L(s) = 1 | + (2.45 + 0.658i)2-s + (1.25 − 1.19i)3-s + (3.87 + 2.23i)4-s + (−1.98 − 1.02i)5-s + (3.87 − 2.10i)6-s + (4.45 + 4.45i)8-s + (0.154 − 2.99i)9-s + (−4.21 − 3.82i)10-s + (1.35 + 0.784i)11-s + (7.53 − 1.81i)12-s + (2.21 − 2.21i)13-s + (−3.71 + 1.08i)15-s + (3.54 + 6.14i)16-s + (1.32 + 4.92i)17-s + (2.35 − 7.26i)18-s + (−1.45 + 0.840i)19-s + ⋯ |
L(s) = 1 | + (1.73 + 0.465i)2-s + (0.725 − 0.688i)3-s + (1.93 + 1.11i)4-s + (−0.889 − 0.457i)5-s + (1.58 − 0.859i)6-s + (1.57 + 1.57i)8-s + (0.0514 − 0.998i)9-s + (−1.33 − 1.20i)10-s + (0.409 + 0.236i)11-s + (2.17 − 0.523i)12-s + (0.615 − 0.615i)13-s + (−0.959 + 0.280i)15-s + (0.886 + 1.53i)16-s + (0.320 + 1.19i)17-s + (0.554 − 1.71i)18-s + (−0.333 + 0.192i)19-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(0.996+0.0821i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(0.996+0.0821i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
0.996+0.0821i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(557,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), 0.996+0.0821i)
|
Particular Values
L(1) |
≈ |
4.58546−0.188732i |
L(21) |
≈ |
4.58546−0.188732i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.25+1.19i)T |
| 5 | 1+(1.98+1.02i)T |
| 7 | 1 |
good | 2 | 1+(−2.45−0.658i)T+(1.73+i)T2 |
| 11 | 1+(−1.35−0.784i)T+(5.5+9.52i)T2 |
| 13 | 1+(−2.21+2.21i)T−13iT2 |
| 17 | 1+(−1.32−4.92i)T+(−14.7+8.5i)T2 |
| 19 | 1+(1.45−0.840i)T+(9.5−16.4i)T2 |
| 23 | 1+(−0.364+1.36i)T+(−19.9−11.5i)T2 |
| 29 | 1+8.91T+29T2 |
| 31 | 1+(1.37−2.38i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.161+0.601i)T+(−32.0−18.5i)T2 |
| 41 | 1−6.44iT−41T2 |
| 43 | 1+(5.47−5.47i)T−43iT2 |
| 47 | 1+(5.04+1.35i)T+(40.7+23.5i)T2 |
| 53 | 1+(3.87−1.03i)T+(45.8−26.5i)T2 |
| 59 | 1+(2.77−4.80i)T+(−29.5−51.0i)T2 |
| 61 | 1+(3.70+6.41i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.12+1.37i)T+(58.0−33.5i)T2 |
| 71 | 1+3.61iT−71T2 |
| 73 | 1+(2.15+8.05i)T+(−63.2+36.5i)T2 |
| 79 | 1+(−14.7+8.52i)T+(39.5−68.4i)T2 |
| 83 | 1+(−3.21−3.21i)T+83iT2 |
| 89 | 1+(−4.70−8.14i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−4.39−4.39i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79958357479063302741284375247, −9.228951597639528840019047153226, −8.110789597293399579109261725761, −7.74214610502363585857344106210, −6.66189668944280246182911558317, −5.98484432841818124818915965493, −4.79825380133964109630725755994, −3.75285287907373876619195950761, −3.30788807942689594575852932747, −1.71234318339396330752649275581,
2.08650524078025522169361239509, 3.27287460677019732954224491264, 3.77041814994559503210457929969, 4.60342874043418201147752433483, 5.55246885252355187553896147293, 6.75419005591387220136893255718, 7.54015341062642845736467947848, 8.755422347196559509658886645476, 9.741810216200473448942833050379, 10.87494847407901322895961424838