L(s) = 1 | + (1.93 − 0.517i)2-s + (0.599 − 1.62i)3-s + (1.73 − 0.999i)4-s + (1.30 − 1.81i)5-s + (0.317 − 3.44i)6-s + (−2.28 − 1.94i)9-s + (1.58 − 4.18i)10-s + (−0.949 + 0.548i)11-s + (−0.585 − 3.41i)12-s + (−2.43 − 2.43i)13-s + (−2.16 − 3.21i)15-s + (−1.99 + 3.46i)16-s + (0.978 − 3.65i)17-s + (−5.41 − 2.58i)18-s + (6.67 + 3.85i)19-s + (0.449 − 4.44i)20-s + ⋯ |
L(s) = 1 | + (1.36 − 0.366i)2-s + (0.346 − 0.938i)3-s + (0.866 − 0.499i)4-s + (0.584 − 0.811i)5-s + (0.129 − 1.40i)6-s + (−0.760 − 0.649i)9-s + (0.501 − 1.32i)10-s + (−0.286 + 0.165i)11-s + (−0.169 − 0.985i)12-s + (−0.676 − 0.676i)13-s + (−0.558 − 0.829i)15-s + (−0.499 + 0.866i)16-s + (0.237 − 0.886i)17-s + (−1.27 − 0.609i)18-s + (1.53 + 0.884i)19-s + (0.100 − 0.994i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09086 - 2.79119i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09086 - 2.79119i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.599 + 1.62i)T \) |
| 5 | \( 1 + (-1.30 + 1.81i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.93 + 0.517i)T + (1.73 - i)T^{2} \) |
| 11 | \( 1 + (0.949 - 0.548i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.43 + 2.43i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.978 + 3.65i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (-6.67 - 3.85i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.15 - 4.29i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 8.66T + 29T^{2} \) |
| 31 | \( 1 + (-1.73 - 3i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.26 - 4.71i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 6.89iT - 41T^{2} \) |
| 43 | \( 1 + (-1.89 - 1.89i)T + 43iT^{2} \) |
| 47 | \( 1 + (3.65 - 0.978i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (2.80 + 0.750i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (5 + 8.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.24 - 7.34i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.11 - 0.567i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 9.75iT - 71T^{2} \) |
| 73 | \( 1 + (2.58 - 9.65i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-10.3 - 5.94i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.34 - 5.34i)T - 83iT^{2} \) |
| 89 | \( 1 + (-8.44 + 14.6i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.43 - 2.43i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12481032021981169511333749444, −9.319453707964826123750144739446, −8.265169150506873243327142657270, −7.45775556683436935279338495239, −6.30186358036590259498092513871, −5.38697225866169219643076925229, −4.89766350382330375562913854731, −3.34759962138589454806974041856, −2.58121660507848731643836444942, −1.24936558235640218963221052177,
2.57096309320958123949871810393, 3.20452751152991810447014531309, 4.37472055351778689421940855552, 5.08355068172706067744609928818, 6.00194043241585709972128930401, 6.80593335945391098317002032888, 7.85120730130154041815782686192, 9.166485624839321319965628651800, 9.803742303467096887971839076556, 10.65302056052512280430025979651