gp: [N,k,chi] = [735,2,Mod(128,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([6, 9, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.128");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 24 \zeta_{24} ζ 2 4 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 735 Z ) × \left(\mathbb{Z}/735\mathbb{Z}\right)^\times ( Z / 7 3 5 Z ) × .
n n n
346 346 3 4 6
442 442 4 4 2
491 491 4 9 1
χ ( n ) \chi(n) χ ( n )
− ζ 24 4 -\zeta_{24}^{4} − ζ 2 4 4
− ζ 24 6 -\zeta_{24}^{6} − ζ 2 4 6
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 735 , [ χ ] ) S_{2}^{\mathrm{new}}(735, [\chi]) S 2 n e w ( 7 3 5 , [ χ ] ) :
T 2 8 − 16 T 2 4 + 256 T_{2}^{8} - 16T_{2}^{4} + 256 T 2 8 − 1 6 T 2 4 + 2 5 6
T2^8 - 16*T2^4 + 256
T 11 4 − 6 T 11 3 + 7 T 11 2 + 30 T 11 + 25 T_{11}^{4} - 6T_{11}^{3} + 7T_{11}^{2} + 30T_{11} + 25 T 1 1 4 − 6 T 1 1 3 + 7 T 1 1 2 + 3 0 T 1 1 + 2 5
T11^4 - 6*T11^3 + 7*T11^2 + 30*T11 + 25
T 13 8 + 146 T 13 4 + 625 T_{13}^{8} + 146T_{13}^{4} + 625 T 1 3 8 + 1 4 6 T 1 3 4 + 6 2 5
T13^8 + 146*T13^4 + 625
T 17 8 − 4 T 17 7 + 8 T 17 6 − 232 T 17 5 − 161 T 17 4 + 5800 T 17 3 + 5000 T 17 2 + 62500 T 17 + 390625 T_{17}^{8} - 4T_{17}^{7} + 8T_{17}^{6} - 232T_{17}^{5} - 161T_{17}^{4} + 5800T_{17}^{3} + 5000T_{17}^{2} + 62500T_{17} + 390625 T 1 7 8 − 4 T 1 7 7 + 8 T 1 7 6 − 2 3 2 T 1 7 5 − 1 6 1 T 1 7 4 + 5 8 0 0 T 1 7 3 + 5 0 0 0 T 1 7 2 + 6 2 5 0 0 T 1 7 + 3 9 0 6 2 5
T17^8 - 4*T17^7 + 8*T17^6 - 232*T17^5 - 161*T17^4 + 5800*T17^3 + 5000*T17^2 + 62500*T17 + 390625
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 − 16 T 4 + 256 T^{8} - 16T^{4} + 256 T 8 − 1 6 T 4 + 2 5 6
T^8 - 16*T^4 + 256
3 3 3
T 8 − 4 T 7 + ⋯ + 81 T^{8} - 4 T^{7} + \cdots + 81 T 8 − 4 T 7 + ⋯ + 8 1
T^8 - 4*T^7 + 8*T^6 - 8*T^5 + 7*T^4 - 24*T^3 + 72*T^2 - 108*T + 81
5 5 5
T 8 − 4 T 7 + ⋯ + 625 T^{8} - 4 T^{7} + \cdots + 625 T 8 − 4 T 7 + ⋯ + 6 2 5
T^8 - 4*T^7 + 8*T^6 + 8*T^5 - 41*T^4 + 40*T^3 + 200*T^2 - 500*T + 625
7 7 7
T 8 T^{8} T 8
T^8
11 11 1 1
( T 4 − 6 T 3 + 7 T 2 + ⋯ + 25 ) 2 (T^{4} - 6 T^{3} + 7 T^{2} + \cdots + 25)^{2} ( T 4 − 6 T 3 + 7 T 2 + ⋯ + 2 5 ) 2
(T^4 - 6*T^3 + 7*T^2 + 30*T + 25)^2
13 13 1 3
T 8 + 146 T 4 + 625 T^{8} + 146T^{4} + 625 T 8 + 1 4 6 T 4 + 6 2 5
T^8 + 146*T^4 + 625
17 17 1 7
T 8 − 4 T 7 + ⋯ + 390625 T^{8} - 4 T^{7} + \cdots + 390625 T 8 − 4 T 7 + ⋯ + 3 9 0 6 2 5
T^8 - 4*T^7 + 8*T^6 - 232*T^5 - 161*T^4 + 5800*T^3 + 5000*T^2 + 62500*T + 390625
19 19 1 9
( T 4 − 12 T 3 + ⋯ + 36 ) 2 (T^{4} - 12 T^{3} + \cdots + 36)^{2} ( T 4 − 1 2 T 3 + ⋯ + 3 6 ) 2
(T^4 - 12*T^3 + 42*T^2 + 72*T + 36)^2
23 23 2 3
T 8 − 12 T 7 + ⋯ + 16 T^{8} - 12 T^{7} + \cdots + 16 T 8 − 1 2 T 7 + ⋯ + 1 6
T^8 - 12*T^7 + 72*T^6 - 288*T^5 + 668*T^4 - 576*T^3 + 288*T^2 - 96*T + 16
29 29 2 9
( T 2 − 75 ) 4 (T^{2} - 75)^{4} ( T 2 − 7 5 ) 4
(T^2 - 75)^4
31 31 3 1
( T 4 + 12 T 2 + 144 ) 2 (T^{4} + 12 T^{2} + 144)^{2} ( T 4 + 1 2 T 2 + 1 4 4 ) 2
(T^4 + 12*T^2 + 144)^2
37 37 3 7
T 8 + 4 T 7 + ⋯ + 10000 T^{8} + 4 T^{7} + \cdots + 10000 T 8 + 4 T 7 + ⋯ + 1 0 0 0 0
T^8 + 4*T^7 + 8*T^6 + 112*T^5 + 124*T^4 - 1120*T^3 + 800*T^2 - 4000*T + 10000
41 41 4 1
( T 4 + 56 T 2 + 400 ) 2 (T^{4} + 56 T^{2} + 400)^{2} ( T 4 + 5 6 T 2 + 4 0 0 ) 2
(T^4 + 56*T^2 + 400)^2
43 43 4 3
( T 4 + 12 T 3 + ⋯ + 900 ) 2 (T^{4} + 12 T^{3} + \cdots + 900)^{2} ( T 4 + 1 2 T 3 + ⋯ + 9 0 0 ) 2
(T^4 + 12*T^3 + 72*T^2 - 360*T + 900)^2
47 47 4 7
T 8 − 4 T 7 + ⋯ + 390625 T^{8} - 4 T^{7} + \cdots + 390625 T 8 − 4 T 7 + ⋯ + 3 9 0 6 2 5
T^8 - 4*T^7 + 8*T^6 - 232*T^5 - 161*T^4 + 5800*T^3 + 5000*T^2 + 62500*T + 390625
53 53 5 3
T 8 + 24 T 7 + ⋯ + 160000 T^{8} + 24 T^{7} + \cdots + 160000 T 8 + 2 4 T 7 + ⋯ + 1 6 0 0 0 0
T^8 + 24*T^7 + 288*T^6 + 2304*T^5 + 12656*T^4 + 46080*T^3 + 115200*T^2 + 192000*T + 160000
59 59 5 9
( T 2 + 10 T + 100 ) 4 (T^{2} + 10 T + 100)^{4} ( T 2 + 1 0 T + 1 0 0 ) 4
(T^2 + 10*T + 100)^4
61 61 6 1
( T 4 + 72 T 2 + 5184 ) 2 (T^{4} + 72 T^{2} + 5184)^{2} ( T 4 + 7 2 T 2 + 5 1 8 4 ) 2
(T^4 + 72*T^2 + 5184)^2
67 67 6 7
T 8 − 16 T 7 + ⋯ + 160000 T^{8} - 16 T^{7} + \cdots + 160000 T 8 − 1 6 T 7 + ⋯ + 1 6 0 0 0 0
T^8 - 16*T^7 + 128*T^6 - 1408*T^5 + 10864*T^4 - 28160*T^3 + 51200*T^2 - 128000*T + 160000
71 71 7 1
( T 4 + 112 T 2 + 1600 ) 2 (T^{4} + 112 T^{2} + 1600)^{2} ( T 4 + 1 1 2 T 2 + 1 6 0 0 ) 2
(T^4 + 112*T^2 + 1600)^2
73 73 7 3
T 8 − 10000 T 4 + 100000000 T^{8} - 10000 T^{4} + 100000000 T 8 − 1 0 0 0 0 T 4 + 1 0 0 0 0 0 0 0 0
T^8 - 10000*T^4 + 100000000
79 79 7 9
T 8 − 146 T 6 + ⋯ + 390625 T^{8} - 146 T^{6} + \cdots + 390625 T 8 − 1 4 6 T 6 + ⋯ + 3 9 0 6 2 5
T^8 - 146*T^6 + 20691*T^4 - 91250*T^2 + 390625
83 83 8 3
( T 4 − 8 T 3 + ⋯ + 10000 ) 2 (T^{4} - 8 T^{3} + \cdots + 10000)^{2} ( T 4 − 8 T 3 + ⋯ + 1 0 0 0 0 ) 2
(T^4 - 8*T^3 + 32*T^2 + 800*T + 10000)^2
89 89 8 9
( T 4 − 24 T 3 + ⋯ + 14400 ) 2 (T^{4} - 24 T^{3} + \cdots + 14400)^{2} ( T 4 − 2 4 T 3 + ⋯ + 1 4 4 0 0 ) 2
(T^4 - 24*T^3 + 456*T^2 - 2880*T + 14400)^2
97 97 9 7
T 8 + 146 T 4 + 625 T^{8} + 146T^{4} + 625 T 8 + 1 4 6 T 4 + 6 2 5
T^8 + 146*T^4 + 625
show more
show less