Properties

Label 735.2.s.i.656.1
Level $735$
Weight $2$
Character 735.656
Analytic conductor $5.869$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(521,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.521");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 656.1
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 735.656
Dual form 735.2.s.i.521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.686141 - 0.396143i) q^{2} +(-1.68614 - 0.396143i) q^{3} +(-0.686141 - 1.18843i) q^{4} +(0.500000 - 0.866025i) q^{5} +(1.00000 + 0.939764i) q^{6} +2.67181i q^{8} +(2.68614 + 1.33591i) q^{9} +(-0.686141 + 0.396143i) q^{10} +(2.18614 - 1.26217i) q^{11} +(0.686141 + 2.27567i) q^{12} +4.10891i q^{13} +(-1.18614 + 1.26217i) q^{15} +(-0.313859 + 0.543620i) q^{16} +(2.18614 + 3.78651i) q^{17} +(-1.31386 - 1.98072i) q^{18} +(-3.00000 - 1.73205i) q^{19} -1.37228 q^{20} -2.00000 q^{22} +(7.37228 + 4.25639i) q^{23} +(1.05842 - 4.50506i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(1.62772 - 2.81929i) q^{26} +(-4.00000 - 3.31662i) q^{27} -0.939764i q^{29} +(1.31386 - 0.396143i) q^{30} +(-3.00000 + 1.73205i) q^{31} +(5.05842 - 2.92048i) q^{32} +(-4.18614 + 1.26217i) q^{33} -3.46410i q^{34} +(-0.255437 - 4.10891i) q^{36} +(3.37228 - 5.84096i) q^{37} +(1.37228 + 2.37686i) q^{38} +(1.62772 - 6.92820i) q^{39} +(2.31386 + 1.33591i) q^{40} +6.00000 q^{41} +4.74456 q^{43} +(-3.00000 - 1.73205i) q^{44} +(2.50000 - 1.65831i) q^{45} +(-3.37228 - 5.84096i) q^{46} +(-0.813859 + 1.40965i) q^{47} +(0.744563 - 0.792287i) q^{48} +0.792287i q^{50} +(-2.18614 - 7.25061i) q^{51} +(4.88316 - 2.81929i) q^{52} +(1.62772 - 0.939764i) q^{53} +(1.43070 + 3.86025i) q^{54} -2.52434i q^{55} +(4.37228 + 4.10891i) q^{57} +(-0.372281 + 0.644810i) q^{58} +(-4.37228 - 7.57301i) q^{59} +(2.31386 + 0.543620i) q^{60} +(6.00000 + 3.46410i) q^{61} +2.74456 q^{62} -3.37228 q^{64} +(3.55842 + 2.05446i) q^{65} +(3.37228 + 0.792287i) q^{66} +(-2.37228 - 4.10891i) q^{67} +(3.00000 - 5.19615i) q^{68} +(-10.7446 - 10.0974i) q^{69} -0.294954i q^{71} +(-3.56930 + 7.17687i) q^{72} +(-6.00000 + 3.46410i) q^{73} +(-4.62772 + 2.67181i) q^{74} +(0.500000 + 1.65831i) q^{75} +4.75372i q^{76} +(-3.86141 + 4.10891i) q^{78} +(1.18614 - 2.05446i) q^{79} +(0.313859 + 0.543620i) q^{80} +(5.43070 + 7.17687i) q^{81} +(-4.11684 - 2.37686i) q^{82} +17.4891 q^{83} +4.37228 q^{85} +(-3.25544 - 1.87953i) q^{86} +(-0.372281 + 1.58457i) q^{87} +(3.37228 + 5.84096i) q^{88} +(7.37228 - 12.7692i) q^{89} +(-2.37228 + 0.147477i) q^{90} -11.6819i q^{92} +(5.74456 - 1.73205i) q^{93} +(1.11684 - 0.644810i) q^{94} +(-3.00000 + 1.73205i) q^{95} +(-9.68614 + 2.92048i) q^{96} +11.0371i q^{97} +(7.55842 - 0.469882i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - q^{3} + 3 q^{4} + 2 q^{5} + 4 q^{6} + 5 q^{9} + 3 q^{10} + 3 q^{11} - 3 q^{12} + q^{15} - 7 q^{16} + 3 q^{17} - 11 q^{18} - 12 q^{19} + 6 q^{20} - 8 q^{22} + 18 q^{23} - 13 q^{24} - 2 q^{25}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.686141 0.396143i −0.485175 0.280116i 0.237396 0.971413i \(-0.423706\pi\)
−0.722570 + 0.691297i \(0.757040\pi\)
\(3\) −1.68614 0.396143i −0.973494 0.228714i
\(4\) −0.686141 1.18843i −0.343070 0.594215i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 1.00000 + 0.939764i 0.408248 + 0.383657i
\(7\) 0 0
\(8\) 2.67181i 0.944629i
\(9\) 2.68614 + 1.33591i 0.895380 + 0.445302i
\(10\) −0.686141 + 0.396143i −0.216977 + 0.125272i
\(11\) 2.18614 1.26217i 0.659146 0.380558i −0.132805 0.991142i \(-0.542399\pi\)
0.791952 + 0.610584i \(0.209065\pi\)
\(12\) 0.686141 + 2.27567i 0.198072 + 0.656930i
\(13\) 4.10891i 1.13961i 0.821781 + 0.569804i \(0.192981\pi\)
−0.821781 + 0.569804i \(0.807019\pi\)
\(14\) 0 0
\(15\) −1.18614 + 1.26217i −0.306260 + 0.325891i
\(16\) −0.313859 + 0.543620i −0.0784648 + 0.135905i
\(17\) 2.18614 + 3.78651i 0.530217 + 0.918363i 0.999379 + 0.0352504i \(0.0112229\pi\)
−0.469162 + 0.883112i \(0.655444\pi\)
\(18\) −1.31386 1.98072i −0.309680 0.466860i
\(19\) −3.00000 1.73205i −0.688247 0.397360i 0.114708 0.993399i \(-0.463407\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) −1.37228 −0.306851
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 7.37228 + 4.25639i 1.53723 + 0.887518i 0.999000 + 0.0447187i \(0.0142391\pi\)
0.538227 + 0.842800i \(0.319094\pi\)
\(24\) 1.05842 4.50506i 0.216049 0.919591i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.62772 2.81929i 0.319222 0.552909i
\(27\) −4.00000 3.31662i −0.769800 0.638285i
\(28\) 0 0
\(29\) 0.939764i 0.174510i −0.996186 0.0872549i \(-0.972191\pi\)
0.996186 0.0872549i \(-0.0278095\pi\)
\(30\) 1.31386 0.396143i 0.239877 0.0723256i
\(31\) −3.00000 + 1.73205i −0.538816 + 0.311086i −0.744599 0.667512i \(-0.767359\pi\)
0.205783 + 0.978598i \(0.434026\pi\)
\(32\) 5.05842 2.92048i 0.894211 0.516273i
\(33\) −4.18614 + 1.26217i −0.728714 + 0.219715i
\(34\) 3.46410i 0.594089i
\(35\) 0 0
\(36\) −0.255437 4.10891i −0.0425729 0.684819i
\(37\) 3.37228 5.84096i 0.554400 0.960248i −0.443550 0.896249i \(-0.646281\pi\)
0.997950 0.0639989i \(-0.0203854\pi\)
\(38\) 1.37228 + 2.37686i 0.222613 + 0.385578i
\(39\) 1.62772 6.92820i 0.260644 1.10940i
\(40\) 2.31386 + 1.33591i 0.365853 + 0.211225i
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 4.74456 0.723539 0.361770 0.932268i \(-0.382173\pi\)
0.361770 + 0.932268i \(0.382173\pi\)
\(44\) −3.00000 1.73205i −0.452267 0.261116i
\(45\) 2.50000 1.65831i 0.372678 0.247207i
\(46\) −3.37228 5.84096i −0.497216 0.861203i
\(47\) −0.813859 + 1.40965i −0.118714 + 0.205618i −0.919258 0.393655i \(-0.871210\pi\)
0.800545 + 0.599273i \(0.204544\pi\)
\(48\) 0.744563 0.792287i 0.107468 0.114357i
\(49\) 0 0
\(50\) 0.792287i 0.112046i
\(51\) −2.18614 7.25061i −0.306121 1.01529i
\(52\) 4.88316 2.81929i 0.677172 0.390965i
\(53\) 1.62772 0.939764i 0.223584 0.129086i −0.384024 0.923323i \(-0.625462\pi\)
0.607609 + 0.794236i \(0.292129\pi\)
\(54\) 1.43070 + 3.86025i 0.194694 + 0.525313i
\(55\) 2.52434i 0.340382i
\(56\) 0 0
\(57\) 4.37228 + 4.10891i 0.579123 + 0.544239i
\(58\) −0.372281 + 0.644810i −0.0488829 + 0.0846677i
\(59\) −4.37228 7.57301i −0.569223 0.985922i −0.996643 0.0818694i \(-0.973911\pi\)
0.427421 0.904053i \(-0.359422\pi\)
\(60\) 2.31386 + 0.543620i 0.298718 + 0.0701811i
\(61\) 6.00000 + 3.46410i 0.768221 + 0.443533i 0.832240 0.554416i \(-0.187058\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 2.74456 0.348560
\(63\) 0 0
\(64\) −3.37228 −0.421535
\(65\) 3.55842 + 2.05446i 0.441368 + 0.254824i
\(66\) 3.37228 + 0.792287i 0.415099 + 0.0975238i
\(67\) −2.37228 4.10891i −0.289820 0.501983i 0.683946 0.729532i \(-0.260262\pi\)
−0.973767 + 0.227549i \(0.926929\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) −10.7446 10.0974i −1.29349 1.21558i
\(70\) 0 0
\(71\) 0.294954i 0.0350046i −0.999847 0.0175023i \(-0.994429\pi\)
0.999847 0.0175023i \(-0.00557143\pi\)
\(72\) −3.56930 + 7.17687i −0.420646 + 0.845802i
\(73\) −6.00000 + 3.46410i −0.702247 + 0.405442i −0.808184 0.588930i \(-0.799549\pi\)
0.105937 + 0.994373i \(0.466216\pi\)
\(74\) −4.62772 + 2.67181i −0.537961 + 0.310592i
\(75\) 0.500000 + 1.65831i 0.0577350 + 0.191485i
\(76\) 4.75372i 0.545289i
\(77\) 0 0
\(78\) −3.86141 + 4.10891i −0.437218 + 0.465243i
\(79\) 1.18614 2.05446i 0.133451 0.231144i −0.791554 0.611100i \(-0.790727\pi\)
0.925005 + 0.379956i \(0.124061\pi\)
\(80\) 0.313859 + 0.543620i 0.0350905 + 0.0607786i
\(81\) 5.43070 + 7.17687i 0.603411 + 0.797430i
\(82\) −4.11684 2.37686i −0.454629 0.262480i
\(83\) 17.4891 1.91968 0.959840 0.280546i \(-0.0905157\pi\)
0.959840 + 0.280546i \(0.0905157\pi\)
\(84\) 0 0
\(85\) 4.37228 0.474240
\(86\) −3.25544 1.87953i −0.351043 0.202675i
\(87\) −0.372281 + 1.58457i −0.0399127 + 0.169884i
\(88\) 3.37228 + 5.84096i 0.359486 + 0.622649i
\(89\) 7.37228 12.7692i 0.781460 1.35353i −0.149631 0.988742i \(-0.547808\pi\)
0.931091 0.364787i \(-0.118858\pi\)
\(90\) −2.37228 + 0.147477i −0.250060 + 0.0155454i
\(91\) 0 0
\(92\) 11.6819i 1.21792i
\(93\) 5.74456 1.73205i 0.595683 0.179605i
\(94\) 1.11684 0.644810i 0.115194 0.0665071i
\(95\) −3.00000 + 1.73205i −0.307794 + 0.177705i
\(96\) −9.68614 + 2.92048i −0.988588 + 0.298070i
\(97\) 11.0371i 1.12065i 0.828273 + 0.560325i \(0.189324\pi\)
−0.828273 + 0.560325i \(0.810676\pi\)
\(98\) 0 0
\(99\) 7.55842 0.469882i 0.759650 0.0472249i
\(100\) −0.686141 + 1.18843i −0.0686141 + 0.118843i
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) −1.37228 + 5.84096i −0.135876 + 0.578341i
\(103\) −5.44158 3.14170i −0.536175 0.309561i 0.207353 0.978266i \(-0.433515\pi\)
−0.743527 + 0.668706i \(0.766849\pi\)
\(104\) −10.9783 −1.07651
\(105\) 0 0
\(106\) −1.48913 −0.144637
\(107\) −5.74456 3.31662i −0.555348 0.320630i 0.195928 0.980618i \(-0.437228\pi\)
−0.751276 + 0.659988i \(0.770561\pi\)
\(108\) −1.19702 + 7.02939i −0.115183 + 0.676404i
\(109\) 8.55842 + 14.8236i 0.819748 + 1.41985i 0.905868 + 0.423561i \(0.139220\pi\)
−0.0861196 + 0.996285i \(0.527447\pi\)
\(110\) −1.00000 + 1.73205i −0.0953463 + 0.165145i
\(111\) −8.00000 + 8.51278i −0.759326 + 0.807997i
\(112\) 0 0
\(113\) 3.16915i 0.298128i 0.988828 + 0.149064i \(0.0476261\pi\)
−0.988828 + 0.149064i \(0.952374\pi\)
\(114\) −1.37228 4.55134i −0.128526 0.426272i
\(115\) 7.37228 4.25639i 0.687469 0.396910i
\(116\) −1.11684 + 0.644810i −0.103696 + 0.0598691i
\(117\) −5.48913 + 11.0371i −0.507470 + 1.02038i
\(118\) 6.92820i 0.637793i
\(119\) 0 0
\(120\) −3.37228 3.16915i −0.307846 0.289302i
\(121\) −2.31386 + 4.00772i −0.210351 + 0.364338i
\(122\) −2.74456 4.75372i −0.248481 0.430382i
\(123\) −10.1168 2.37686i −0.912205 0.214314i
\(124\) 4.11684 + 2.37686i 0.369704 + 0.213448i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.744563 −0.0660693 −0.0330346 0.999454i \(-0.510517\pi\)
−0.0330346 + 0.999454i \(0.510517\pi\)
\(128\) −7.80298 4.50506i −0.689693 0.398194i
\(129\) −8.00000 1.87953i −0.704361 0.165483i
\(130\) −1.62772 2.81929i −0.142760 0.247268i
\(131\) 2.74456 4.75372i 0.239794 0.415335i −0.720861 0.693079i \(-0.756254\pi\)
0.960655 + 0.277745i \(0.0895869\pi\)
\(132\) 4.37228 + 4.10891i 0.380558 + 0.357635i
\(133\) 0 0
\(134\) 3.75906i 0.324733i
\(135\) −4.87228 + 1.80579i −0.419339 + 0.155418i
\(136\) −10.1168 + 5.84096i −0.867512 + 0.500858i
\(137\) −11.4891 + 6.63325i −0.981582 + 0.566717i −0.902747 0.430171i \(-0.858453\pi\)
−0.0788348 + 0.996888i \(0.525120\pi\)
\(138\) 3.37228 + 11.1846i 0.287068 + 0.952096i
\(139\) 18.6101i 1.57849i −0.614078 0.789245i \(-0.710472\pi\)
0.614078 0.789245i \(-0.289528\pi\)
\(140\) 0 0
\(141\) 1.93070 2.05446i 0.162595 0.173016i
\(142\) −0.116844 + 0.202380i −0.00980533 + 0.0169833i
\(143\) 5.18614 + 8.98266i 0.433687 + 0.751168i
\(144\) −1.56930 + 1.04095i −0.130775 + 0.0867461i
\(145\) −0.813859 0.469882i −0.0675873 0.0390216i
\(146\) 5.48913 0.454283
\(147\) 0 0
\(148\) −9.25544 −0.760792
\(149\) −2.74456 1.58457i −0.224843 0.129813i 0.383348 0.923604i \(-0.374771\pi\)
−0.608191 + 0.793791i \(0.708104\pi\)
\(150\) 0.313859 1.33591i 0.0256265 0.109076i
\(151\) 1.18614 + 2.05446i 0.0965268 + 0.167189i 0.910245 0.414071i \(-0.135893\pi\)
−0.813718 + 0.581260i \(0.802560\pi\)
\(152\) 4.62772 8.01544i 0.375358 0.650138i
\(153\) 0.813859 + 13.0916i 0.0657966 + 1.05839i
\(154\) 0 0
\(155\) 3.46410i 0.278243i
\(156\) −9.35053 + 2.81929i −0.748642 + 0.225724i
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) −1.62772 + 0.939764i −0.129494 + 0.0747636i
\(159\) −3.11684 + 0.939764i −0.247182 + 0.0745281i
\(160\) 5.84096i 0.461769i
\(161\) 0 0
\(162\) −0.883156 7.07568i −0.0693873 0.555918i
\(163\) −4.00000 + 6.92820i −0.313304 + 0.542659i −0.979076 0.203497i \(-0.934769\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) −4.11684 7.13058i −0.321472 0.556805i
\(165\) −1.00000 + 4.25639i −0.0778499 + 0.331359i
\(166\) −12.0000 6.92820i −0.931381 0.537733i
\(167\) 4.88316 0.377870 0.188935 0.981990i \(-0.439496\pi\)
0.188935 + 0.981990i \(0.439496\pi\)
\(168\) 0 0
\(169\) −3.88316 −0.298704
\(170\) −3.00000 1.73205i −0.230089 0.132842i
\(171\) −5.74456 8.66025i −0.439298 0.662266i
\(172\) −3.25544 5.63858i −0.248225 0.429938i
\(173\) −0.558422 + 0.967215i −0.0424560 + 0.0735360i −0.886473 0.462781i \(-0.846852\pi\)
0.844017 + 0.536317i \(0.180185\pi\)
\(174\) 0.883156 0.939764i 0.0669519 0.0712433i
\(175\) 0 0
\(176\) 1.58457i 0.119442i
\(177\) 4.37228 + 14.5012i 0.328641 + 1.08998i
\(178\) −10.1168 + 5.84096i −0.758290 + 0.437799i
\(179\) 5.74456 3.31662i 0.429369 0.247896i −0.269709 0.962942i \(-0.586927\pi\)
0.699078 + 0.715046i \(0.253594\pi\)
\(180\) −3.68614 1.83324i −0.274749 0.136642i
\(181\) 1.28962i 0.0958567i −0.998851 0.0479284i \(-0.984738\pi\)
0.998851 0.0479284i \(-0.0152619\pi\)
\(182\) 0 0
\(183\) −8.74456 8.21782i −0.646417 0.607479i
\(184\) −11.3723 + 19.6974i −0.838376 + 1.45211i
\(185\) −3.37228 5.84096i −0.247935 0.429436i
\(186\) −4.62772 1.08724i −0.339321 0.0797204i
\(187\) 9.55842 + 5.51856i 0.698981 + 0.403557i
\(188\) 2.23369 0.162908
\(189\) 0 0
\(190\) 2.74456 0.199112
\(191\) 18.0475 + 10.4198i 1.30587 + 0.753947i 0.981405 0.191949i \(-0.0614808\pi\)
0.324470 + 0.945896i \(0.394814\pi\)
\(192\) 5.68614 + 1.33591i 0.410362 + 0.0964108i
\(193\) 6.11684 + 10.5947i 0.440300 + 0.762622i 0.997712 0.0676143i \(-0.0215387\pi\)
−0.557411 + 0.830236i \(0.688205\pi\)
\(194\) 4.37228 7.57301i 0.313912 0.543711i
\(195\) −5.18614 4.87375i −0.371387 0.349016i
\(196\) 0 0
\(197\) 15.7359i 1.12114i 0.828107 + 0.560569i \(0.189418\pi\)
−0.828107 + 0.560569i \(0.810582\pi\)
\(198\) −5.37228 2.67181i −0.381791 0.189878i
\(199\) 23.2337 13.4140i 1.64699 0.950892i 0.668734 0.743502i \(-0.266836\pi\)
0.978258 0.207390i \(-0.0664969\pi\)
\(200\) 2.31386 1.33591i 0.163615 0.0944629i
\(201\) 2.37228 + 7.86797i 0.167328 + 0.554964i
\(202\) 4.75372i 0.334471i
\(203\) 0 0
\(204\) −7.11684 + 7.57301i −0.498279 + 0.530217i
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 2.48913 + 4.31129i 0.173426 + 0.300382i
\(207\) 14.1168 + 21.2819i 0.981188 + 1.47920i
\(208\) −2.23369 1.28962i −0.154878 0.0894191i
\(209\) −8.74456 −0.604874
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) −2.23369 1.28962i −0.153410 0.0885715i
\(213\) −0.116844 + 0.497333i −0.00800602 + 0.0340767i
\(214\) 2.62772 + 4.55134i 0.179627 + 0.311123i
\(215\) 2.37228 4.10891i 0.161788 0.280225i
\(216\) 8.86141 10.6873i 0.602942 0.727176i
\(217\) 0 0
\(218\) 13.5615i 0.918497i
\(219\) 11.4891 3.46410i 0.776363 0.234082i
\(220\) −3.00000 + 1.73205i −0.202260 + 0.116775i
\(221\) −15.5584 + 8.98266i −1.04657 + 0.604239i
\(222\) 8.86141 2.67181i 0.594739 0.179320i
\(223\) 8.86263i 0.593486i 0.954957 + 0.296743i \(0.0959004\pi\)
−0.954957 + 0.296743i \(0.904100\pi\)
\(224\) 0 0
\(225\) −0.186141 2.99422i −0.0124094 0.199615i
\(226\) 1.25544 2.17448i 0.0835105 0.144644i
\(227\) 12.3030 + 21.3094i 0.816578 + 1.41435i 0.908189 + 0.418559i \(0.137465\pi\)
−0.0916117 + 0.995795i \(0.529202\pi\)
\(228\) 1.88316 8.01544i 0.124715 0.530836i
\(229\) 13.1168 + 7.57301i 0.866785 + 0.500439i 0.866279 0.499561i \(-0.166505\pi\)
0.000506770 1.00000i \(0.499839\pi\)
\(230\) −6.74456 −0.444723
\(231\) 0 0
\(232\) 2.51087 0.164847
\(233\) −14.7446 8.51278i −0.965948 0.557691i −0.0679497 0.997689i \(-0.521646\pi\)
−0.897999 + 0.439998i \(0.854979\pi\)
\(234\) 8.13859 5.39853i 0.532036 0.352913i
\(235\) 0.813859 + 1.40965i 0.0530903 + 0.0919551i
\(236\) −6.00000 + 10.3923i −0.390567 + 0.676481i
\(237\) −2.81386 + 2.99422i −0.182780 + 0.194495i
\(238\) 0 0
\(239\) 20.8395i 1.34800i −0.738733 0.673998i \(-0.764576\pi\)
0.738733 0.673998i \(-0.235424\pi\)
\(240\) −0.313859 1.04095i −0.0202595 0.0671933i
\(241\) 14.2337 8.21782i 0.916872 0.529357i 0.0342365 0.999414i \(-0.489100\pi\)
0.882636 + 0.470057i \(0.155767\pi\)
\(242\) 3.17527 1.83324i 0.204114 0.117845i
\(243\) −6.31386 14.2525i −0.405034 0.914302i
\(244\) 9.50744i 0.608652i
\(245\) 0 0
\(246\) 6.00000 + 5.63858i 0.382546 + 0.359503i
\(247\) 7.11684 12.3267i 0.452834 0.784331i
\(248\) −4.62772 8.01544i −0.293860 0.508981i
\(249\) −29.4891 6.92820i −1.86880 0.439057i
\(250\) 0.686141 + 0.396143i 0.0433953 + 0.0250543i
\(251\) 5.48913 0.346471 0.173235 0.984880i \(-0.444578\pi\)
0.173235 + 0.984880i \(0.444578\pi\)
\(252\) 0 0
\(253\) 21.4891 1.35101
\(254\) 0.510875 + 0.294954i 0.0320551 + 0.0185070i
\(255\) −7.37228 1.73205i −0.461670 0.108465i
\(256\) 6.94158 + 12.0232i 0.433849 + 0.751448i
\(257\) 0.255437 0.442430i 0.0159337 0.0275981i −0.857949 0.513736i \(-0.828261\pi\)
0.873882 + 0.486137i \(0.161595\pi\)
\(258\) 4.74456 + 4.45877i 0.295384 + 0.277591i
\(259\) 0 0
\(260\) 5.63858i 0.349690i
\(261\) 1.25544 2.52434i 0.0777096 0.156253i
\(262\) −3.76631 + 2.17448i −0.232684 + 0.134340i
\(263\) −0.255437 + 0.147477i −0.0157509 + 0.00909381i −0.507855 0.861443i \(-0.669561\pi\)
0.492104 + 0.870536i \(0.336228\pi\)
\(264\) −3.37228 11.1846i −0.207550 0.688364i
\(265\) 1.87953i 0.115458i
\(266\) 0 0
\(267\) −17.4891 + 18.6101i −1.07032 + 1.13892i
\(268\) −3.25544 + 5.63858i −0.198857 + 0.344431i
\(269\) 1.37228 + 2.37686i 0.0836695 + 0.144920i 0.904823 0.425787i \(-0.140003\pi\)
−0.821154 + 0.570707i \(0.806669\pi\)
\(270\) 4.05842 + 0.691097i 0.246988 + 0.0420588i
\(271\) −4.11684 2.37686i −0.250080 0.144384i 0.369721 0.929143i \(-0.379453\pi\)
−0.619801 + 0.784759i \(0.712787\pi\)
\(272\) −2.74456 −0.166414
\(273\) 0 0
\(274\) 10.5109 0.634985
\(275\) −2.18614 1.26217i −0.131829 0.0761116i
\(276\) −4.62772 + 19.6974i −0.278556 + 1.18564i
\(277\) −14.1168 24.4511i −0.848199 1.46912i −0.882814 0.469723i \(-0.844354\pi\)
0.0346149 0.999401i \(-0.488980\pi\)
\(278\) −7.37228 + 12.7692i −0.442160 + 0.765844i
\(279\) −10.3723 + 0.644810i −0.620972 + 0.0386038i
\(280\) 0 0
\(281\) 28.0627i 1.67408i 0.547143 + 0.837039i \(0.315715\pi\)
−0.547143 + 0.837039i \(0.684285\pi\)
\(282\) −2.13859 + 0.644810i −0.127351 + 0.0383979i
\(283\) −0.558422 + 0.322405i −0.0331947 + 0.0191650i −0.516506 0.856284i \(-0.672767\pi\)
0.483311 + 0.875449i \(0.339434\pi\)
\(284\) −0.350532 + 0.202380i −0.0208002 + 0.0120090i
\(285\) 5.74456 1.73205i 0.340279 0.102598i
\(286\) 8.21782i 0.485930i
\(287\) 0 0
\(288\) 17.4891 1.08724i 1.03056 0.0640663i
\(289\) −1.05842 + 1.83324i −0.0622601 + 0.107838i
\(290\) 0.372281 + 0.644810i 0.0218611 + 0.0378646i
\(291\) 4.37228 18.6101i 0.256308 1.09095i
\(292\) 8.23369 + 4.75372i 0.481840 + 0.278191i
\(293\) 10.8832 0.635801 0.317900 0.948124i \(-0.397022\pi\)
0.317900 + 0.948124i \(0.397022\pi\)
\(294\) 0 0
\(295\) −8.74456 −0.509128
\(296\) 15.6060 + 9.01011i 0.907079 + 0.523702i
\(297\) −12.9307 2.20193i −0.750316 0.127769i
\(298\) 1.25544 + 2.17448i 0.0727255 + 0.125964i
\(299\) −17.4891 + 30.2921i −1.01142 + 1.75183i
\(300\) 1.62772 1.73205i 0.0939764 0.100000i
\(301\) 0 0
\(302\) 1.87953i 0.108155i
\(303\) −3.00000 9.94987i −0.172345 0.571605i
\(304\) 1.88316 1.08724i 0.108006 0.0623575i
\(305\) 6.00000 3.46410i 0.343559 0.198354i
\(306\) 4.62772 9.30506i 0.264549 0.531935i
\(307\) 22.7190i 1.29664i −0.761366 0.648322i \(-0.775471\pi\)
0.761366 0.648322i \(-0.224529\pi\)
\(308\) 0 0
\(309\) 7.93070 + 7.45299i 0.451162 + 0.423986i
\(310\) 1.37228 2.37686i 0.0779403 0.134997i
\(311\) −7.11684 12.3267i −0.403559 0.698985i 0.590593 0.806969i \(-0.298894\pi\)
−0.994153 + 0.107984i \(0.965560\pi\)
\(312\) 18.5109 + 4.34896i 1.04797 + 0.246212i
\(313\) 4.67527 + 2.69927i 0.264262 + 0.152572i 0.626277 0.779601i \(-0.284578\pi\)
−0.362015 + 0.932172i \(0.617911\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −3.25544 −0.183133
\(317\) −1.62772 0.939764i −0.0914218 0.0527824i 0.453592 0.891209i \(-0.350142\pi\)
−0.545014 + 0.838427i \(0.683476\pi\)
\(318\) 2.51087 + 0.589907i 0.140803 + 0.0330804i
\(319\) −1.18614 2.05446i −0.0664111 0.115027i
\(320\) −1.68614 + 2.92048i −0.0942581 + 0.163260i
\(321\) 8.37228 + 7.86797i 0.467295 + 0.439147i
\(322\) 0 0
\(323\) 15.1460i 0.842747i
\(324\) 4.80298 11.3784i 0.266832 0.632131i
\(325\) 3.55842 2.05446i 0.197386 0.113961i
\(326\) 5.48913 3.16915i 0.304015 0.175523i
\(327\) −8.55842 28.3851i −0.473282 1.56970i
\(328\) 16.0309i 0.885158i
\(329\) 0 0
\(330\) 2.37228 2.52434i 0.130590 0.138960i
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) −12.0000 20.7846i −0.658586 1.14070i
\(333\) 16.8614 11.1846i 0.923999 0.612912i
\(334\) −3.35053 1.93443i −0.183333 0.105847i
\(335\) −4.74456 −0.259223
\(336\) 0 0
\(337\) 16.2337 0.884305 0.442153 0.896940i \(-0.354215\pi\)
0.442153 + 0.896940i \(0.354215\pi\)
\(338\) 2.66439 + 1.53829i 0.144924 + 0.0836718i
\(339\) 1.25544 5.34363i 0.0681860 0.290226i
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) −4.37228 + 7.57301i −0.236772 + 0.410102i
\(342\) 0.510875 + 8.21782i 0.0276249 + 0.444369i
\(343\) 0 0
\(344\) 12.6766i 0.683476i
\(345\) −14.1168 + 4.25639i −0.760025 + 0.229156i
\(346\) 0.766312 0.442430i 0.0411972 0.0237852i
\(347\) 12.8614 7.42554i 0.690436 0.398624i −0.113339 0.993556i \(-0.536155\pi\)
0.803776 + 0.594933i \(0.202821\pi\)
\(348\) 2.13859 0.644810i 0.114641 0.0345655i
\(349\) 15.1460i 0.810748i 0.914151 + 0.405374i \(0.132859\pi\)
−0.914151 + 0.405374i \(0.867141\pi\)
\(350\) 0 0
\(351\) 13.6277 16.4356i 0.727394 0.877270i
\(352\) 7.37228 12.7692i 0.392944 0.680599i
\(353\) 12.5584 + 21.7518i 0.668417 + 1.15773i 0.978347 + 0.206973i \(0.0663613\pi\)
−0.309929 + 0.950760i \(0.600305\pi\)
\(354\) 2.74456 11.6819i 0.145872 0.620887i
\(355\) −0.255437 0.147477i −0.0135572 0.00782726i
\(356\) −20.2337 −1.07238
\(357\) 0 0
\(358\) −5.25544 −0.277758
\(359\) 14.4891 + 8.36530i 0.764707 + 0.441504i 0.830983 0.556298i \(-0.187779\pi\)
−0.0662763 + 0.997801i \(0.521112\pi\)
\(360\) 4.43070 + 6.67954i 0.233519 + 0.352042i
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) −0.510875 + 0.884861i −0.0268510 + 0.0465073i
\(363\) 5.48913 5.84096i 0.288104 0.306571i
\(364\) 0 0
\(365\) 6.92820i 0.362639i
\(366\) 2.74456 + 9.10268i 0.143461 + 0.475805i
\(367\) −30.5584 + 17.6429i −1.59514 + 0.920953i −0.602731 + 0.797944i \(0.705921\pi\)
−0.992406 + 0.123008i \(0.960746\pi\)
\(368\) −4.62772 + 2.67181i −0.241237 + 0.139278i
\(369\) 16.1168 + 8.01544i 0.839009 + 0.417267i
\(370\) 5.34363i 0.277802i
\(371\) 0 0
\(372\) −6.00000 5.63858i −0.311086 0.292347i
\(373\) 6.62772 11.4795i 0.343170 0.594388i −0.641849 0.766831i \(-0.721833\pi\)
0.985020 + 0.172442i \(0.0551659\pi\)
\(374\) −4.37228 7.57301i −0.226085 0.391591i
\(375\) 1.68614 + 0.396143i 0.0870719 + 0.0204568i
\(376\) −3.76631 2.17448i −0.194233 0.112140i
\(377\) 3.86141 0.198873
\(378\) 0 0
\(379\) −21.4891 −1.10382 −0.551911 0.833903i \(-0.686101\pi\)
−0.551911 + 0.833903i \(0.686101\pi\)
\(380\) 4.11684 + 2.37686i 0.211190 + 0.121930i
\(381\) 1.25544 + 0.294954i 0.0643180 + 0.0151109i
\(382\) −8.25544 14.2988i −0.422385 0.731592i
\(383\) 2.74456 4.75372i 0.140241 0.242904i −0.787347 0.616511i \(-0.788546\pi\)
0.927587 + 0.373607i \(0.121879\pi\)
\(384\) 11.3723 + 10.6873i 0.580339 + 0.545382i
\(385\) 0 0
\(386\) 9.69259i 0.493340i
\(387\) 12.7446 + 6.33830i 0.647843 + 0.322194i
\(388\) 13.1168 7.57301i 0.665907 0.384462i
\(389\) 25.4198 14.6761i 1.28884 0.744110i 0.310390 0.950609i \(-0.399540\pi\)
0.978447 + 0.206499i \(0.0662071\pi\)
\(390\) 1.62772 + 5.39853i 0.0824227 + 0.273365i
\(391\) 37.2203i 1.88231i
\(392\) 0 0
\(393\) −6.51087 + 6.92820i −0.328430 + 0.349482i
\(394\) 6.23369 10.7971i 0.314049 0.543948i
\(395\) −1.18614 2.05446i −0.0596812 0.103371i
\(396\) −5.74456 8.66025i −0.288675 0.435194i
\(397\) −22.6753 13.0916i −1.13804 0.657047i −0.192095 0.981376i \(-0.561528\pi\)
−0.945944 + 0.324329i \(0.894861\pi\)
\(398\) −21.2554 −1.06544
\(399\) 0 0
\(400\) 0.627719 0.0313859
\(401\) −5.18614 2.99422i −0.258984 0.149524i 0.364887 0.931052i \(-0.381108\pi\)
−0.623871 + 0.781528i \(0.714441\pi\)
\(402\) 1.48913 6.33830i 0.0742708 0.316125i
\(403\) −7.11684 12.3267i −0.354515 0.614038i
\(404\) 4.11684 7.13058i 0.204821 0.354760i
\(405\) 8.93070 1.11469i 0.443770 0.0553895i
\(406\) 0 0
\(407\) 17.0256i 0.843925i
\(408\) 19.3723 5.84096i 0.959071 0.289171i
\(409\) −21.3505 + 12.3267i −1.05572 + 0.609518i −0.924244 0.381802i \(-0.875304\pi\)
−0.131472 + 0.991320i \(0.541970\pi\)
\(410\) −4.11684 + 2.37686i −0.203316 + 0.117385i
\(411\) 22.0000 6.63325i 1.08518 0.327194i
\(412\) 8.62258i 0.424804i
\(413\) 0 0
\(414\) −1.25544 20.1947i −0.0617014 0.992515i
\(415\) 8.74456 15.1460i 0.429254 0.743489i
\(416\) 12.0000 + 20.7846i 0.588348 + 1.01905i
\(417\) −7.37228 + 31.3793i −0.361022 + 1.53665i
\(418\) 6.00000 + 3.46410i 0.293470 + 0.169435i
\(419\) −8.74456 −0.427200 −0.213600 0.976921i \(-0.568519\pi\)
−0.213600 + 0.976921i \(0.568519\pi\)
\(420\) 0 0
\(421\) 14.6060 0.711851 0.355926 0.934514i \(-0.384166\pi\)
0.355926 + 0.934514i \(0.384166\pi\)
\(422\) 7.62772 + 4.40387i 0.371312 + 0.214377i
\(423\) −4.06930 + 2.69927i −0.197856 + 0.131243i
\(424\) 2.51087 + 4.34896i 0.121939 + 0.211204i
\(425\) 2.18614 3.78651i 0.106043 0.183673i
\(426\) 0.277187 0.294954i 0.0134297 0.0142906i
\(427\) 0 0
\(428\) 9.10268i 0.439995i
\(429\) −5.18614 17.2005i −0.250389 0.830447i
\(430\) −3.25544 + 1.87953i −0.156991 + 0.0906389i
\(431\) 13.0693 7.54556i 0.629526 0.363457i −0.151043 0.988527i \(-0.548263\pi\)
0.780568 + 0.625070i \(0.214930\pi\)
\(432\) 3.05842 1.13353i 0.147148 0.0545369i
\(433\) 37.2203i 1.78869i −0.447377 0.894346i \(-0.647642\pi\)
0.447377 0.894346i \(-0.352358\pi\)
\(434\) 0 0
\(435\) 1.18614 + 1.11469i 0.0568711 + 0.0534454i
\(436\) 11.7446 20.3422i 0.562463 0.974214i
\(437\) −14.7446 25.5383i −0.705328 1.22166i
\(438\) −9.25544 2.17448i −0.442242 0.103901i
\(439\) −16.1168 9.30506i −0.769215 0.444106i 0.0633795 0.997989i \(-0.479812\pi\)
−0.832595 + 0.553883i \(0.813145\pi\)
\(440\) 6.74456 0.321534
\(441\) 0 0
\(442\) 14.2337 0.677027
\(443\) −5.74456 3.31662i −0.272932 0.157578i 0.357287 0.933995i \(-0.383702\pi\)
−0.630220 + 0.776417i \(0.717035\pi\)
\(444\) 15.6060 + 3.66648i 0.740627 + 0.174004i
\(445\) −7.37228 12.7692i −0.349480 0.605317i
\(446\) 3.51087 6.08101i 0.166245 0.287944i
\(447\) 4.00000 + 3.75906i 0.189194 + 0.177797i
\(448\) 0 0
\(449\) 11.6270i 0.548713i 0.961628 + 0.274357i \(0.0884648\pi\)
−0.961628 + 0.274357i \(0.911535\pi\)
\(450\) −1.05842 + 2.12819i −0.0498945 + 0.100324i
\(451\) 13.1168 7.57301i 0.617648 0.356599i
\(452\) 3.76631 2.17448i 0.177152 0.102279i
\(453\) −1.18614 3.93398i −0.0557297 0.184835i
\(454\) 19.4950i 0.914945i
\(455\) 0 0
\(456\) −10.9783 + 11.6819i −0.514104 + 0.547056i
\(457\) −6.48913 + 11.2395i −0.303548 + 0.525761i −0.976937 0.213527i \(-0.931505\pi\)
0.673389 + 0.739289i \(0.264838\pi\)
\(458\) −6.00000 10.3923i −0.280362 0.485601i
\(459\) 3.81386 22.3966i 0.178016 1.04539i
\(460\) −10.1168 5.84096i −0.471700 0.272336i
\(461\) −2.74456 −0.127827 −0.0639135 0.997955i \(-0.520358\pi\)
−0.0639135 + 0.997955i \(0.520358\pi\)
\(462\) 0 0
\(463\) −32.4674 −1.50889 −0.754443 0.656365i \(-0.772093\pi\)
−0.754443 + 0.656365i \(0.772093\pi\)
\(464\) 0.510875 + 0.294954i 0.0237168 + 0.0136929i
\(465\) 1.37228 5.84096i 0.0636380 0.270868i
\(466\) 6.74456 + 11.6819i 0.312436 + 0.541155i
\(467\) −15.5584 + 26.9480i −0.719958 + 1.24700i 0.241058 + 0.970511i \(0.422506\pi\)
−0.961016 + 0.276493i \(0.910828\pi\)
\(468\) 16.8832 1.04957i 0.780424 0.0485164i
\(469\) 0 0
\(470\) 1.28962i 0.0594858i
\(471\) 0 0
\(472\) 20.2337 11.6819i 0.931331 0.537704i
\(473\) 10.3723 5.98844i 0.476918 0.275349i
\(474\) 3.11684 0.939764i 0.143161 0.0431648i
\(475\) 3.46410i 0.158944i
\(476\) 0 0
\(477\) 5.62772 0.349857i 0.257676 0.0160188i
\(478\) −8.25544 + 14.2988i −0.377595 + 0.654014i
\(479\) 20.7446 + 35.9306i 0.947843 + 1.64171i 0.749956 + 0.661488i \(0.230075\pi\)
0.197887 + 0.980225i \(0.436592\pi\)
\(480\) −2.31386 + 9.84868i −0.105613 + 0.449529i
\(481\) 24.0000 + 13.8564i 1.09431 + 0.631798i
\(482\) −13.0217 −0.593124
\(483\) 0 0
\(484\) 6.35053 0.288661
\(485\) 9.55842 + 5.51856i 0.434026 + 0.250585i
\(486\) −1.31386 + 12.2804i −0.0595979 + 0.557052i
\(487\) −18.7446 32.4665i −0.849397 1.47120i −0.881747 0.471723i \(-0.843632\pi\)
0.0323498 0.999477i \(-0.489701\pi\)
\(488\) −9.25544 + 16.0309i −0.418974 + 0.725684i
\(489\) 9.48913 10.0974i 0.429113 0.456618i
\(490\) 0 0
\(491\) 5.69349i 0.256943i −0.991713 0.128472i \(-0.958993\pi\)
0.991713 0.128472i \(-0.0410072\pi\)
\(492\) 4.11684 + 13.6540i 0.185602 + 0.615571i
\(493\) 3.55842 2.05446i 0.160263 0.0925280i
\(494\) −9.76631 + 5.63858i −0.439407 + 0.253692i
\(495\) 3.37228 6.78073i 0.151573 0.304771i
\(496\) 2.17448i 0.0976371i
\(497\) 0 0
\(498\) 17.4891 + 16.4356i 0.783706 + 0.736499i
\(499\) −20.6753 + 35.8106i −0.925552 + 1.60310i −0.134881 + 0.990862i \(0.543065\pi\)
−0.790671 + 0.612241i \(0.790268\pi\)
\(500\) 0.686141 + 1.18843i 0.0306851 + 0.0531482i
\(501\) −8.23369 1.93443i −0.367854 0.0864240i
\(502\) −3.76631 2.17448i −0.168099 0.0970518i
\(503\) −12.6060 −0.562072 −0.281036 0.959697i \(-0.590678\pi\)
−0.281036 + 0.959697i \(0.590678\pi\)
\(504\) 0 0
\(505\) 6.00000 0.266996
\(506\) −14.7446 8.51278i −0.655476 0.378439i
\(507\) 6.54755 + 1.53829i 0.290787 + 0.0683177i
\(508\) 0.510875 + 0.884861i 0.0226664 + 0.0392594i
\(509\) −1.88316 + 3.26172i −0.0834694 + 0.144573i −0.904738 0.425969i \(-0.859933\pi\)
0.821269 + 0.570542i \(0.193267\pi\)
\(510\) 4.37228 + 4.10891i 0.193608 + 0.181946i
\(511\) 0 0
\(512\) 7.02078i 0.310277i
\(513\) 6.25544 + 16.8781i 0.276184 + 0.745185i
\(514\) −0.350532 + 0.202380i −0.0154613 + 0.00892659i
\(515\) −5.44158 + 3.14170i −0.239785 + 0.138440i
\(516\) 3.25544 + 10.7971i 0.143313 + 0.475314i
\(517\) 4.10891i 0.180710i
\(518\) 0 0
\(519\) 1.32473 1.40965i 0.0581494 0.0618766i
\(520\) −5.48913 + 9.50744i −0.240714 + 0.416929i
\(521\) −17.2337 29.8496i −0.755022 1.30774i −0.945364 0.326018i \(-0.894293\pi\)
0.190342 0.981718i \(-0.439040\pi\)
\(522\) −1.86141 + 1.23472i −0.0814716 + 0.0540421i
\(523\) 9.00000 + 5.19615i 0.393543 + 0.227212i 0.683694 0.729769i \(-0.260372\pi\)
−0.290151 + 0.956981i \(0.593706\pi\)
\(524\) −7.53262 −0.329064
\(525\) 0 0
\(526\) 0.233688 0.0101893
\(527\) −13.1168 7.57301i −0.571379 0.329886i
\(528\) 0.627719 2.67181i 0.0273179 0.116276i
\(529\) 24.7337 + 42.8400i 1.07538 + 1.86261i
\(530\) −0.744563 + 1.28962i −0.0323417 + 0.0560175i
\(531\) −1.62772 26.1831i −0.0706370 1.13625i
\(532\) 0 0
\(533\) 24.6535i 1.06786i
\(534\) 19.3723 5.84096i 0.838321 0.252763i
\(535\) −5.74456 + 3.31662i −0.248359 + 0.143390i
\(536\) 10.9783 6.33830i 0.474188 0.273773i
\(537\) −11.0000 + 3.31662i −0.474685 + 0.143123i
\(538\) 2.17448i 0.0937485i
\(539\) 0 0
\(540\) 5.48913 + 4.55134i 0.236214 + 0.195859i
\(541\) −12.1861 + 21.1070i −0.523923 + 0.907461i 0.475689 + 0.879614i \(0.342199\pi\)
−0.999612 + 0.0278479i \(0.991135\pi\)
\(542\) 1.88316 + 3.26172i 0.0808885 + 0.140103i
\(543\) −0.510875 + 2.17448i −0.0219237 + 0.0933159i
\(544\) 22.1168 + 12.7692i 0.948252 + 0.547473i
\(545\) 17.1168 0.733205
\(546\) 0 0
\(547\) −2.97825 −0.127341 −0.0636704 0.997971i \(-0.520281\pi\)
−0.0636704 + 0.997971i \(0.520281\pi\)
\(548\) 15.7663 + 9.10268i 0.673503 + 0.388847i
\(549\) 11.4891 + 17.3205i 0.490344 + 0.739221i
\(550\) 1.00000 + 1.73205i 0.0426401 + 0.0738549i
\(551\) −1.62772 + 2.81929i −0.0693431 + 0.120106i
\(552\) 26.9783 28.7075i 1.14827 1.22187i
\(553\) 0 0
\(554\) 22.3692i 0.950376i
\(555\) 3.37228 + 11.1846i 0.143145 + 0.474759i
\(556\) −22.1168 + 12.7692i −0.937963 + 0.541533i
\(557\) −15.2554 + 8.80773i −0.646394 + 0.373196i −0.787073 0.616860i \(-0.788405\pi\)
0.140680 + 0.990055i \(0.455071\pi\)
\(558\) 7.37228 + 3.66648i 0.312094 + 0.155215i
\(559\) 19.4950i 0.824550i
\(560\) 0 0
\(561\) −13.9307 13.0916i −0.588155 0.552727i
\(562\) 11.1168 19.2549i 0.468936 0.812221i
\(563\) −8.74456 15.1460i −0.368539 0.638329i 0.620798 0.783971i \(-0.286809\pi\)
−0.989337 + 0.145642i \(0.953475\pi\)
\(564\) −3.76631 0.884861i −0.158590 0.0372594i
\(565\) 2.74456 + 1.58457i 0.115465 + 0.0666635i
\(566\) 0.510875 0.0214737
\(567\) 0 0
\(568\) 0.788061 0.0330663
\(569\) −20.7446 11.9769i −0.869657 0.502097i −0.00242296 0.999997i \(-0.500771\pi\)
−0.867234 + 0.497900i \(0.834105\pi\)
\(570\) −4.62772 1.08724i −0.193834 0.0455395i
\(571\) 2.00000 + 3.46410i 0.0836974 + 0.144968i 0.904835 0.425762i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(572\) 7.11684 12.3267i 0.297570 0.515407i
\(573\) −26.3030 24.7186i −1.09882 1.03263i
\(574\) 0 0
\(575\) 8.51278i 0.355007i
\(576\) −9.05842 4.50506i −0.377434 0.187711i
\(577\) 2.44158 1.40965i 0.101644 0.0586843i −0.448316 0.893875i \(-0.647976\pi\)
0.549960 + 0.835191i \(0.314643\pi\)
\(578\) 1.45245 0.838574i 0.0604141 0.0348801i
\(579\) −6.11684 20.2873i −0.254207 0.843110i
\(580\) 1.28962i 0.0535486i
\(581\) 0 0
\(582\) −10.3723 + 11.0371i −0.429945 + 0.457503i
\(583\) 2.37228 4.10891i 0.0982499 0.170174i
\(584\) −9.25544 16.0309i −0.382993 0.663363i
\(585\) 6.81386 + 10.2723i 0.281718 + 0.424706i
\(586\) −7.46738 4.31129i −0.308474 0.178098i
\(587\) −17.4891 −0.721853 −0.360927 0.932594i \(-0.617540\pi\)
−0.360927 + 0.932594i \(0.617540\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 6.00000 + 3.46410i 0.247016 + 0.142615i
\(591\) 6.23369 26.5330i 0.256420 1.09142i
\(592\) 2.11684 + 3.66648i 0.0870018 + 0.150691i
\(593\) 2.18614 3.78651i 0.0897740 0.155493i −0.817642 0.575728i \(-0.804719\pi\)
0.907416 + 0.420234i \(0.138052\pi\)
\(594\) 8.00000 + 6.63325i 0.328244 + 0.272166i
\(595\) 0 0
\(596\) 4.34896i 0.178140i
\(597\) −44.4891 + 13.4140i −1.82082 + 0.548997i
\(598\) 24.0000 13.8564i 0.981433 0.566631i
\(599\) −30.0475 + 17.3480i −1.22771 + 0.708818i −0.966550 0.256477i \(-0.917438\pi\)
−0.261159 + 0.965296i \(0.584105\pi\)
\(600\) −4.43070 + 1.33591i −0.180883 + 0.0545382i
\(601\) 22.0742i 0.900427i −0.892921 0.450213i \(-0.851348\pi\)
0.892921 0.450213i \(-0.148652\pi\)
\(602\) 0 0
\(603\) −0.883156 14.2063i −0.0359649 0.578524i
\(604\) 1.62772 2.81929i 0.0662309 0.114715i
\(605\) 2.31386 + 4.00772i 0.0940718 + 0.162937i
\(606\) −1.88316 + 8.01544i −0.0764980 + 0.325605i
\(607\) −7.67527 4.43132i −0.311529 0.179862i 0.336081 0.941833i \(-0.390898\pi\)
−0.647611 + 0.761971i \(0.724232\pi\)
\(608\) −20.2337 −0.820584
\(609\) 0 0
\(610\) −5.48913 −0.222248
\(611\) −5.79211 3.34408i −0.234324 0.135287i
\(612\) 15.0000 9.94987i 0.606339 0.402200i
\(613\) 13.7446 + 23.8063i 0.555138 + 0.961527i 0.997893 + 0.0648841i \(0.0206678\pi\)
−0.442755 + 0.896643i \(0.645999\pi\)
\(614\) −9.00000 + 15.5885i −0.363210 + 0.629099i
\(615\) −7.11684 + 7.57301i −0.286979 + 0.305373i
\(616\) 0 0
\(617\) 24.5437i 0.988091i −0.869436 0.494045i \(-0.835518\pi\)
0.869436 0.494045i \(-0.164482\pi\)
\(618\) −2.48913 8.25549i −0.100127 0.332085i
\(619\) −16.1168 + 9.30506i −0.647791 + 0.374002i −0.787609 0.616175i \(-0.788681\pi\)
0.139819 + 0.990177i \(0.455348\pi\)
\(620\) 4.11684 2.37686i 0.165336 0.0954570i
\(621\) −15.3723 41.4766i −0.616868 1.66440i
\(622\) 11.2772i 0.452173i
\(623\) 0 0
\(624\) 3.25544 + 3.05934i 0.130322 + 0.122472i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −2.13859 3.70415i −0.0854754 0.148048i
\(627\) 14.7446 + 3.46410i 0.588841 + 0.138343i
\(628\) 0 0
\(629\) 29.4891 1.17581
\(630\) 0 0
\(631\) −23.1168 −0.920267 −0.460134 0.887850i \(-0.652198\pi\)
−0.460134 + 0.887850i \(0.652198\pi\)
\(632\) 5.48913 + 3.16915i 0.218346 + 0.126062i
\(633\) 18.7446 + 4.40387i 0.745029 + 0.175038i
\(634\) 0.744563 + 1.28962i 0.0295704 + 0.0512174i
\(635\) −0.372281 + 0.644810i −0.0147735 + 0.0255885i
\(636\) 3.25544 + 3.05934i 0.129086 + 0.121311i
\(637\) 0 0
\(638\) 1.87953i 0.0744112i
\(639\) 0.394031 0.792287i 0.0155876 0.0313424i
\(640\) −7.80298 + 4.50506i −0.308440 + 0.178078i
\(641\) −31.7228 + 18.3152i −1.25298 + 0.723406i −0.971699 0.236221i \(-0.924091\pi\)
−0.281276 + 0.959627i \(0.590758\pi\)
\(642\) −2.62772 8.71516i −0.103708 0.343960i
\(643\) 10.1523i 0.400366i 0.979759 + 0.200183i \(0.0641536\pi\)
−0.979759 + 0.200183i \(0.935846\pi\)
\(644\) 0 0
\(645\) −5.62772 + 5.98844i −0.221591 + 0.235795i
\(646\) −6.00000 + 10.3923i −0.236067 + 0.408880i
\(647\) 6.00000 + 10.3923i 0.235884 + 0.408564i 0.959529 0.281609i \(-0.0908680\pi\)
−0.723645 + 0.690172i \(0.757535\pi\)
\(648\) −19.1753 + 14.5098i −0.753276 + 0.570000i
\(649\) −19.1168 11.0371i −0.750402 0.433245i
\(650\) −3.25544 −0.127689
\(651\) 0 0
\(652\) 10.9783 0.429941
\(653\) 34.3723 + 19.8448i 1.34509 + 0.776589i 0.987550 0.157308i \(-0.0502816\pi\)
0.357542 + 0.933897i \(0.383615\pi\)
\(654\) −5.37228 + 22.8665i −0.210073 + 0.894152i
\(655\) −2.74456 4.75372i −0.107239 0.185743i
\(656\) −1.88316 + 3.26172i −0.0735249 + 0.127349i
\(657\) −20.7446 + 1.28962i −0.809322 + 0.0503129i
\(658\) 0 0
\(659\) 35.9855i 1.40180i −0.713261 0.700899i \(-0.752782\pi\)
0.713261 0.700899i \(-0.247218\pi\)
\(660\) 5.74456 1.73205i 0.223607 0.0674200i
\(661\) 6.00000 3.46410i 0.233373 0.134738i −0.378754 0.925497i \(-0.623647\pi\)
0.612127 + 0.790759i \(0.290314\pi\)
\(662\) −2.74456 + 1.58457i −0.106670 + 0.0615862i
\(663\) 29.7921 8.98266i 1.15703 0.348858i
\(664\) 46.7277i 1.81339i
\(665\) 0 0
\(666\) −16.0000 + 0.994667i −0.619987 + 0.0385426i
\(667\) 4.00000 6.92820i 0.154881 0.268261i
\(668\) −3.35053 5.80329i −0.129636 0.224536i
\(669\) 3.51087 14.9436i 0.135738 0.577755i
\(670\) 3.25544 + 1.87953i 0.125769 + 0.0726125i
\(671\) 17.4891 0.675160
\(672\) 0 0
\(673\) −12.2337 −0.471574 −0.235787 0.971805i \(-0.575767\pi\)
−0.235787 + 0.971805i \(0.575767\pi\)
\(674\) −11.1386 6.43087i −0.429043 0.247708i
\(675\) −0.872281 + 5.12241i −0.0335741 + 0.197162i
\(676\) 2.66439 + 4.61486i 0.102477 + 0.177495i
\(677\) −9.30298 + 16.1132i −0.357543 + 0.619282i −0.987550 0.157307i \(-0.949719\pi\)
0.630007 + 0.776589i \(0.283052\pi\)
\(678\) −2.97825 + 3.16915i −0.114379 + 0.121710i
\(679\) 0 0
\(680\) 11.6819i 0.447981i
\(681\) −12.3030 40.8044i −0.471451 1.56363i
\(682\) 6.00000 3.46410i 0.229752 0.132647i
\(683\) −29.8397 + 17.2279i −1.14178 + 0.659209i −0.946871 0.321612i \(-0.895775\pi\)
−0.194911 + 0.980821i \(0.562442\pi\)
\(684\) −6.35053 + 12.7692i −0.242819 + 0.488241i
\(685\) 13.2665i 0.506887i
\(686\) 0 0
\(687\) −19.1168 17.9653i −0.729353 0.685420i
\(688\) −1.48913 + 2.57924i −0.0567724 + 0.0983326i
\(689\) 3.86141 + 6.68815i 0.147108 + 0.254798i
\(690\) 11.3723 + 2.67181i 0.432935 + 0.101714i
\(691\) 18.3505 + 10.5947i 0.698087 + 0.403041i 0.806635 0.591050i \(-0.201287\pi\)
−0.108547 + 0.994091i \(0.534620\pi\)
\(692\) 1.53262 0.0582616
\(693\) 0 0
\(694\) −11.7663 −0.446643
\(695\) −16.1168 9.30506i −0.611347 0.352961i
\(696\) −4.23369 0.994667i −0.160478 0.0377027i
\(697\) 13.1168 + 22.7190i 0.496836 + 0.860545i
\(698\) 6.00000 10.3923i 0.227103 0.393355i
\(699\) 21.4891 + 20.1947i 0.812793 + 0.763834i
\(700\) 0 0
\(701\) 42.5090i 1.60554i −0.596287 0.802771i \(-0.703358\pi\)
0.596287 0.802771i \(-0.296642\pi\)
\(702\) −15.8614 + 5.87863i −0.598650 + 0.221875i
\(703\) −20.2337 + 11.6819i −0.763128 + 0.440592i
\(704\) −7.37228 + 4.25639i −0.277853 + 0.160419i
\(705\) −0.813859 2.69927i −0.0306517 0.101660i
\(706\) 19.8997i 0.748937i
\(707\) 0 0
\(708\) 14.2337 15.1460i 0.534935 0.569223i
\(709\) −3.44158 + 5.96099i −0.129251 + 0.223870i −0.923387 0.383871i \(-0.874591\pi\)
0.794135 + 0.607741i \(0.207924\pi\)
\(710\) 0.116844 + 0.202380i 0.00438508 + 0.00759517i
\(711\) 5.93070 3.93398i 0.222419 0.147536i
\(712\) 34.1168 + 19.6974i 1.27858 + 0.738190i
\(713\) −29.4891 −1.10438
\(714\) 0 0
\(715\) 10.3723 0.387901
\(716\) −7.88316 4.55134i −0.294607 0.170092i
\(717\) −8.25544 + 35.1383i −0.308305 + 1.31227i
\(718\) −6.62772 11.4795i −0.247344 0.428413i
\(719\) −14.2337 + 24.6535i −0.530827 + 0.919419i 0.468526 + 0.883450i \(0.344785\pi\)
−0.999353 + 0.0359696i \(0.988548\pi\)
\(720\) 0.116844 + 1.87953i 0.00435452 + 0.0700459i
\(721\) 0 0
\(722\) 5.54601i 0.206401i
\(723\) −27.2554 + 8.21782i −1.01364 + 0.305624i
\(724\) −1.53262 + 0.884861i −0.0569595 + 0.0328856i
\(725\) −0.813859 + 0.469882i −0.0302260 + 0.0174510i
\(726\) −6.08017 + 1.83324i −0.225656 + 0.0680379i
\(727\) 3.46410i 0.128476i −0.997935 0.0642382i \(-0.979538\pi\)
0.997935 0.0642382i \(-0.0204617\pi\)
\(728\) 0 0
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) 2.74456 4.75372i 0.101581 0.175943i
\(731\) 10.3723 + 17.9653i 0.383633 + 0.664471i
\(732\) −3.76631 + 16.0309i −0.139207 + 0.592519i
\(733\) −34.6753 20.0198i −1.28076 0.739447i −0.303773 0.952744i \(-0.598246\pi\)
−0.976987 + 0.213297i \(0.931580\pi\)
\(734\) 27.9565 1.03189
\(735\) 0 0
\(736\) 49.7228 1.83281
\(737\) −10.3723 5.98844i −0.382068 0.220587i
\(738\) −7.88316 11.8843i −0.290183 0.437467i
\(739\) 7.18614 + 12.4468i 0.264346 + 0.457861i 0.967392 0.253283i \(-0.0815104\pi\)
−0.703046 + 0.711145i \(0.748177\pi\)
\(740\) −4.62772 + 8.01544i −0.170118 + 0.294654i
\(741\) −16.8832 + 17.9653i −0.620218 + 0.659972i
\(742\) 0 0
\(743\) 16.1407i 0.592145i 0.955166 + 0.296072i \(0.0956769\pi\)
−0.955166 + 0.296072i \(0.904323\pi\)
\(744\) 4.62772 + 15.3484i 0.169660 + 0.562700i
\(745\) −2.74456 + 1.58457i −0.100553 + 0.0580543i
\(746\) −9.09509 + 5.25106i −0.332995 + 0.192255i
\(747\) 46.9783 + 23.3639i 1.71884 + 0.854839i
\(748\) 15.1460i 0.553794i
\(749\) 0 0
\(750\) −1.00000 0.939764i −0.0365148 0.0343153i
\(751\) −14.6753 + 25.4183i −0.535508 + 0.927527i 0.463631 + 0.886029i \(0.346547\pi\)
−0.999139 + 0.0414985i \(0.986787\pi\)
\(752\) −0.510875 0.884861i −0.0186297 0.0322676i
\(753\) −9.25544 2.17448i −0.337287 0.0792425i
\(754\) −2.64947 1.52967i −0.0964879 0.0557073i
\(755\) 2.37228 0.0863362
\(756\) 0 0
\(757\) −19.7663 −0.718419 −0.359209 0.933257i \(-0.616954\pi\)
−0.359209 + 0.933257i \(0.616954\pi\)
\(758\) 14.7446 + 8.51278i 0.535547 + 0.309198i
\(759\) −36.2337 8.51278i −1.31520 0.308994i
\(760\) −4.62772 8.01544i −0.167865 0.290751i
\(761\) 4.11684 7.13058i 0.149235 0.258483i −0.781710 0.623643i \(-0.785652\pi\)
0.930945 + 0.365159i \(0.118985\pi\)
\(762\) −0.744563 0.699713i −0.0269727 0.0253479i
\(763\) 0 0
\(764\) 28.5977i 1.03463i
\(765\) 11.7446 + 5.84096i 0.424626 + 0.211180i
\(766\) −3.76631 + 2.17448i −0.136082 + 0.0785672i
\(767\) 31.1168 17.9653i 1.12356 0.648690i
\(768\) −6.94158 23.0226i −0.250483 0.830757i
\(769\) 38.5099i 1.38870i 0.719637 + 0.694351i \(0.244308\pi\)
−0.719637 + 0.694351i \(0.755692\pi\)
\(770\) 0 0
\(771\) −0.605969 + 0.644810i −0.0218234 + 0.0232223i
\(772\) 8.39403 14.5389i 0.302108 0.523266i
\(773\) −26.1861 45.3557i −0.941850 1.63133i −0.761939 0.647649i \(-0.775752\pi\)
−0.179911 0.983683i \(-0.557581\pi\)
\(774\) −6.23369 9.39764i −0.224065 0.337791i
\(775\) 3.00000 + 1.73205i 0.107763 + 0.0622171i
\(776\) −29.4891 −1.05860
\(777\) 0 0
\(778\) −23.2554 −0.833748
\(779\) −18.0000 10.3923i −0.644917 0.372343i
\(780\) −2.23369 + 9.50744i −0.0799789 + 0.340421i
\(781\) −0.372281 0.644810i −0.0133213 0.0230731i
\(782\) 14.7446 25.5383i 0.527264 0.913249i
\(783\) −3.11684 + 3.75906i −0.111387 + 0.134338i
\(784\) 0 0
\(785\) 0 0
\(786\) 7.21194 2.17448i 0.257241 0.0775612i
\(787\) −2.79211 + 1.61203i −0.0995280 + 0.0574625i −0.548938 0.835863i \(-0.684968\pi\)
0.449410 + 0.893326i \(0.351634\pi\)
\(788\) 18.7011 10.7971i 0.666198 0.384629i
\(789\) 0.489125 0.147477i 0.0174133 0.00525031i
\(790\) 1.87953i 0.0668706i
\(791\) 0 0
\(792\) 1.25544 + 20.1947i 0.0446100 + 0.717588i
\(793\) −14.2337 + 24.6535i −0.505453 + 0.875470i
\(794\) 10.3723 + 17.9653i 0.368098 + 0.637565i
\(795\) −0.744563 + 3.16915i −0.0264069 + 0.112398i
\(796\) −31.8832 18.4077i −1.13007 0.652445i
\(797\) 14.1386 0.500815 0.250407 0.968141i \(-0.419435\pi\)
0.250407 + 0.968141i \(0.419435\pi\)
\(798\) 0 0
\(799\) −7.11684 −0.251776
\(800\) −5.05842 2.92048i −0.178842 0.103255i
\(801\) 36.8614 24.4511i 1.30243 0.863937i
\(802\) 2.37228 + 4.10891i 0.0837682 + 0.145091i
\(803\) −8.74456 + 15.1460i −0.308589 + 0.534492i
\(804\) 7.72281 8.21782i 0.272363 0.289820i
\(805\) 0 0
\(806\) 11.2772i 0.397221i
\(807\) −1.37228 4.55134i −0.0483066 0.160215i
\(808\) −13.8832 + 8.01544i −0.488408 + 0.281982i
\(809\) −11.6970 + 6.75327i −0.411245 + 0.237433i −0.691325 0.722544i \(-0.742973\pi\)
0.280079 + 0.959977i \(0.409639\pi\)
\(810\) −6.56930 2.77300i −0.230822 0.0974334i
\(811\) 18.6101i 0.653490i −0.945113 0.326745i \(-0.894048\pi\)
0.945113 0.326745i \(-0.105952\pi\)
\(812\) 0 0
\(813\) 6.00000 + 5.63858i 0.210429 + 0.197754i
\(814\) −6.74456 + 11.6819i −0.236397 + 0.409451i
\(815\) 4.00000 + 6.92820i 0.140114 + 0.242684i
\(816\) 4.62772 + 1.08724i 0.162003 + 0.0380610i
\(817\) −14.2337 8.21782i −0.497974 0.287505i
\(818\) 19.5326 0.682942
\(819\) 0 0
\(820\) −8.23369 −0.287533
\(821\) −30.3030 17.4954i −1.05758 0.610595i −0.132819 0.991140i \(-0.542403\pi\)
−0.924762 + 0.380545i \(0.875736\pi\)
\(822\) −17.7228 4.16381i −0.618154 0.145230i
\(823\) 6.88316 + 11.9220i 0.239932 + 0.415574i 0.960694 0.277608i \(-0.0895416\pi\)
−0.720763 + 0.693182i \(0.756208\pi\)
\(824\) 8.39403 14.5389i 0.292420 0.506486i
\(825\) 3.18614 + 2.99422i 0.110927 + 0.104245i
\(826\) 0 0
\(827\) 14.8511i 0.516422i 0.966088 + 0.258211i \(0.0831330\pi\)
−0.966088 + 0.258211i \(0.916867\pi\)
\(828\) 15.6060 31.3793i 0.542345 1.09051i
\(829\) −10.8832 + 6.28339i −0.377988 + 0.218231i −0.676942 0.736036i \(-0.736695\pi\)
0.298955 + 0.954267i \(0.403362\pi\)
\(830\) −12.0000 + 6.92820i −0.416526 + 0.240481i
\(831\) 14.1168 + 46.8203i 0.489708 + 1.62418i
\(832\) 13.8564i 0.480384i
\(833\) 0 0
\(834\) 17.4891 18.6101i 0.605599 0.644416i
\(835\) 2.44158 4.22894i 0.0844943 0.146348i
\(836\) 6.00000 + 10.3923i 0.207514 + 0.359425i
\(837\) 17.7446 + 3.02167i 0.613342 + 0.104444i
\(838\) 6.00000 + 3.46410i 0.207267 + 0.119665i
\(839\) 30.5109 1.05335 0.526676 0.850066i \(-0.323438\pi\)
0.526676 + 0.850066i \(0.323438\pi\)
\(840\) 0 0
\(841\) 28.1168 0.969546
\(842\) −10.0217 5.78606i −0.345372 0.199401i
\(843\) 11.1168 47.3176i 0.382884 1.62970i
\(844\) 7.62772 + 13.2116i 0.262557 + 0.454762i
\(845\) −1.94158 + 3.36291i −0.0667923 + 0.115688i
\(846\) 3.86141 0.240051i 0.132758 0.00825312i
\(847\) 0 0
\(848\) 1.17981i 0.0405150i
\(849\) 1.06930 0.322405i 0.0366982 0.0110649i
\(850\) −3.00000 + 1.73205i −0.102899 + 0.0594089i
\(851\) 49.7228 28.7075i 1.70448 0.984080i
\(852\) 0.671218 0.202380i 0.0229955 0.00693341i
\(853\) 32.8713i 1.12549i −0.826630 0.562746i \(-0.809745\pi\)
0.826630 0.562746i \(-0.190255\pi\)
\(854\) 0 0
\(855\) −10.3723 + 0.644810i −0.354725 + 0.0220520i
\(856\) 8.86141 15.3484i 0.302877 0.524598i
\(857\) 23.2337 + 40.2419i 0.793648 + 1.37464i 0.923694 + 0.383130i \(0.125154\pi\)
−0.130047 + 0.991508i \(0.541513\pi\)
\(858\) −3.25544 + 13.8564i −0.111139 + 0.473050i
\(859\) −12.3505 7.13058i −0.421395 0.243292i 0.274279 0.961650i \(-0.411561\pi\)
−0.695674 + 0.718358i \(0.744894\pi\)
\(860\) −6.51087 −0.222019
\(861\) 0 0
\(862\) −11.9565 −0.407240
\(863\) −35.7446 20.6371i −1.21676 0.702496i −0.252536 0.967588i \(-0.581265\pi\)
−0.964223 + 0.265091i \(0.914598\pi\)
\(864\) −29.9198 5.09496i −1.01789 0.173334i
\(865\) 0.558422 + 0.967215i 0.0189869 + 0.0328863i
\(866\) −14.7446 + 25.5383i −0.501041 + 0.867828i
\(867\) 2.51087 2.67181i 0.0852738 0.0907396i
\(868\) 0 0
\(869\) 5.98844i 0.203144i
\(870\) −0.372281 1.23472i −0.0126215 0.0418608i
\(871\) 16.8832 9.74749i 0.572064 0.330281i
\(872\) −39.6060 + 22.8665i −1.34123 + 0.774358i
\(873\) −14.7446 + 29.6472i −0.499028 + 1.00341i
\(874\) 23.3639i 0.790294i
\(875\) 0 0
\(876\) −12.0000 11.2772i −0.405442 0.381020i
\(877\) 19.2337 33.3137i 0.649475 1.12492i −0.333773 0.942654i \(-0.608322\pi\)
0.983248 0.182271i \(-0.0583448\pi\)
\(878\) 7.37228 + 12.7692i 0.248802 + 0.430938i
\(879\) −18.3505 4.31129i −0.618948 0.145416i
\(880\) 1.37228 + 0.792287i 0.0462596 + 0.0267080i
\(881\) −32.2337 −1.08598 −0.542990 0.839739i \(-0.682708\pi\)
−0.542990 + 0.839739i \(0.682708\pi\)
\(882\) 0 0
\(883\) 49.4891 1.66544 0.832721 0.553693i \(-0.186782\pi\)
0.832721 + 0.553693i \(0.186782\pi\)
\(884\) 21.3505 + 12.3267i 0.718096 + 0.414593i
\(885\) 14.7446 + 3.46410i 0.495633 + 0.116445i
\(886\) 2.62772 + 4.55134i 0.0882799 + 0.152905i
\(887\) 9.25544 16.0309i 0.310767 0.538265i −0.667761 0.744375i \(-0.732747\pi\)
0.978529 + 0.206111i \(0.0660807\pi\)
\(888\) −22.7446 21.3745i −0.763258 0.717282i
\(889\) 0 0
\(890\) 11.6819i 0.391579i
\(891\) 20.9307 + 8.83518i 0.701205 + 0.295990i
\(892\) 10.5326 6.08101i 0.352658 0.203607i
\(893\) 4.88316 2.81929i 0.163409 0.0943440i
\(894\) −1.25544 4.16381i −0.0419881 0.139259i
\(895\) 6.63325i 0.221725i
\(896\) 0 0
\(897\) 41.4891 44.1485i 1.38528 1.47407i
\(898\) 4.60597 7.97777i 0.153703 0.266222i
\(899\) 1.62772 + 2.81929i 0.0542875 + 0.0940286i
\(900\) −3.43070 + 2.27567i −0.114357 + 0.0758557i
\(901\) 7.11684 + 4.10891i 0.237096 + 0.136888i
\(902\) −12.0000 −0.399556
\(903\) 0 0
\(904\) −8.46738 −0.281621
\(905\) −1.11684 0.644810i −0.0371251 0.0214342i
\(906\) −0.744563 + 3.16915i −0.0247364 + 0.105288i
\(907\) −4.00000 6.92820i −0.132818 0.230047i 0.791944 0.610594i \(-0.209069\pi\)
−0.924762 + 0.380547i \(0.875736\pi\)
\(908\) 16.8832 29.2425i 0.560287 0.970446i
\(909\) 1.11684 + 17.9653i 0.0370434 + 0.595872i
\(910\) 0 0
\(911\) 2.87419i 0.0952263i −0.998866 0.0476132i \(-0.984839\pi\)
0.998866 0.0476132i \(-0.0151615\pi\)
\(912\) −3.60597 + 1.08724i −0.119406 + 0.0360021i
\(913\) 38.2337 22.0742i 1.26535 0.730550i
\(914\) 8.90491 5.14125i 0.294548 0.170057i
\(915\) −11.4891 + 3.46410i −0.379819 + 0.114520i
\(916\) 20.7846i 0.686743i
\(917\) 0 0
\(918\) −11.4891 + 13.8564i −0.379198 + 0.457330i
\(919\) 2.81386 4.87375i 0.0928207 0.160770i −0.815876 0.578226i \(-0.803745\pi\)
0.908697 + 0.417456i \(0.137078\pi\)
\(920\) 11.3723 + 19.6974i 0.374933 + 0.649403i
\(921\) −9.00000 + 38.3075i −0.296560 + 1.26227i
\(922\) 1.88316 + 1.08724i 0.0620184 + 0.0358064i
\(923\) 1.21194 0.0398914
\(924\) 0 0
\(925\) −6.74456 −0.221760
\(926\) 22.2772 + 12.8617i 0.732074 + 0.422663i
\(927\) −10.4198 15.7085i −0.342232 0.515934i
\(928\) −2.74456 4.75372i −0.0900947 0.156049i
\(929\) 26.4891 45.8805i 0.869080 1.50529i 0.00614188 0.999981i \(-0.498045\pi\)
0.862938 0.505310i \(-0.168622\pi\)
\(930\) −3.25544 + 3.46410i −0.106750 + 0.113592i
\(931\) 0 0
\(932\) 23.3639i 0.765308i
\(933\) 7.11684 + 23.6039i 0.232995 + 0.772757i
\(934\) 21.3505 12.3267i 0.698611 0.403343i
\(935\) 9.55842 5.51856i 0.312594 0.180476i
\(936\) −29.4891 14.6659i −0.963882 0.479371i
\(937\) 0.240051i 0.00784212i 0.999992 + 0.00392106i \(0.00124811\pi\)
−0.999992 + 0.00392106i \(0.998752\pi\)
\(938\) 0 0
\(939\) −6.81386 6.40342i −0.222362 0.208968i
\(940\) 1.11684 1.93443i 0.0364274 0.0630942i
\(941\) −19.3723 33.5538i −0.631518 1.09382i −0.987241 0.159230i \(-0.949099\pi\)
0.355723 0.934591i \(-0.384235\pi\)
\(942\) 0 0
\(943\) 44.2337 + 25.5383i 1.44045 + 0.831643i
\(944\) 5.48913 0.178656
\(945\) 0 0
\(946\) −9.48913 −0.308518
\(947\) 30.2554 + 17.4680i 0.983170 + 0.567633i 0.903226 0.429166i \(-0.141193\pi\)
0.0799440 + 0.996799i \(0.474526\pi\)
\(948\) 5.48913 + 1.28962i 0.178279 + 0.0418849i
\(949\) −14.2337 24.6535i −0.462045 0.800286i
\(950\) 1.37228 2.37686i 0.0445227 0.0771156i
\(951\) 2.37228 + 2.22938i 0.0769265 + 0.0722927i
\(952\) 0 0
\(953\) 7.62792i 0.247092i −0.992339 0.123546i \(-0.960573\pi\)
0.992339 0.123546i \(-0.0394267\pi\)
\(954\) −4.00000 1.98933i −0.129505 0.0644070i
\(955\) 18.0475 10.4198i 0.584005 0.337175i
\(956\) −24.7663 + 14.2988i −0.801000 + 0.462457i
\(957\) 1.18614 + 3.93398i 0.0383425 + 0.127168i
\(958\) 32.8713i 1.06202i
\(959\) 0 0
\(960\) 4.00000 4.25639i 0.129099 0.137374i
\(961\) −9.50000 + 16.4545i −0.306452 + 0.530790i
\(962\) −10.9783 19.0149i −0.353953 0.613065i
\(963\) −11.0000 16.5831i −0.354470 0.534384i
\(964\) −19.5326 11.2772i −0.629103 0.363213i
\(965\) 12.2337 0.393816
\(966\) 0 0
\(967\) 10.2337 0.329093 0.164547 0.986369i \(-0.447384\pi\)
0.164547 + 0.986369i \(0.447384\pi\)
\(968\) −10.7079 6.18220i −0.344165 0.198704i
\(969\) −6.00000 + 25.5383i −0.192748 + 0.820409i
\(970\) −4.37228 7.57301i −0.140385 0.243155i
\(971\) 18.6060 32.2265i 0.597094 1.03420i −0.396154 0.918184i \(-0.629655\pi\)
0.993248 0.116013i \(-0.0370114\pi\)
\(972\) −12.6060 + 17.2828i −0.404337 + 0.554347i
\(973\) 0 0
\(974\) 29.7021i 0.951718i
\(975\) −6.81386 + 2.05446i −0.218218 + 0.0657952i
\(976\) −3.76631 + 2.17448i −0.120557 + 0.0696034i
\(977\) −6.60597 + 3.81396i −0.211344 + 0.122019i −0.601936 0.798545i \(-0.705604\pi\)
0.390592 + 0.920564i \(0.372270\pi\)
\(978\) −10.5109 + 3.16915i −0.336101 + 0.101338i
\(979\) 37.2203i 1.18956i
\(980\) 0 0
\(981\) 3.18614 + 51.2516i 0.101726 + 1.63634i
\(982\) −2.25544 + 3.90653i −0.0719739 + 0.124662i
\(983\) 19.9307 + 34.5210i 0.635691 + 1.10105i 0.986368 + 0.164552i \(0.0526180\pi\)
−0.350678 + 0.936496i \(0.614049\pi\)
\(984\) 6.35053 27.0303i 0.202448 0.861696i
\(985\) 13.6277 + 7.86797i 0.434215 + 0.250694i
\(986\) −3.25544 −0.103674
\(987\) 0 0
\(988\) −19.5326 −0.621416
\(989\) 34.9783 + 20.1947i 1.11224 + 0.642154i
\(990\) −5.00000 + 3.31662i −0.158910 + 0.105409i
\(991\) −12.7446 22.0742i −0.404844 0.701211i 0.589459 0.807798i \(-0.299341\pi\)
−0.994303 + 0.106587i \(0.966008\pi\)
\(992\) −10.1168 + 17.5229i −0.321210 + 0.556352i
\(993\) −4.74456 + 5.04868i −0.150564 + 0.160215i
\(994\) 0 0
\(995\) 26.8280i 0.850503i
\(996\) 12.0000 + 39.7995i 0.380235 + 1.26110i
\(997\) 27.5584 15.9109i 0.872784 0.503902i 0.00451159 0.999990i \(-0.498564\pi\)
0.868272 + 0.496088i \(0.165231\pi\)
\(998\) 28.3723 16.3807i 0.898109 0.518523i
\(999\) −32.8614 + 12.1793i −1.03969 + 0.385335i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.s.i.656.1 4
3.2 odd 2 735.2.s.g.656.2 4
7.2 even 3 105.2.b.c.41.3 yes 4
7.3 odd 6 735.2.s.g.521.2 4
7.4 even 3 735.2.s.h.521.2 4
7.5 odd 6 105.2.b.d.41.3 yes 4
7.6 odd 2 735.2.s.j.656.1 4
21.2 odd 6 105.2.b.d.41.2 yes 4
21.5 even 6 105.2.b.c.41.2 4
21.11 odd 6 735.2.s.j.521.1 4
21.17 even 6 inner 735.2.s.i.521.1 4
21.20 even 2 735.2.s.h.656.2 4
28.19 even 6 1680.2.f.g.881.3 4
28.23 odd 6 1680.2.f.h.881.2 4
35.2 odd 12 525.2.g.e.524.3 8
35.9 even 6 525.2.b.g.251.2 4
35.12 even 12 525.2.g.d.524.4 8
35.19 odd 6 525.2.b.e.251.2 4
35.23 odd 12 525.2.g.e.524.6 8
35.33 even 12 525.2.g.d.524.5 8
84.23 even 6 1680.2.f.g.881.4 4
84.47 odd 6 1680.2.f.h.881.1 4
105.2 even 12 525.2.g.d.524.6 8
105.23 even 12 525.2.g.d.524.3 8
105.44 odd 6 525.2.b.e.251.3 4
105.47 odd 12 525.2.g.e.524.5 8
105.68 odd 12 525.2.g.e.524.4 8
105.89 even 6 525.2.b.g.251.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.b.c.41.2 4 21.5 even 6
105.2.b.c.41.3 yes 4 7.2 even 3
105.2.b.d.41.2 yes 4 21.2 odd 6
105.2.b.d.41.3 yes 4 7.5 odd 6
525.2.b.e.251.2 4 35.19 odd 6
525.2.b.e.251.3 4 105.44 odd 6
525.2.b.g.251.2 4 35.9 even 6
525.2.b.g.251.3 4 105.89 even 6
525.2.g.d.524.3 8 105.23 even 12
525.2.g.d.524.4 8 35.12 even 12
525.2.g.d.524.5 8 35.33 even 12
525.2.g.d.524.6 8 105.2 even 12
525.2.g.e.524.3 8 35.2 odd 12
525.2.g.e.524.4 8 105.68 odd 12
525.2.g.e.524.5 8 105.47 odd 12
525.2.g.e.524.6 8 35.23 odd 12
735.2.s.g.521.2 4 7.3 odd 6
735.2.s.g.656.2 4 3.2 odd 2
735.2.s.h.521.2 4 7.4 even 3
735.2.s.h.656.2 4 21.20 even 2
735.2.s.i.521.1 4 21.17 even 6 inner
735.2.s.i.656.1 4 1.1 even 1 trivial
735.2.s.j.521.1 4 21.11 odd 6
735.2.s.j.656.1 4 7.6 odd 2
1680.2.f.g.881.3 4 28.19 even 6
1680.2.f.g.881.4 4 84.23 even 6
1680.2.f.h.881.1 4 84.47 odd 6
1680.2.f.h.881.2 4 28.23 odd 6