Properties

Label 2-735-105.23-c1-0-69
Degree 22
Conductor 735735
Sign 0.281+0.959i-0.281 + 0.959i
Analytic cond. 5.869005.86900
Root an. cond. 2.422602.42260
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.93 − 0.517i)2-s + (0.599 − 1.62i)3-s + (1.73 − 0.999i)4-s + (1.30 − 1.81i)5-s + (0.317 − 3.44i)6-s + (−2.28 − 1.94i)9-s + (1.58 − 4.18i)10-s + (−0.949 + 0.548i)11-s + (−0.585 − 3.41i)12-s + (−2.43 − 2.43i)13-s + (−2.16 − 3.21i)15-s + (−1.99 + 3.46i)16-s + (0.978 − 3.65i)17-s + (−5.41 − 2.58i)18-s + (6.67 + 3.85i)19-s + (0.449 − 4.44i)20-s + ⋯
L(s)  = 1  + (1.36 − 0.366i)2-s + (0.346 − 0.938i)3-s + (0.866 − 0.499i)4-s + (0.584 − 0.811i)5-s + (0.129 − 1.40i)6-s + (−0.760 − 0.649i)9-s + (0.501 − 1.32i)10-s + (−0.286 + 0.165i)11-s + (−0.169 − 0.985i)12-s + (−0.676 − 0.676i)13-s + (−0.558 − 0.829i)15-s + (−0.499 + 0.866i)16-s + (0.237 − 0.886i)17-s + (−1.27 − 0.609i)18-s + (1.53 + 0.884i)19-s + (0.100 − 0.994i)20-s + ⋯

Functional equation

Λ(s)=(735s/2ΓC(s)L(s)=((0.281+0.959i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.281 + 0.959i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(735s/2ΓC(s+1/2)L(s)=((0.281+0.959i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.281 + 0.959i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 735735    =    35723 \cdot 5 \cdot 7^{2}
Sign: 0.281+0.959i-0.281 + 0.959i
Analytic conductor: 5.869005.86900
Root analytic conductor: 2.422602.42260
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ735(128,)\chi_{735} (128, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 735, ( :1/2), 0.281+0.959i)(2,\ 735,\ (\ :1/2),\ -0.281 + 0.959i)

Particular Values

L(1)L(1) \approx 2.090862.79119i2.09086 - 2.79119i
L(12)L(\frac12) \approx 2.090862.79119i2.09086 - 2.79119i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(0.599+1.62i)T 1 + (-0.599 + 1.62i)T
5 1+(1.30+1.81i)T 1 + (-1.30 + 1.81i)T
7 1 1
good2 1+(1.93+0.517i)T+(1.73i)T2 1 + (-1.93 + 0.517i)T + (1.73 - i)T^{2}
11 1+(0.9490.548i)T+(5.59.52i)T2 1 + (0.949 - 0.548i)T + (5.5 - 9.52i)T^{2}
13 1+(2.43+2.43i)T+13iT2 1 + (2.43 + 2.43i)T + 13iT^{2}
17 1+(0.978+3.65i)T+(14.78.5i)T2 1 + (-0.978 + 3.65i)T + (-14.7 - 8.5i)T^{2}
19 1+(6.673.85i)T+(9.5+16.4i)T2 1 + (-6.67 - 3.85i)T + (9.5 + 16.4i)T^{2}
23 1+(1.154.29i)T+(19.9+11.5i)T2 1 + (-1.15 - 4.29i)T + (-19.9 + 11.5i)T^{2}
29 18.66T+29T2 1 - 8.66T + 29T^{2}
31 1+(1.733i)T+(15.5+26.8i)T2 1 + (-1.73 - 3i)T + (-15.5 + 26.8i)T^{2}
37 1+(1.264.71i)T+(32.0+18.5i)T2 1 + (-1.26 - 4.71i)T + (-32.0 + 18.5i)T^{2}
41 1+6.89iT41T2 1 + 6.89iT - 41T^{2}
43 1+(1.891.89i)T+43iT2 1 + (-1.89 - 1.89i)T + 43iT^{2}
47 1+(3.650.978i)T+(40.723.5i)T2 1 + (3.65 - 0.978i)T + (40.7 - 23.5i)T^{2}
53 1+(2.80+0.750i)T+(45.8+26.5i)T2 1 + (2.80 + 0.750i)T + (45.8 + 26.5i)T^{2}
59 1+(5+8.66i)T+(29.5+51.0i)T2 1 + (5 + 8.66i)T + (-29.5 + 51.0i)T^{2}
61 1+(4.247.34i)T+(30.552.8i)T2 1 + (4.24 - 7.34i)T + (-30.5 - 52.8i)T^{2}
67 1+(2.110.567i)T+(58.0+33.5i)T2 1 + (-2.11 - 0.567i)T + (58.0 + 33.5i)T^{2}
71 1+9.75iT71T2 1 + 9.75iT - 71T^{2}
73 1+(2.589.65i)T+(63.236.5i)T2 1 + (2.58 - 9.65i)T + (-63.2 - 36.5i)T^{2}
79 1+(10.35.94i)T+(39.5+68.4i)T2 1 + (-10.3 - 5.94i)T + (39.5 + 68.4i)T^{2}
83 1+(5.345.34i)T83iT2 1 + (5.34 - 5.34i)T - 83iT^{2}
89 1+(8.44+14.6i)T+(44.577.0i)T2 1 + (-8.44 + 14.6i)T + (-44.5 - 77.0i)T^{2}
97 1+(2.432.43i)T97iT2 1 + (2.43 - 2.43i)T - 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.12481032021981169511333749444, −9.319453707964826123750144739446, −8.265169150506873243327142657270, −7.45775556683436935279338495239, −6.30186358036590259498092513871, −5.38697225866169219643076925229, −4.89766350382330375562913854731, −3.34759962138589454806974041856, −2.58121660507848731643836444942, −1.24936558235640218963221052177, 2.57096309320958123949871810393, 3.20452751152991810447014531309, 4.37472055351778689421940855552, 5.08355068172706067744609928818, 6.00194043241585709972128930401, 6.80593335945391098317002032888, 7.85120730130154041815782686192, 9.166485624839321319965628651800, 9.803742303467096887971839076556, 10.65302056052512280430025979651

Graph of the ZZ-function along the critical line