L(s) = 1 | + (2.45 + 0.658i)2-s + (1.25 − 1.19i)3-s + (3.87 + 2.23i)4-s + (−1.98 − 1.02i)5-s + (3.87 − 2.10i)6-s + (4.45 + 4.45i)8-s + (0.154 − 2.99i)9-s + (−4.21 − 3.82i)10-s + (1.35 + 0.784i)11-s + (7.53 − 1.81i)12-s + (2.21 − 2.21i)13-s + (−3.71 + 1.08i)15-s + (3.54 + 6.14i)16-s + (1.32 + 4.92i)17-s + (2.35 − 7.26i)18-s + (−1.45 + 0.840i)19-s + ⋯ |
L(s) = 1 | + (1.73 + 0.465i)2-s + (0.725 − 0.688i)3-s + (1.93 + 1.11i)4-s + (−0.889 − 0.457i)5-s + (1.58 − 0.859i)6-s + (1.57 + 1.57i)8-s + (0.0514 − 0.998i)9-s + (−1.33 − 1.20i)10-s + (0.409 + 0.236i)11-s + (2.17 − 0.523i)12-s + (0.615 − 0.615i)13-s + (−0.959 + 0.280i)15-s + (0.886 + 1.53i)16-s + (0.320 + 1.19i)17-s + (0.554 − 1.71i)18-s + (−0.333 + 0.192i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0821i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0821i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.58546 - 0.188732i\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.58546 - 0.188732i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.25 + 1.19i)T \) |
| 5 | \( 1 + (1.98 + 1.02i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-2.45 - 0.658i)T + (1.73 + i)T^{2} \) |
| 11 | \( 1 + (-1.35 - 0.784i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.21 + 2.21i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.32 - 4.92i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.45 - 0.840i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.364 + 1.36i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 8.91T + 29T^{2} \) |
| 31 | \( 1 + (1.37 - 2.38i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.161 + 0.601i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 6.44iT - 41T^{2} \) |
| 43 | \( 1 + (5.47 - 5.47i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.04 + 1.35i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (3.87 - 1.03i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.77 - 4.80i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.70 + 6.41i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.12 + 1.37i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 3.61iT - 71T^{2} \) |
| 73 | \( 1 + (2.15 + 8.05i)T + (-63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-14.7 + 8.52i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.21 - 3.21i)T + 83iT^{2} \) |
| 89 | \( 1 + (-4.70 - 8.14i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.39 - 4.39i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79958357479063302741284375247, −9.228951597639528840019047153226, −8.110789597293399579109261725761, −7.74214610502363585857344106210, −6.66189668944280246182911558317, −5.98484432841818124818915965493, −4.79825380133964109630725755994, −3.75285287907373876619195950761, −3.30788807942689594575852932747, −1.71234318339396330752649275581,
2.08650524078025522169361239509, 3.27287460677019732954224491264, 3.77041814994559503210457929969, 4.60342874043418201147752433483, 5.55246885252355187553896147293, 6.75419005591387220136893255718, 7.54015341062642845736467947848, 8.755422347196559509658886645476, 9.741810216200473448942833050379, 10.87494847407901322895961424838