Properties

Label 735.2.y.c
Level 735735
Weight 22
Character orbit 735.y
Analytic conductor 5.8695.869
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(128,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 735=3572 735 = 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 735.y (of order 1212, degree 44, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.869004548565.86900454856
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ24\zeta_{24}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ247q2+(ζ247++ζ242)q32ζ242q4+(ζ2462ζ245++ζ24)q5+(2ζ247+2ζ242)q6++(4ζ247+7ζ242)q99+O(q100) q + 2 \zeta_{24}^{7} q^{2} + (\zeta_{24}^{7} + \cdots + \zeta_{24}^{2}) q^{3} - 2 \zeta_{24}^{2} q^{4} + ( - \zeta_{24}^{6} - 2 \zeta_{24}^{5} + \cdots + \zeta_{24}) q^{5} + (2 \zeta_{24}^{7} + \cdots - 2 \zeta_{24}^{2}) q^{6} + \cdots + (4 \zeta_{24}^{7} + \cdots - 7 \zeta_{24}^{2}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q3+4q5+24q10+12q1116q12+12q1516q16+4q1732q18+24q1916q2032q22+12q238q2716q3016q338q364q37++60q95+O(q100) 8 q + 4 q^{3} + 4 q^{5} + 24 q^{10} + 12 q^{11} - 16 q^{12} + 12 q^{15} - 16 q^{16} + 4 q^{17} - 32 q^{18} + 24 q^{19} - 16 q^{20} - 32 q^{22} + 12 q^{23} - 8 q^{27} - 16 q^{30} - 16 q^{33} - 8 q^{36} - 4 q^{37}+ \cdots + 60 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/735Z)×\left(\mathbb{Z}/735\mathbb{Z}\right)^\times.

nn 346346 442442 491491
χ(n)\chi(n) ζ244-\zeta_{24}^{4} ζ246-\zeta_{24}^{6} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
128.1
0.258819 + 0.965926i
−0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−1.93185 + 0.517638i −1.33195 1.10721i 1.73205 1.00000i −2.03906 0.917738i 3.14626 + 1.44949i 0 0 0.548188 + 2.94949i 4.41421 + 0.717439i
128.2 1.93185 0.517638i 0.599900 1.62484i 1.73205 1.00000i 1.30701 1.81431i 0.317837 3.44949i 0 0 −2.28024 1.94949i 1.58579 4.18154i
263.1 −0.517638 + 1.93185i 1.10721 + 1.33195i −1.73205 1.00000i 1.81431 1.30701i −3.14626 + 1.44949i 0 0 −0.548188 + 2.94949i 1.58579 + 4.18154i
263.2 0.517638 1.93185i 1.62484 0.599900i −1.73205 1.00000i 0.917738 + 2.03906i −0.317837 3.44949i 0 0 2.28024 1.94949i 4.41421 0.717439i
422.1 −0.517638 1.93185i 1.10721 1.33195i −1.73205 + 1.00000i 1.81431 + 1.30701i −3.14626 1.44949i 0 0 −0.548188 2.94949i 1.58579 4.18154i
422.2 0.517638 + 1.93185i 1.62484 + 0.599900i −1.73205 + 1.00000i 0.917738 2.03906i −0.317837 + 3.44949i 0 0 2.28024 + 1.94949i 4.41421 + 0.717439i
557.1 −1.93185 0.517638i −1.33195 + 1.10721i 1.73205 + 1.00000i −2.03906 + 0.917738i 3.14626 1.44949i 0 0 0.548188 2.94949i 4.41421 0.717439i
557.2 1.93185 + 0.517638i 0.599900 + 1.62484i 1.73205 + 1.00000i 1.30701 + 1.81431i 0.317837 + 3.44949i 0 0 −2.28024 + 1.94949i 1.58579 + 4.18154i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 128.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.g even 6 1 inner
35.f even 4 1 inner
105.x even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.y.c 8
3.b odd 2 1 735.2.y.d 8
5.c odd 4 1 735.2.y.b 8
7.b odd 2 1 735.2.y.b 8
7.c even 3 1 735.2.j.b yes 8
7.c even 3 1 735.2.y.a 8
7.d odd 6 1 735.2.j.a 8
7.d odd 6 1 735.2.y.d 8
15.e even 4 1 735.2.y.a 8
21.c even 2 1 735.2.y.a 8
21.g even 6 1 735.2.j.b yes 8
21.g even 6 1 inner 735.2.y.c 8
21.h odd 6 1 735.2.j.a 8
21.h odd 6 1 735.2.y.b 8
35.f even 4 1 inner 735.2.y.c 8
35.k even 12 1 735.2.j.b yes 8
35.k even 12 1 735.2.y.a 8
35.l odd 12 1 735.2.j.a 8
35.l odd 12 1 735.2.y.d 8
105.k odd 4 1 735.2.y.d 8
105.w odd 12 1 735.2.j.a 8
105.w odd 12 1 735.2.y.b 8
105.x even 12 1 735.2.j.b yes 8
105.x even 12 1 inner 735.2.y.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.2.j.a 8 7.d odd 6 1
735.2.j.a 8 21.h odd 6 1
735.2.j.a 8 35.l odd 12 1
735.2.j.a 8 105.w odd 12 1
735.2.j.b yes 8 7.c even 3 1
735.2.j.b yes 8 21.g even 6 1
735.2.j.b yes 8 35.k even 12 1
735.2.j.b yes 8 105.x even 12 1
735.2.y.a 8 7.c even 3 1
735.2.y.a 8 15.e even 4 1
735.2.y.a 8 21.c even 2 1
735.2.y.a 8 35.k even 12 1
735.2.y.b 8 5.c odd 4 1
735.2.y.b 8 7.b odd 2 1
735.2.y.b 8 21.h odd 6 1
735.2.y.b 8 105.w odd 12 1
735.2.y.c 8 1.a even 1 1 trivial
735.2.y.c 8 21.g even 6 1 inner
735.2.y.c 8 35.f even 4 1 inner
735.2.y.c 8 105.x even 12 1 inner
735.2.y.d 8 3.b odd 2 1
735.2.y.d 8 7.d odd 6 1
735.2.y.d 8 35.l odd 12 1
735.2.y.d 8 105.k odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(735,[χ])S_{2}^{\mathrm{new}}(735, [\chi]):

T2816T24+256 T_{2}^{8} - 16T_{2}^{4} + 256 Copy content Toggle raw display
T1146T113+7T112+30T11+25 T_{11}^{4} - 6T_{11}^{3} + 7T_{11}^{2} + 30T_{11} + 25 Copy content Toggle raw display
T138+146T134+625 T_{13}^{8} + 146T_{13}^{4} + 625 Copy content Toggle raw display
T1784T177+8T176232T175161T174+5800T173+5000T172+62500T17+390625 T_{17}^{8} - 4T_{17}^{7} + 8T_{17}^{6} - 232T_{17}^{5} - 161T_{17}^{4} + 5800T_{17}^{3} + 5000T_{17}^{2} + 62500T_{17} + 390625 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T816T4+256 T^{8} - 16T^{4} + 256 Copy content Toggle raw display
33 T84T7++81 T^{8} - 4 T^{7} + \cdots + 81 Copy content Toggle raw display
55 T84T7++625 T^{8} - 4 T^{7} + \cdots + 625 Copy content Toggle raw display
77 T8 T^{8} Copy content Toggle raw display
1111 (T46T3+7T2++25)2 (T^{4} - 6 T^{3} + 7 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
1313 T8+146T4+625 T^{8} + 146T^{4} + 625 Copy content Toggle raw display
1717 T84T7++390625 T^{8} - 4 T^{7} + \cdots + 390625 Copy content Toggle raw display
1919 (T412T3++36)2 (T^{4} - 12 T^{3} + \cdots + 36)^{2} Copy content Toggle raw display
2323 T812T7++16 T^{8} - 12 T^{7} + \cdots + 16 Copy content Toggle raw display
2929 (T275)4 (T^{2} - 75)^{4} Copy content Toggle raw display
3131 (T4+12T2+144)2 (T^{4} + 12 T^{2} + 144)^{2} Copy content Toggle raw display
3737 T8+4T7++10000 T^{8} + 4 T^{7} + \cdots + 10000 Copy content Toggle raw display
4141 (T4+56T2+400)2 (T^{4} + 56 T^{2} + 400)^{2} Copy content Toggle raw display
4343 (T4+12T3++900)2 (T^{4} + 12 T^{3} + \cdots + 900)^{2} Copy content Toggle raw display
4747 T84T7++390625 T^{8} - 4 T^{7} + \cdots + 390625 Copy content Toggle raw display
5353 T8+24T7++160000 T^{8} + 24 T^{7} + \cdots + 160000 Copy content Toggle raw display
5959 (T2+10T+100)4 (T^{2} + 10 T + 100)^{4} Copy content Toggle raw display
6161 (T4+72T2+5184)2 (T^{4} + 72 T^{2} + 5184)^{2} Copy content Toggle raw display
6767 T816T7++160000 T^{8} - 16 T^{7} + \cdots + 160000 Copy content Toggle raw display
7171 (T4+112T2+1600)2 (T^{4} + 112 T^{2} + 1600)^{2} Copy content Toggle raw display
7373 T810000T4+100000000 T^{8} - 10000 T^{4} + 100000000 Copy content Toggle raw display
7979 T8146T6++390625 T^{8} - 146 T^{6} + \cdots + 390625 Copy content Toggle raw display
8383 (T48T3++10000)2 (T^{4} - 8 T^{3} + \cdots + 10000)^{2} Copy content Toggle raw display
8989 (T424T3++14400)2 (T^{4} - 24 T^{3} + \cdots + 14400)^{2} Copy content Toggle raw display
9797 T8+146T4+625 T^{8} + 146T^{4} + 625 Copy content Toggle raw display
show more
show less