i
\(286\) 8.21782i 0.485930i
\(287\) 0 0
\(288\) 17.4891 1.08724i 1.03056 0.0640663i
\(289\) −1.05842 1.83324i −0.0622601 0.107838i
\(290\) −0.372281 + 0.644810i −0.0218611 + 0.0378646i
\(291\) −18.3030 + 5.51856i −1.07294 + 0.323504i
\(292\) 8.23369 4.75372i 0.481840 0.278191i
\(293\) −10.8832 −0.635801 −0.317900 0.948124i \(-0.602978\pi\)
−0.317900 + 0.948124i \(0.602978\pi\)
\(294\) 0 0
\(295\) −8.74456 −0.509128
\(296\) −15.6060 + 9.01011i −0.907079 + 0.523702i
\(297\) −4.55842 12.2993i −0.264506 0.713677i
\(298\) 1.25544 2.17448i 0.0727255 0.125964i
\(299\) 17.4891 + 30.2921i 1.01142 + 1.75183i
\(300\) −1.62772 + 1.73205i −0.0939764 + 0.100000i
\(301\) 0 0
\(302\) 1.87953i 0.108155i
\(303\) 10.1168 + 2.37686i 0.581198 + 0.136547i
\(304\) 1.88316 + 1.08724i 0.108006 + 0.0623575i
\(305\) −6.00000 3.46410i −0.343559 0.198354i
\(306\) −5.74456 8.66025i −0.328395 0.495074i
\(307\) 22.7190i 1.29664i 0.761366 + 0.648322i \(0.224529\pi\)
−0.761366 + 0.648322i \(0.775471\pi\)
\(308\) 0 0
\(309\) 7.93070 + 7.45299i 0.451162 + 0.423986i
\(310\) 1.37228 + 2.37686i 0.0779403 + 0.134997i
\(311\) 7.11684 12.3267i 0.403559 0.698985i −0.590593 0.806969i \(-0.701106\pi\)
0.994153 + 0.107984i \(0.0344396\pi\)
\(312\) −5.48913 18.2054i −0.310761 1.03068i
\(313\) 4.67527 2.69927i 0.264262 0.152572i −0.362015 0.932172i \(-0.617911\pi\)
0.626277 + 0.779601i \(0.284578\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −3.25544 −0.183133
\(317\) 1.62772 0.939764i 0.0914218 0.0527824i −0.453592 0.891209i \(-0.649858\pi\)
0.545014 + 0.838427i \(0.316524\pi\)
\(318\) 0.744563 + 2.46943i 0.0417530 + 0.138479i
\(319\) −1.18614 + 2.05446i −0.0664111 + 0.115027i
\(320\) 1.68614 + 2.92048i 0.0942581 + 0.163260i
\(321\) −8.37228 7.86797i −0.467295 0.439147i
\(322\) 0 0
\(323\) 15.1460i 0.842747i
\(324\) 7.45245 + 9.84868i 0.414025 + 0.547149i
\(325\) 3.55842 + 2.05446i 0.197386 + 0.113961i
\(326\) −5.48913 3.16915i −0.304015 0.175523i
\(327\) −28.8614 6.78073i −1.59604 0.374975i
\(328\) 16.0309i 0.885158i
\(329\) 0 0
\(330\) 2.37228 2.52434i 0.130590 0.138960i
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) 12.0000 20.7846i 0.658586 1.14070i
\(333\) −18.1168 9.01011i −0.992797 0.493751i
\(334\) −3.35053 + 1.93443i −0.183333 + 0.105847i
\(335\) 4.74456 0.259223
\(336\) 0 0
\(337\) 16.2337 0.884305 0.442153 0.896940i \(-0.354215\pi\)
0.442153 + 0.896940i \(0.354215\pi\)
\(338\) −2.66439 + 1.53829i −0.144924 + 0.0836718i
\(339\) 5.25544 1.58457i 0.285436 0.0860622i
\(340\) −3.00000 + 5.19615i −0.162698 + 0.281801i
\(341\) 4.37228 + 7.57301i 0.236772 + 0.410102i
\(342\) −0.510875 8.21782i −0.0276249 0.444369i
\(343\) 0 0
\(344\) 12.6766i 0.683476i
\(345\) 3.37228 14.3537i 0.181558 0.772779i
\(346\) 0.766312 + 0.442430i 0.0411972 + 0.0237852i
\(347\) −12.8614 7.42554i −0.690436 0.398624i 0.113339 0.993556i \(-0.463845\pi\)
−0.803776 + 0.594933i \(0.797179\pi\)
\(348\) 0.510875 2.17448i 0.0273858 0.116564i
\(349\) 15.1460i 0.810748i −0.914151 0.405374i \(-0.867141\pi\)
0.914151 0.405374i \(-0.132859\pi\)
\(350\) 0 0
\(351\) 13.6277 16.4356i 0.727394 0.877270i
\(352\) 7.37228 + 12.7692i 0.392944 + 0.680599i
\(353\) −12.5584 + 21.7518i −0.668417 + 1.15773i 0.309929 + 0.950760i \(0.399695\pi\)
−0.978347 + 0.206973i \(0.933639\pi\)
\(354\) −11.4891 + 3.46410i −0.610640 + 0.184115i
\(355\) −0.255437 + 0.147477i −0.0135572 + 0.00782726i
\(356\) 20.2337 1.07238
\(357\) 0 0
\(358\) −5.25544 −0.277758
\(359\) −14.4891 + 8.36530i −0.764707 + 0.441504i −0.830983 0.556298i \(-0.812221\pi\)
0.0662763 + 0.997801i \(0.478888\pi\)
\(360\) −3.56930 + 7.17687i −0.188118 + 0.378254i
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) 0.510875 + 0.884861i 0.0268510 + 0.0465073i
\(363\) −5.48913 + 5.84096i −0.288104 + 0.306571i
\(364\) 0 0
\(365\) 6.92820i 0.362639i
\(366\) −9.25544 2.17448i −0.483789 0.113662i
\(367\) −30.5584 17.6429i −1.59514 0.920953i −0.992406 0.123008i \(-0.960746\pi\)
−0.602731 0.797944i \(-0.705921\pi\)
\(368\) 4.62772 + 2.67181i 0.241237 + 0.139278i
\(369\) 15.0000 9.94987i 0.780869 0.517970i
\(370\) 5.34363i 0.277802i
\(371\) 0 0
\(372\) −6.00000 5.63858i −0.311086 0.292347i
\(373\) 6.62772 + 11.4795i 0.343170 + 0.594388i 0.985020 0.172442i \(-0.0551659\pi\)
−0.641849 + 0.766831i \(0.721833\pi\)
\(374\) 4.37228 7.57301i 0.226085 0.391591i
\(375\) −0.500000 1.65831i −0.0258199 0.0856349i
\(376\) −3.76631 + 2.17448i −0.194233 + 0.112140i
\(377\) −3.86141 −0.198873
\(378\) 0 0
\(379\) −21.4891 −1.10382 −0.551911 0.833903i \(-0.686101\pi\)
−0.551911 + 0.833903i \(0.686101\pi\)
\(380\) −4.11684 + 2.37686i −0.211190 + 0.121930i
\(381\) 0.372281 + 1.23472i 0.0190725 + 0.0632565i
\(382\) −8.25544 + 14.2988i −0.422385 + 0.731592i
\(383\) −2.74456 4.75372i −0.140241 0.242904i 0.787347 0.616511i \(-0.211454\pi\)
−0.927587 + 0.373607i \(0.878121\pi\)
\(384\) −11.3723 10.6873i −0.580339 0.545382i
\(385\) 0 0
\(386\) 9.69259i 0.493340i
\(387\) −11.8614 + 7.86797i −0.602949 + 0.399951i
\(388\) 13.1168 + 7.57301i 0.665907 + 0.384462i
\(389\) −25.4198 14.6761i −1.28884 0.744110i −0.310390 0.950609i \(-0.600460\pi\)
−0.978447 + 0.206499i \(0.933793\pi\)
\(390\) 5.48913 + 1.28962i 0.277953 + 0.0653025i
\(391\) 37.2203i 1.88231i
\(392\) 0 0
\(393\) −6.51087 + 6.92820i −0.328430 + 0.349482i
\(394\) 6.23369 + 10.7971i 0.314049 + 0.543948i
\(395\) 1.18614 2.05446i 0.0596812 0.103371i
\(396\) −4.62772 + 9.30506i −0.232552 + 0.467597i
\(397\) −22.6753 + 13.0916i −1.13804 + 0.657047i −0.945944 0.324329i \(-0.894861\pi\)
−0.192095 + 0.981376i \(0.561528\pi\)
\(398\) 21.2554 1.06544
\(399\) 0 0
\(400\) 0.627719 0.0313859
\(401\) 5.18614 2.99422i 0.258984 0.149524i −0.364887 0.931052i \(-0.618892\pi\)
0.623871 + 0.781528i \(0.285559\pi\)
\(402\) 6.23369 1.87953i 0.310908 0.0937423i
\(403\) −7.11684 + 12.3267i −0.354515 + 0.614038i
\(404\) −4.11684 7.13058i −0.204821 0.354760i
\(405\) −8.93070 + 1.11469i −0.443770 + 0.0553895i
\(406\) 0 0
\(407\) 17.0256i 0.843925i
\(408\) −4.62772 + 19.6974i −0.229106 + 0.975165i
\(409\) −21.3505 12.3267i −1.05572 0.609518i −0.131472 0.991320i \(-0.541970\pi\)
−0.924244 + 0.381802i \(0.875304\pi\)
\(410\) 4.11684 + 2.37686i 0.203316 + 0.117385i
\(411\) 5.25544 22.3692i 0.259232 1.10339i
\(412\) 8.62258i 0.424804i
\(413\) 0 0
\(414\) −1.25544 20.1947i −0.0617014 0.992515i
\(415\) 8.74456 + 15.1460i 0.429254 + 0.743489i
\(416\) −12.0000 + 20.7846i −0.588348 + 1.01905i
\(417\) 30.8614 9.30506i 1.51129 0.455671i
\(418\) 6.00000 3.46410i 0.293470 0.169435i
\(419\) 8.74456 0.427200 0.213600 0.976921i \(-0.431481\pi\)
0.213600 + 0.976921i \(0.431481\pi\)
\(420\) 0 0
\(421\) 14.6060 0.711851 0.355926 0.934514i \(-0.384166\pi\)
0.355926 + 0.934514i \(0.384166\pi\)
\(422\) −7.62772 + 4.40387i −0.371312 + 0.214377i
\(423\) −4.37228 2.17448i −0.212588 0.105727i
\(424\) 2.51087 4.34896i 0.121939 0.211204i
\(425\) −2.18614 3.78651i −0.106043 0.183673i
\(426\) −0.277187 + 0.294954i −0.0134297 + 0.0142906i
\(427\) 0 0
\(428\) 9.10268i 0.439995i
\(429\) 17.4891 + 4.10891i 0.844383 + 0.198380i
\(430\) −3.25544 1.87953i −0.156991 0.0906389i
\(431\) −13.0693 7.54556i −0.629526 0.363457i 0.151043 0.988527i \(-0.451737\pi\)
−0.780568 + 0.625070i \(0.785070\pi\)
\(432\) 0.547547 3.21543i 0.0263439 0.154703i
\(433\) 37.2203i 1.78869i 0.447377 + 0.894346i \(0.352358\pi\)
−0.447377 + 0.894346i \(0.647642\pi\)
\(434\) 0 0
\(435\) 1.18614 + 1.11469i 0.0568711 + 0.0534454i
\(436\) 11.7446 + 20.3422i 0.562463 + 0.974214i
\(437\) 14.7446 25.5383i 0.705328 1.22166i
\(438\) 2.74456 + 9.10268i 0.131140 + 0.434943i
\(439\) −16.1168 + 9.30506i −0.769215 + 0.444106i −0.832595 0.553883i \(-0.813145\pi\)
0.0633795 + 0.997989i \(0.479812\pi\)
\(440\) −6.74456 −0.321534
\(441\) 0 0
\(442\) 14.2337 0.677027
\(443\) 5.74456 3.31662i 0.272932 0.157578i −0.357287 0.933995i \(-0.616298\pi\)
0.630220 + 0.776417i \(0.282965\pi\)
\(444\) 4.62772 + 15.3484i 0.219622 + 0.728403i
\(445\) −7.37228 + 12.7692i −0.349480 + 0.605317i
\(446\) −3.51087 6.08101i −0.166245 0.287944i
\(447\) −4.00000 3.75906i −0.189194 0.177797i
\(448\) 0 0
\(449\) 11.6270i 0.548713i 0.961628 + 0.274357i \(0.0884648\pi\)
−0.961628 + 0.274357i \(0.911535\pi\)
\(450\) −1.31386 1.98072i −0.0619359 0.0933719i
\(451\) 13.1168 + 7.57301i 0.617648 + 0.356599i
\(452\) −3.76631 2.17448i −0.177152 0.102279i
\(453\) −4.00000 0.939764i −0.187936 0.0441540i
\(454\) 19.4950i 0.914945i
\(455\) 0 0
\(456\) −10.9783 + 11.6819i −0.514104 + 0.547056i
\(457\) −6.48913 11.2395i −0.303548 0.525761i 0.673389 0.739289i \(-0.264838\pi\)
−0.976937 + 0.213527i \(0.931505\pi\)
\(458\) 6.00000 10.3923i 0.280362 0.485601i
\(459\) −21.3030 + 7.89542i −0.994338 + 0.368527i
\(460\) −10.1168 + 5.84096i −0.471700 + 0.272336i
\(461\) 2.74456 0.127827 0.0639135 0.997955i \(-0.479642\pi\)
0.0639135 + 0.997955i \(0.479642\pi\)
\(462\) 0 0
\(463\) −32.4674 −1.50889 −0.754443 0.656365i \(-0.772093\pi\)
−0.754443 + 0.656365i \(0.772093\pi\)
\(464\) −0.510875 + 0.294954i −0.0237168 + 0.0136929i
\(465\) 5.74456 1.73205i 0.266398 0.0803219i
\(466\) 6.74456 11.6819i 0.312436 0.541155i
\(467\) 15.5584 + 26.9480i 0.719958 + 1.24700i 0.961016 + 0.276493i \(0.0891723\pi\)
−0.241058 + 0.970511i \(0.577494\pi\)
\(468\) −16.8832 + 1.04957i −0.780424 + 0.0485164i
\(469\) 0 0
\(470\) 1.28962i 0.0594858i
\(471\) 0 0
\(472\) 20.2337 + 11.6819i 0.931331 + 0.537704i
\(473\) −10.3723 5.98844i −0.476918 0.275349i
\(474\) 0.744563 3.16915i 0.0341989 0.145564i
\(475\) 3.46410i 0.158944i
\(476\) 0 0
\(477\) 5.62772 0.349857i 0.257676 0.0160188i
\(478\) −8.25544 14.2988i −0.377595 0.654014i
\(479\) −20.7446 + 35.9306i −0.947843 + 1.64171i −0.197887 + 0.980225i \(0.563408\pi\)
−0.749956 + 0.661488i \(0.769925\pi\)
\(480\) 9.68614 2.92048i 0.442110 0.133301i
\(481\) 24.0000 13.8564i 1.09431 0.631798i
\(482\) 13.0217 0.593124
\(483\) 0 0
\(484\) 6.35053 0.288661
\(485\) −9.55842 + 5.51856i −0.434026 + 0.250585i
\(486\) −11.2921 + 5.00239i −0.512221 + 0.226913i
\(487\) −18.7446 + 32.4665i −0.849397 + 1.47120i 0.0323498 + 0.999477i \(0.489701\pi\)
−0.881747 + 0.471723i \(0.843632\pi\)
\(488\) 9.25544 + 16.0309i 0.418974 + 0.725684i
\(489\) −9.48913 + 10.0974i −0.429113 + 0.456618i
\(490\) 0 0
\(491\) 5.69349i 0.256943i −0.991713 0.128472i \(-0.958993\pi\)
0.991713 0.128472i \(-0.0410072\pi\)
\(492\) −13.8832 3.26172i −0.625901 0.147050i
\(493\) 3.55842 + 2.05446i 0.160263 + 0.0925280i
\(494\) 9.76631 + 5.63858i 0.439407 + 0.253692i
\(495\) −4.18614 6.31084i −0.188153 0.283651i
\(496\) 2.17448i 0.0976371i
\(497\) 0 0
\(498\) 17.4891 + 16.4356i 0.783706 + 0.736499i
\(499\) −20.6753 35.8106i −0.925552 1.60310i −0.790671 0.612241i \(-0.790268\pi\)
−0.134881 0.990862i \(-0.543065\pi\)
\(500\) −0.686141 + 1.18843i −0.0306851 + 0.0531482i
\(501\) 2.44158 + 8.09780i 0.109082 + 0.361783i
\(502\) −3.76631 + 2.17448i −0.168099 + 0.0970518i
\(503\) 12.6060 0.562072 0.281036 0.959697i \(-0.409322\pi\)
0.281036 + 0.959697i \(0.409322\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) 14.7446 8.51278i 0.655476 0.378439i
\(507\) 1.94158 + 6.43949i 0.0862285 + 0.285988i
\(508\) 0.510875 0.884861i 0.0226664 0.0392594i
\(509\) 1.88316 + 3.26172i 0.0834694 + 0.144573i 0.904738 0.425969i \(-0.140067\pi\)
−0.821269 + 0.570542i \(0.806733\pi\)
\(510\) −4.37228 4.10891i −0.193608 0.181946i
\(511\) 0 0
\(512\) 7.02078i 0.310277i
\(513\) −17.7446 3.02167i −0.783442 0.133410i
\(514\) −0.350532 0.202380i −0.0154613 0.00892659i
\(515\) 5.44158 + 3.14170i 0.239785 + 0.138440i
\(516\) 10.9783 + 2.57924i 0.483291 + 0.113545i
\(517\) 4.10891i 0.180710i
\(518\) 0 0
\(519\) 1.32473 1.40965i 0.0581494 0.0618766i
\(520\) −5.48913 9.50744i −0.240714 0.416929i
\(521\) 17.2337 29.8496i 0.755022 1.30774i −0.190342 0.981718i \(-0.560960\pi\)
0.945364 0.326018i \(-0.105707\pi\)
\(522\) 2.00000 + 0.994667i 0.0875376 + 0.0435354i
\(523\) 9.00000 5.19615i 0.393543 0.227212i −0.290151 0.956981i \(-0.593706\pi\)
0.683694 + 0.729769i \(0.260372\pi\)
\(524\) 7.53262 0.329064
\(525\) 0 0
\(526\) 0.233688 0.0101893
\(527\) 13.1168 7.57301i 0.571379 0.329886i
\(528\) 2.62772 0.792287i 0.114357 0.0344799i
\(529\) 24.7337 42.8400i 1.07538 1.86261i
\(530\) 0.744563 + 1.28962i 0.0323417 + 0.0560175i
\(531\) 1.62772 + 26.1831i 0.0706370 + 1.13625i
\(532\) 0 0
\(533\) 24.6535i 1.06786i
\(534\) −4.62772 + 19.6974i −0.200261 + 0.852389i
\(535\) −5.74456 3.31662i −0.248359 0.143390i
\(536\) −10.9783 6.33830i −0.474188 0.273773i
\(537\) −2.62772 + 11.1846i −0.113394 + 0.482651i
\(538\) 2.17448i 0.0937485i
\(539\) 0 0
\(540\) 5.48913 + 4.55134i 0.236214 + 0.195859i
\(541\) −12.1861 21.1070i −0.523923 0.907461i −0.999612 0.0278479i \(-0.991135\pi\)
0.475689 0.879614i \(-0.342199\pi\)
\(542\) −1.88316 + 3.26172i −0.0808885 + 0.140103i
\(543\) 2.13859 0.644810i 0.0917758 0.0276715i
\(544\) 22.1168 12.7692i 0.948252 0.547473i
\(545\) −17.1168 −0.733205
\(546\) 0 0
\(547\) −2.97825 −0.127341 −0.0636704 0.997971i \(-0.520281\pi\)
−0.0636704 + 0.997971i \(0.520281\pi\)
\(548\) −15.7663 + 9.10268i −0.673503 + 0.388847i
\(549\) −9.25544 + 18.6101i −0.395012 + 0.794261i
\(550\) 1.00000 1.73205i 0.0426401 0.0738549i
\(551\) 1.62772 + 2.81929i 0.0693431 + 0.120106i
\(552\) −26.9783 + 28.7075i −1.14827 + 1.22187i
\(553\) 0 0
\(554\) 22.3692i 0.950376i
\(555\) −11.3723 2.67181i −0.482726 0.113412i
\(556\) −22.1168 12.7692i −0.937963 0.541533i
\(557\) 15.2554 + 8.80773i 0.646394 + 0.373196i 0.787073 0.616860i \(-0.211595\pi\)
−0.140680 + 0.990055i \(0.544929\pi\)
\(558\) 6.86141 4.55134i 0.290467 0.192674i
\(559\) 19.4950i 0.824550i
\(560\) 0 0
\(561\) −13.9307 13.0916i −0.588155 0.552727i
\(562\) 11.1168 + 19.2549i 0.468936 + 0.812221i
\(563\) 8.74456 15.1460i 0.368539 0.638329i −0.620798 0.783971i \(-0.713191\pi\)
0.989337 + 0.145642i \(0.0465246\pi\)
\(564\) 1.11684 + 3.70415i 0.0470276 + 0.155973i
\(565\) 2.74456 1.58457i 0.115465 0.0666635i
\(566\) −0.510875 −0.0214737
\(567\) 0 0
\(568\) 0.788061 0.0330663
\(569\) 20.7446 11.9769i 0.869657 0.502097i 0.00242296 0.999997i \(-0.499229\pi\)
0.867234 + 0.497900i \(0.165895\pi\)
\(570\) −1.37228 4.55134i −0.0574785 0.190635i
\(571\) 2.00000 3.46410i 0.0836974 0.144968i −0.821138 0.570730i \(-0.806660\pi\)
0.904835 + 0.425762i \(0.139994\pi\)
\(572\) −7.11684 12.3267i −0.297570 0.515407i
\(573\) 26.3030 + 24.7186i 1.09882 + 1.03263i
\(574\) 0 0
\(575\) 8.51278i 0.355007i
\(576\) 8.43070 5.59230i 0.351279 0.233012i
\(577\) 2.44158 + 1.40965i 0.101644 + 0.0586843i 0.549960 0.835191i \(-0.314643\pi\)
−0.448316 + 0.893875i \(0.647976\pi\)
\(578\) −1.45245 0.838574i −0.0604141 0.0348801i
\(579\) −20.6277 4.84630i −0.857259 0.201405i
\(580\) 1.28962i 0.0535486i
\(581\) 0 0
\(582\) −10.3723 + 11.0371i −0.429945 + 0.457503i
\(583\) 2.37228 + 4.10891i 0.0982499 + 0.170174i
\(584\) 9.25544 16.0309i 0.382993 0.663363i
\(585\) 5.48913 11.0371i 0.226947 0.456329i
\(586\) −7.46738 + 4.31129i −0.308474 + 0.178098i
\(587\) 17.4891 0.721853 0.360927 0.932594i \(-0.382460\pi\)
0.360927 + 0.932594i \(0.382460\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) −6.00000 + 3.46410i −0.247016 + 0.142615i
\(591\) 26.0951 7.86797i 1.07341 0.323645i
\(592\) 2.11684 3.66648i 0.0870018 0.150691i
\(593\) −2.18614 3.78651i −0.0897740 0.155493i 0.817642 0.575728i \(-0.195281\pi\)
−0.907416 + 0.420234i \(0.861948\pi\)
\(594\) −8.00000 6.63325i −0.328244 0.272166i
\(595\) 0 0
\(596\) 4.34896i 0.178140i
\(597\) 10.6277 45.2357i 0.434964 1.85137i
\(598\) 24.0000 + 13.8564i 0.981433 + 0.566631i
\(599\) 30.0475 + 17.3480i 1.22771 + 0.708818i 0.966550 0.256477i \(-0.0825619\pi\)
0.261159 + 0.965296i \(0.415895\pi\)
\(600\) −1.05842 + 4.50506i −0.0432099 + 0.183918i
\(601\) 22.0742i 0.900427i 0.892921 + 0.450213i \(0.148652\pi\)
−0.892921 + 0.450213i \(0.851348\pi\)
\(602\) 0 0
\(603\) −0.883156 14.2063i −0.0359649 0.578524i
\(604\) 1.62772 + 2.81929i 0.0662309 + 0.114715i
\(605\) −2.31386 + 4.00772i −0.0940718 + 0.162937i
\(606\) 7.88316 2.37686i 0.320231 0.0965534i
\(607\) −7.67527 + 4.43132i −0.311529 + 0.179862i −0.647611 0.761971i \(-0.724232\pi\)
0.336081 + 0.941833i \(0.390898\pi\)
\(608\) 20.2337 0.820584
\(609\) 0 0
\(610\) −5.48913 −0.222248
\(611\) 5.79211 3.34408i 0.234324 0.135287i
\(612\) 16.1168 + 8.01544i 0.651485 + 0.324005i
\(613\) 13.7446 23.8063i 0.555138 0.961527i −0.442755 0.896643i \(-0.645999\pi\)
0.997893 0.0648841i \(-0.0206678\pi\)
\(614\) 9.00000 + 15.5885i 0.363210 + 0.629099i
\(615\) 7.11684 7.57301i 0.286979 0.305373i
\(616\) 0 0
\(617\) 24.5437i 0.988091i −0.869436 0.494045i \(-0.835518\pi\)
0.869436 0.494045i \(-0.164482\pi\)
\(618\) 8.39403 + 1.97210i 0.337657 + 0.0793296i
\(619\) −16.1168 9.30506i −0.647791 0.374002i 0.139819 0.990177i \(-0.455348\pi\)
−0.787609 + 0.616175i \(0.788681\pi\)
\(620\) −4.11684 2.37686i −0.165336 0.0954570i
\(621\) −43.6060 7.42554i −1.74985 0.297977i
\(622\) 11.2772i 0.452173i
\(623\) 0 0
\(624\) 3.25544 + 3.05934i 0.130322 + 0.122472i
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 2.13859 3.70415i 0.0854754 0.148048i
\(627\) −4.37228 14.5012i −0.174612 0.579123i
\(628\) 0 0
\(629\) −29.4891 −1.17581
\(630\) 0 0
\(631\) −23.1168 −0.920267 −0.460134 0.887850i \(-0.652198\pi\)
−0.460134 + 0.887850i \(0.652198\pi\)
\(632\) −5.48913 + 3.16915i −0.218346 + 0.126062i
\(633\) 5.55842 + 18.4352i 0.220927 + 0.732733i
\(634\) 0.744563 1.28962i 0.0295704 0.0512174i
\(635\) 0.372281 + 0.644810i 0.0147735 + 0.0255885i
\(636\) −3.25544 3.05934i −0.129086 0.121311i
\(637\) 0 0
\(638\) 1.87953i 0.0744112i
\(639\) 0.489125 + 0.737384i 0.0193495 + 0.0291705i
\(640\) −7.80298 4.50506i −0.308440 0.178078i
\(641\) 31.7228 + 18.3152i 1.25298 + 0.723406i 0.971699 0.236221i \(-0.0759089\pi\)
0.281276 + 0.959627i \(0.409242\pi\)
\(642\) −8.86141 2.08191i −0.349732 0.0821663i
\(643\) 10.1523i 0.400366i −0.979759 0.200183i \(-0.935846\pi\)
0.979759 0.200183i \(-0.0641536\pi\)
\(644\) 0 0
\(645\) −5.62772 + 5.98844i −0.221591 + 0.235795i
\(646\) −6.00000 10.3923i −0.236067 0.408880i
\(647\) −6.00000 + 10.3923i −0.235884 + 0.408564i −0.959529 0.281609i \(-0.909132\pi\)
0.723645 + 0.690172i \(0.242465\pi\)
\(648\) 22.1535 + 9.35135i 0.870272 + 0.367356i
\(649\) −19.1168 + 11.0371i −0.750402 + 0.433245i
\(650\) 3.25544 0.127689
\(651\) 0 0
\(652\) 10.9783 0.429941
\(653\) −34.3723 + 19.8448i −1.34509 + 0.776589i −0.987550 0.157308i \(-0.949718\pi\)
−0.357542 + 0.933897i \(0.616385\pi\)
\(654\) −22.4891 + 6.78073i −0.879394 + 0.265147i
\(655\) −2.74456 + 4.75372i −0.107239 + 0.185743i
\(656\) 1.88316 + 3.26172i 0.0735249 + 0.127349i
\(657\) 20.7446 1.28962i 0.809322 0.0503129i
\(658\) 0 0
\(659\) 35.9855i 1.40180i −0.713261 0.700899i \(-0.752782\pi\)
0.713261 0.700899i \(-0.247218\pi\)
\(660\) −1.37228 + 5.84096i −0.0534160 + 0.227359i
\(661\) 6.00000 + 3.46410i 0.233373 + 0.134738i 0.612127 0.790759i \(-0.290314\pi\)
−0.378754 + 0.925497i \(0.623647\pi\)
\(662\) 2.74456 + 1.58457i 0.106670 + 0.0615862i
\(663\) 7.11684 30.2921i 0.276395 1.17645i
\(664\) 46.7277i 1.81339i
\(665\) 0 0
\(666\) −16.0000 + 0.994667i −0.619987 + 0.0385426i
\(667\) 4.00000 + 6.92820i 0.154881 + 0.268261i
\(668\) 3.35053 5.80329i 0.129636 0.224536i
\(669\) −14.6970 + 4.43132i −0.568219 + 0.171325i
\(670\) 3.25544 1.87953i 0.125769 0.0726125i
\(671\) −17.4891 −0.675160
\(672\) 0 0
\(673\) −12.2337 −0.471574 −0.235787 0.971805i \(-0.575767\pi\)
−0.235787 + 0.971805i \(0.575767\pi\)
\(674\) 11.1386 6.43087i 0.429043 0.247708i
\(675\) −4.87228 + 1.80579i −0.187534 + 0.0695049i
\(676\) 2.66439 4.61486i 0.102477 0.177495i
\(677\) 9.30298 + 16.1132i 0.357543 + 0.619282i 0.987550 0.157307i \(-0.0502813\pi\)
−0.630007 + 0.776589i \(0.716948\pi\)
\(678\) 2.97825 3.16915i 0.114379 0.121710i
\(679\) 0 0
\(680\) 11.6819i 0.447981i
\(681\) 41.4891 + 9.74749i 1.58987 + 0.373525i
\(682\) 6.00000 + 3.46410i 0.229752 + 0.132647i
\(683\) 29.8397 + 17.2279i 1.14178 + 0.659209i 0.946871 0.321612i \(-0.104225\pi\)
0.194911 + 0.980821i \(0.437558\pi\)
\(684\) 7.88316 + 11.8843i 0.301420 + 0.454408i
\(685\) 13.2665i 0.506887i
\(686\) 0 0
\(687\) −19.1168 17.9653i −0.729353 0.685420i
\(688\) −1.48913 2.57924i −0.0567724 0.0983326i
\(689\) −3.86141 + 6.68815i −0.147108 + 0.254798i
\(690\) −3.37228 11.1846i −0.128381 0.425790i
\(691\) 18.3505 10.5947i 0.698087 0.403041i −0.108547 0.994091i \(-0.534620\pi\)
0.806635 + 0.591050i \(0.201287\pi\)
\(692\) −1.53262 −0.0582616
\(693\) 0 0
\(694\) −11.7663 −0.446643
\(695\) 16.1168 9.30506i 0.611347 0.352961i
\(696\) −1.25544 4.16381i −0.0475872 0.157829i
\(697\) 13.1168 22.7190i 0.496836 0.860545i
\(698\) −6.00000 10.3923i −0.227103 0.393355i
\(699\) −21.4891 20.1947i −0.812793 0.763834i
\(700\) 0 0
\(701\) 42.5090i 1.60554i −0.596287 0.802771i \(-0.703358\pi\)
0.596287 0.802771i \(-0.296642\pi\)
\(702\) 2.83966 16.6757i 0.107176 0.629384i
\(703\) −20.2337 11.6819i −0.763128 0.440592i
\(704\) 7.37228 + 4.25639i 0.277853 + 0.160419i
\(705\) −2.74456 0.644810i −0.103366 0.0242850i
\(706\) 19.8997i 0.748937i
\(707\) 0 0
\(708\) 14.2337 15.1460i 0.534935 0.569223i
\(709\) −3.44158 5.96099i −0.129251 0.223870i 0.794135 0.607741i \(-0.207924\pi\)
−0.923387 + 0.383871i \(0.874591\pi\)
\(710\) −0.116844 + 0.202380i −0.00438508 + 0.00759517i
\(711\) −6.37228 3.16915i −0.238979 0.118852i
\(712\) 34.1168 19.6974i 1.27858 0.738190i
\(713\) 29.4891 1.10438
\(714\) 0 0
\(715\) 10.3723 0.387901
\(716\) 7.88316 4.55134i 0.294607 0.170092i
\(717\) −34.5584 + 10.4198i −1.29061 + 0.389133i
\(718\) −6.62772 + 11.4795i −0.247344 + 0.428413i
\(719\) 14.2337 + 24.6535i 0.530827 + 0.919419i 0.999353 + 0.0359696i \(0.0114519\pi\)
−0.468526 + 0.883450i \(0.655215\pi\)
\(720\) −0.116844 1.87953i −0.00435452 0.0700459i
\(721\) 0 0
\(722\) 5.54601i 0.206401i
\(723\) 6.51087 27.7128i 0.242142 1.03065i
\(724\) −1.53262 0.884861i −0.0569595 0.0328856i
\(725\) 0.813859 + 0.469882i 0.0302260 + 0.0174510i
\(726\) −1.45245 + 6.18220i −0.0539056 + 0.229443i
\(727\) 3.46410i 0.128476i 0.997935 + 0.0642382i \(0.0204617\pi\)
−0.997935 + 0.0642382i \(0.979538\pi\)
\(728\) 0 0
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) 2.74456 + 4.75372i 0.101581 + 0.175943i
\(731\) −10.3723 + 17.9653i −0.383633 + 0.664471i
\(732\) 15.7663 4.75372i 0.582740 0.175703i
\(733\) −34.6753 + 20.0198i −1.28076 + 0.739447i −0.976987 0.213297i \(-0.931580\pi\)
−0.303773 + 0.952744i \(0.598246\pi\)
\(734\) −27.9565 −1.03189
\(735\) 0 0
\(736\) 49.7228 1.83281
\(737\) 10.3723 5.98844i 0.382068 0.220587i
\(738\) 6.35053 12.7692i 0.233766 0.470039i
\(739\) 7.18614 12.4468i 0.264346 0.457861i −0.703046 0.711145i \(-0.748177\pi\)
0.967392 + 0.253283i \(0.0815104\pi\)
\(740\) 4.62772 + 8.01544i 0.170118 + 0.294654i
\(741\) 16.8832 17.9653i 0.620218 0.659972i
\(742\) 0 0
\(743\) 16.1407i 0.592145i 0.955166 + 0.296072i \(0.0956769\pi\)
−0.955166 + 0.296072i \(0.904323\pi\)
\(744\) −15.6060 3.66648i −0.572143 0.134420i
\(745\) −2.74456 1.58457i −0.100553 0.0580543i
\(746\) 9.09509 + 5.25106i 0.332995 + 0.192255i
\(747\) 43.7228 29.0024i 1.59973 1.06114i
\(748\) 15.1460i 0.553794i
\(749\) 0 0
\(750\) −1.00000 0.939764i −0.0365148 0.0343153i
\(751\) −14.6753 25.4183i −0.535508 0.927527i −0.999139 0.0414985i \(-0.986787\pi\)
0.463631 0.886029i \(-0.346547\pi\)
\(752\) 0.510875 0.884861i 0.0186297 0.0322676i
\(753\) 2.74456 + 9.10268i 0.100017 + 0.331720i
\(754\) −2.64947 + 1.52967i −0.0964879 + 0.0557073i
\(755\) −2.37228 −0.0863362
\(756\) 0 0
\(757\) −19.7663 −0.718419 −0.359209 0.933257i \(-0.616954\pi\)
−0.359209 + 0.933257i \(0.616954\pi\)
\(758\) −14.7446 + 8.51278i −0.535547 + 0.309198i
\(759\) −10.7446 35.6357i −0.390003 1.29349i
\(760\) −4.62772 + 8.01544i −0.167865 + 0.290751i
\(761\) −4.11684 7.13058i −0.149235 0.258483i 0.781710 0.623643i \(-0.214348\pi\)
−0.930945 + 0.365159i \(0.881015\pi\)
\(762\) 0.744563 + 0.699713i 0.0269727 + 0.0253479i
\(763\) 0 0
\(764\) 28.5977i 1.03463i
\(765\) −10.9307 + 7.25061i −0.395200 + 0.262146i
\(766\) −3.76631 2.17448i −0.136082 0.0785672i
\(767\) −31.1168 17.9653i −1.12356 0.648690i
\(768\) −23.4090 5.49972i −0.844698 0.198454i
\(769\) 38.5099i 1.38870i −0.719637 0.694351i \(-0.755692\pi\)
0.719637 0.694351i \(-0.244308\pi\)
\(770\) 0 0
\(771\) −0.605969 + 0.644810i −0.0218234 + 0.0232223i
\(772\) 8.39403 + 14.5389i 0.302108 + 0.523266i
\(773\) 26.1861 45.3557i 0.941850 1.63133i 0.179911 0.983683i \(-0.442419\pi\)
0.761939 0.647649i \(-0.224248\pi\)
\(774\) −5.02175 + 10.0974i −0.180503 + 0.362942i
\(775\) 3.00000 1.73205i 0.107763 0.0622171i
\(776\) 29.4891 1.05860
\(777\) 0 0
\(778\) −23.2554 −0.833748
\(779\) 18.0000 10.3923i 0.644917 0.372343i
\(780\) −9.35053 + 2.81929i −0.334803 + 0.100947i
\(781\) −0.372281 + 0.644810i −0.0133213 + 0.0230731i
\(782\) −14.7446 25.5383i −0.527264 0.913249i
\(783\) 3.11684 3.75906i 0.111387 0.134338i
\(784\) 0 0
\(785\) 0 0
\(786\) −1.72281 + 7.33296i −0.0614507 + 0.261558i
\(787\) −2.79211 1.61203i −0.0995280 0.0574625i 0.449410 0.893326i \(-0.351634\pi\)
−0.548938 + 0.835863i \(0.684968\pi\)
\(788\) −18.7011 10.7971i −0.666198 0.384629i
\(789\) 0.116844 0.497333i 0.00415976 0.0177055i
\(790\) 1.87953i 0.0668706i
\(791\) 0 0
\(792\) 1.25544 + 20.1947i 0.0446100 + 0.717588i
\(793\) −14.2337 24.6535i −0.505453 0.875470i
\(794\) −10.3723 + 17.9653i −0.368098 + 0.637565i
\(795\) 3.11684 0.939764i 0.110543 0.0333300i
\(796\) −31.8832 + 18.4077i −1.13007 + 0.652445i
\(797\) −14.1386 −0.500815 −0.250407 0.968141i \(-0.580565\pi\)
−0.250407 + 0.968141i \(0.580565\pi\)
\(798\) 0 0
\(799\) −7.11684 −0.251776
\(800\) 5.05842 2.92048i 0.178842 0.103255i
\(801\) 39.6060 + 19.6974i 1.39941 + 0.695972i
\(802\) 2.37228 4.10891i 0.0837682 0.145091i
\(803\) 8.74456 + 15.1460i 0.308589 + 0.534492i
\(804\) −7.72281 + 8.21782i −0.272363 + 0.289820i
\(805\) 0 0
\(806\) 11.2772i 0.397221i
\(807\) 4.62772 + 1.08724i 0.162903 + 0.0382727i
\(808\) −13.8832 8.01544i −0.488408 0.281982i
\(809\) 11.6970 + 6.75327i 0.411245 + 0.237433i 0.691325 0.722544i \(-0.257027\pi\)
−0.280079 + 0.959977i \(0.590361\pi\)
\(810\) −5.68614 + 4.30268i −0.199791 + 0.151181i
\(811\) 18.6101i 0.653490i 0.945113 + 0.326745i \(0.105952\pi\)
−0.945113 + 0.326745i \(0.894048\pi\)
\(812\) 0 0
\(813\) 6.00000 + 5.63858i 0.210429 + 0.197754i
\(814\) −6.74456 11.6819i −0.236397 0.409451i
\(815\) −4.00000 + 6.92820i −0.140114 + 0.242684i
\(816\) −1.37228 4.55134i −0.0480395 0.159329i
\(817\) −14.2337 + 8.21782i −0.497974 + 0.287505i
\(818\) −19.5326 −0.682942
\(819\) 0 0
\(820\) −8.23369 −0.287533
\(821\) 30.3030 17.4954i 1.05758 0.610595i 0.132819 0.991140i \(-0.457597\pi\)
0.924762 + 0.380545i \(0.124264\pi\)
\(822\) −5.25544 17.4303i −0.183304 0.607952i
\(823\) 6.88316 11.9220i 0.239932 0.415574i −0.720763 0.693182i \(-0.756208\pi\)
0.960694 + 0.277608i \(0.0895416\pi\)
\(824\) −8.39403 14.5389i −0.292420 0.506486i
\(825\) −3.18614 2.99422i −0.110927 0.104245i
\(826\) 0 0
\(827\) 14.8511i 0.516422i 0.966088 + 0.258211i \(0.0831330\pi\)
−0.966088 + 0.258211i \(0.916867\pi\)
\(828\) 19.3723 + 29.2048i 0.673233 + 1.01494i
\(829\) −10.8832 6.28339i −0.377988 0.218231i 0.298955 0.954267i \(-0.403362\pi\)
−0.676942 + 0.736036i \(0.736695\pi\)
\(830\) 12.0000 + 6.92820i 0.416526 + 0.240481i
\(831\) 47.6060 + 11.1846i 1.65143 + 0.387989i
\(832\) 13.8564i 0.480384i
\(833\) 0 0
\(834\) 17.4891 18.6101i 0.605599 0.644416i
\(835\) 2.44158 + 4.22894i 0.0844943 + 0.146348i
\(836\) −6.00000 + 10.3923i −0.207514 + 0.359425i
\(837\) −6.25544 16.8781i −0.216220 0.583392i
\(838\) 6.00000 3.46410i 0.207267 0.119665i
\(839\) −30.5109 −1.05335 −0.526676 0.850066i \(-0.676562\pi\)
−0.526676 + 0.850066i \(0.676562\pi\)
\(840\) 0 0
\(841\) 28.1168 0.969546
\(842\) 10.0217 5.78606i 0.345372 0.199401i
\(843\) 46.5367 14.0313i 1.60281 0.483265i
\(844\) 7.62772 13.2116i 0.262557 0.454762i
\(845\) 1.94158 + 3.36291i 0.0667923 + 0.115688i
\(846\) −3.86141 + 0.240051i −0.132758 + 0.00825312i
\(847\) 0 0
\(848\) 1.17981i 0.0405150i
\(849\) −0.255437 + 1.08724i −0.00876659 + 0.0373140i
\(850\) −3.00000 1.73205i −0.102899 0.0594089i
\(851\) −49.7228 28.7075i −1.70448 0.984080i
\(852\) 0.160343 0.682481i 0.00549325 0.0233814i
\(853\) 32.8713i 1.12549i 0.826630 + 0.562746i \(0.190255\pi\)
−0.826630 + 0.562746i \(0.809745\pi\)
\(854\) 0 0
\(855\) −10.3723 + 0.644810i −0.354725 + 0.0220520i
\(856\) 8.86141 + 15.3484i 0.302877 + 0.524598i
\(857\) −23.2337 + 40.2419i −0.793648 + 1.37464i 0.130047 + 0.991508i \(0.458487\pi\)
−0.923694 + 0.383130i \(0.874846\pi\)
\(858\) 13.6277 4.10891i 0.465243 0.140276i
\(859\) −12.3505 + 7.13058i −0.421395 + 0.243292i −0.695674 0.718358i \(-0.744894\pi\)
0.274279 + 0.961650i \(0.411561\pi\)
\(860\) 6.51087 0.222019
\(861\) 0 0
\(862\) −11.9565 −0.407240
\(863\) 35.7446 20.6371i 1.21676 0.702496i 0.252536 0.967588i \(-0.418735\pi\)
0.964223 + 0.265091i \(0.0854021\pi\)
\(864\) −10.5475 28.4588i −0.358835 0.968188i
\(865\) 0.558422 0.967215i 0.0189869 0.0328863i
\(866\) 14.7446 + 25.5383i 0.501041 + 0.867828i
\(867\) −2.51087 + 2.67181i −0.0852738 + 0.0907396i
\(868\) 0 0
\(869\) 5.98844i 0.203144i
\(870\) 1.25544 + 0.294954i 0.0425633 + 0.00999987i
\(871\) 16.8832 + 9.74749i 0.572064 + 0.330281i
\(872\) 39.6060 + 22.8665i 1.34123 + 0.774358i
\(873\) 18.3030 + 27.5928i 0.619462 + 0.933874i
\(874\) 23.3639i 0.790294i
\(875\) 0 0
\(876\) −12.0000 11.2772i −0.405442 0.381020i
\(877\) 19.2337 + 33.3137i 0.649475 + 1.12492i 0.983248 + 0.182271i \(0.0583448\pi\)
−0.333773 + 0.942654i \(0.608322\pi\)
\(878\) −7.37228 + 12.7692i −0.248802 + 0.430938i
\(879\) 5.44158 + 18.0477i 0.183540 + 0.608733i
\(880\) 1.37228 0.792287i 0.0462596 0.0267080i
\(881\) 32.2337 1.08598 0.542990 0.839739i \(-0.317292\pi\)
0.542990 + 0.839739i \(0.317292\pi\)
\(882\) 0 0
\(883\) 49.4891 1.66544 0.832721 0.553693i \(-0.186782\pi\)
0.832721 + 0.553693i \(0.186782\pi\)
\(884\) −21.3505 + 12.3267i −0.718096 + 0.414593i
\(885\) 4.37228 + 14.5012i 0.146973 + 0.487453i
\(886\) 2.62772 4.55134i 0.0882799 0.152905i
\(887\) −9.25544 16.0309i −0.310767 0.538265i 0.667761 0.744375i \(-0.267253\pi\)
−0.978529 + 0.206111i \(0.933919\pi\)
\(888\) 22.7446 + 21.3745i 0.763258 + 0.717282i
\(889\) 0 0
\(890\) 11.6819i 0.391579i
\(891\) −18.1168 + 13.7089i −0.606937 + 0.459266i
\(892\) 10.5326 + 6.08101i 0.352658 + 0.203607i
\(893\) −4.88316 2.81929i −0.163409 0.0943440i
\(894\) −4.23369 0.994667i −0.141596 0.0332666i
\(895\) 6.63325i 0.221725i
\(896\) 0 0
\(897\) 41.4891 44.1485i 1.38528 1.47407i
\(898\) 4.60597 + 7.97777i 0.153703 + 0.266222i
\(899\) −1.62772 + 2.81929i −0.0542875 + 0.0940286i
\(900\) 3.68614 + 1.83324i 0.122871 + 0.0611080i
\(901\) 7.11684 4.10891i 0.237096 0.136888i
\(902\) 12.0000 0.399556
\(903\) 0 0
\(904\) −8.46738 −0.281621
\(905\) 1.11684 0.644810i 0.0371251 0.0214342i
\(906\) −3.11684 + 0.939764i −0.103550 + 0.0312216i
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) −16.8832 29.2425i −0.560287 0.970446i
\(909\) −1.11684 17.9653i −0.0370434 0.595872i
\(910\) 0 0
\(911\) 2.87419i 0.0952263i −0.998866 0.0476132i \(-0.984839\pi\)
0.998866 0.0476132i \(-0.0151615\pi\)
\(912\) 0.861407 3.66648i 0.0285240 0.121409i
\(913\) 38.2337 + 22.0742i 1.26535 + 0.730550i
\(914\) −8.90491 5.14125i −0.294548 0.170057i
\(915\) −2.74456 + 11.6819i −0.0907324 + 0.386193i
\(916\) 20.7846i 0.686743i
\(917\) 0 0
\(918\) −11.4891 + 13.8564i −0.379198 + 0.457330i
\(919\) 2.81386 + 4.87375i 0.0928207 + 0.160770i 0.908697 0.417456i \(-0.137078\pi\)
−0.815876 + 0.578226i \(0.803745\pi\)
\(920\) −11.3723 + 19.6974i −0.374933 + 0.649403i
\(921\) 37.6753 11.3595i 1.24144 0.374309i
\(922\) 1.88316 1.08724i 0.0620184 0.0358064i
\(923\) −1.21194 −0.0398914
\(924\) 0 0
\(925\) −6.74456 −0.221760
\(926\) −22.2772 + 12.8617i −0.732074 + 0.422663i
\(927\) 8.39403 16.8781i 0.275696 0.554349i
\(928\) −2.74456 + 4.75372i −0.0900947 + 0.156049i
\(929\) −26.4891 45.8805i −0.869080 1.50529i −0.862938 0.505310i \(-0.831378\pi\)
−0.00614188 0.999981i \(-0.501955\pi\)
\(930\) 3.25544 3.46410i 0.106750 0.113592i
\(931\) 0 0
\(932\) 23.3639i 0.765308i
\(933\) −24.0000 5.63858i −0.785725 0.184599i
\(934\) 21.3505 + 12.3267i 0.698611 + 0.403343i
\(935\) −9.55842 5.51856i −0.312594 0.180476i
\(936\) −27.4456 + 18.2054i −0.897088 + 0.595061i
\(937\) 0.240051i 0.00784212i −0.999992 0.00392106i \(-0.998752\pi\)
0.999992 0.00392106i \(-0.00124811\pi\)
\(938\) 0 0
\(939\) −6.81386 6.40342i −0.222362 0.208968i
\(940\) 1.11684 + 1.93443i 0.0364274 + 0.0630942i
\(941\) 19.3723 33.5538i 0.631518 1.09382i −0.355723 0.934591i \(-0.615765\pi\)
0.987241 0.159230i \(-0.0509013\pi\)
\(942\) 0 0
\(943\) 44.2337 25.5383i 1.44045 0.831643i
\(944\) −5.48913 −0.178656
\(945\) 0 0
\(946\) −9.48913 −0.308518
\(947\) −30.2554 + 17.4680i −0.983170 + 0.567633i −0.903226 0.429166i \(-0.858807\pi\)
−0.0799440 + 0.996799i \(0.525474\pi\)
\(948\) 1.62772 + 5.39853i 0.0528658 + 0.175336i
\(949\) −14.2337 + 24.6535i −0.462045 + 0.800286i
\(950\) −1.37228 2.37686i −0.0445227 0.0771156i
\(951\) −2.37228 2.22938i −0.0769265 0.0722927i
\(952\) 0 0
\(953\) 7.62792i 0.247092i −0.992339 0.123546i \(-0.960573\pi\)
0.992339 0.123546i \(-0.0394267\pi\)
\(954\) 3.72281 2.46943i 0.120531 0.0799509i
\(955\) 18.0475 + 10.4198i 0.584005 + 0.337175i
\(956\) 24.7663 + 14.2988i 0.801000 + 0.462457i
\(957\) 4.00000 + 0.939764i 0.129302 + 0.0303782i
\(958\) 32.8713i 1.06202i
\(959\) 0 0
\(960\) 4.00000 4.25639i 0.129099 0.137374i
\(961\) −9.50000 16.4545i −0.306452 0.530790i
\(962\) 10.9783 19.0149i 0.353953 0.613065i
\(963\) −8.86141 + 17.8178i −0.285555 + 0.574172i
\(964\) −19.5326 + 11.2772i −0.629103 + 0.363213i
\(965\) −12.2337 −0.393816
\(966\) 0 0
\(967\) 10.2337 0.329093 0.164547 0.986369i \(-0.447384\pi\)
0.164547 + 0.986369i \(0.447384\pi\)
\(968\) 10.7079 6.18220i 0.344165 0.198704i
\(969\) −25.1168 + 7.57301i −0.806869 + 0.243280i
\(970\) −4.37228 + 7.57301i −0.140385 + 0.243155i
\(971\) −18.6060 32.2265i −0.597094 1.03420i −0.993248 0.116013i \(-0.962989\pi\)
0.396154 0.918184i \(-0.370345\pi\)
\(972\) 12.6060 17.2828i 0.404337 0.554347i
\(973\) 0 0
\(974\) 29.7021i 0.951718i
\(975\) 1.62772 6.92820i 0.0521287 0.221880i
\(976\) −3.76631 2.17448i −0.120557 0.0696034i
\(977\) 6.60597 + 3.81396i 0.211344 + 0.122019i 0.601936 0.798545i \(-0.294396\pi\)
−0.390592 + 0.920564i \(0.627730\pi\)
\(978\) −2.51087 + 10.6873i −0.0802889 + 0.341741i
\(979\) 37.2203i 1.18956i
\(980\) 0 0
\(981\) 3.18614 + 51.2516i 0.101726 + 1.63634i
\(982\) −2.25544 3.90653i −0.0719739 0.124662i
\(983\) −19.9307 + 34.5210i −0.635691 + 1.10105i 0.350678 + 0.936496i \(0.385951\pi\)
−0.986368 + 0.164552i \(0.947382\pi\)
\(984\) −26.5842 + 8.01544i −0.847474 + 0.255523i
\(985\) 13.6277 7.86797i 0.434215 0.250694i
\(986\) 3.25544 0.103674
\(987\) 0 0
\(988\) −19.5326 −0.621416
\(989\) −34.9783 + 20.1947i −1.11224 + 0.642154i
\(990\) −5.37228 2.67181i −0.170742 0.0849158i
\(991\) −12.7446 + 22.0742i −0.404844 + 0.701211i −0.994303 0.106587i \(-0.966008\pi\)
0.589459 + 0.807798i \(0.299341\pi\)
\(992\) 10.1168 + 17.5229i 0.321210 + 0.556352i
\(993\) 4.74456 5.04868i 0.150564 0.160215i
\(994\) 0 0
\(995\) 26.8280i 0.850503i
\(996\) −40.4674 9.50744i −1.28226 0.301255i
\(997\) 27.5584 + 15.9109i 0.872784 + 0.503902i 0.868272 0.496088i \(-0.165231\pi\)
0.00451159 + 0.999990i \(0.498564\pi\)
\(998\) −28.3723 16.3807i −0.898109 0.518523i
\(999\) −5.88316 + 34.5484i −0.186135 + 1.09306i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.s.g.521.2 4
3.2 odd 2 735.2.s.i.521.1 4
7.2 even 3 735.2.s.j.656.1 4
7.3 odd 6 105.2.b.c.41.3 yes 4
7.4 even 3 105.2.b.d.41.3 yes 4
7.5 odd 6 735.2.s.i.656.1 4
7.6 odd 2 735.2.s.h.521.2 4
21.2 odd 6 735.2.s.h.656.2 4
21.5 even 6 inner 735.2.s.g.656.2 4
21.11 odd 6 105.2.b.c.41.2 4
21.17 even 6 105.2.b.d.41.2 yes 4
21.20 even 2 735.2.s.j.521.1 4
28.3 even 6 1680.2.f.h.881.2 4
28.11 odd 6 1680.2.f.g.881.3 4
35.3 even 12 525.2.g.e.524.6 8
35.4 even 6 525.2.b.e.251.2 4
35.17 even 12 525.2.g.e.524.3 8
35.18 odd 12 525.2.g.d.524.5 8
35.24 odd 6 525.2.b.g.251.2 4
35.32 odd 12 525.2.g.d.524.4 8
84.11 even 6 1680.2.f.h.881.1 4
84.59 odd 6 1680.2.f.g.881.4 4
105.17 odd 12 525.2.g.d.524.6 8
105.32 even 12 525.2.g.e.524.5 8
105.38 odd 12 525.2.g.d.524.3 8
105.53 even 12 525.2.g.e.524.4 8
105.59 even 6 525.2.b.e.251.3 4
105.74 odd 6 525.2.b.g.251.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.b.c.41.2 4 21.11 odd 6
105.2.b.c.41.3 yes 4 7.3 odd 6
105.2.b.d.41.2 yes 4 21.17 even 6
105.2.b.d.41.3 yes 4 7.4 even 3
525.2.b.e.251.2 4 35.4 even 6
525.2.b.e.251.3 4 105.59 even 6
525.2.b.g.251.2 4 35.24 odd 6
525.2.b.g.251.3 4 105.74 odd 6
525.2.g.d.524.3 8 105.38 odd 12
525.2.g.d.524.4 8 35.32 odd 12
525.2.g.d.524.5 8 35.18 odd 12
525.2.g.d.524.6 8 105.17 odd 12
525.2.g.e.524.3 8 35.17 even 12
525.2.g.e.524.4 8 105.53 even 12
525.2.g.e.524.5 8 105.32 even 12
525.2.g.e.524.6 8 35.3 even 12
735.2.s.g.521.2 4 1.1 even 1 trivial
735.2.s.g.656.2 4 21.5 even 6 inner
735.2.s.h.521.2 4 7.6 odd 2
735.2.s.h.656.2 4 21.2 odd 6
735.2.s.i.521.1 4 3.2 odd 2
735.2.s.i.656.1 4 7.5 odd 6
735.2.s.j.521.1 4 21.20 even 2
735.2.s.j.656.1 4 7.2 even 3
1680.2.f.g.881.3 4 28.11 odd 6
1680.2.f.g.881.4 4 84.59 odd 6
1680.2.f.h.881.1 4 84.11 even 6
1680.2.f.h.881.2 4 28.3 even 6