Properties

Label 735.2.y.j.557.12
Level $735$
Weight $2$
Character 735.557
Analytic conductor $5.869$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(128,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.128");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.12
Character \(\chi\) \(=\) 735.557
Dual form 735.2.y.j.128.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.45834 + 0.658710i) q^{2} +(1.25586 - 1.19281i) q^{3} +(3.87749 + 2.23867i) q^{4} +(-1.98846 - 1.02275i) q^{5} +(3.87306 - 2.10509i) q^{6} +(4.45829 + 4.45829i) q^{8} +(0.154393 - 2.99602i) q^{9} +(-4.21463 - 3.82408i) q^{10} +(1.35854 + 0.784351i) q^{11} +(7.53991 - 1.81365i) q^{12} +(2.21881 - 2.21881i) q^{13} +(-3.71719 + 1.08744i) q^{15} +(3.54593 + 6.14174i) q^{16} +(1.32034 + 4.92759i) q^{17} +(2.35306 - 7.26355i) q^{18} +(-1.45527 + 0.840200i) q^{19} +(-5.42066 - 8.41719i) q^{20} +(2.82308 + 2.82308i) q^{22} +(0.364506 - 1.36036i) q^{23} +(10.9169 + 0.281103i) q^{24} +(2.90798 + 4.06739i) q^{25} +(6.91613 - 3.99303i) q^{26} +(-3.37980 - 3.94676i) q^{27} -8.91955 q^{29} +(-9.85442 + 0.224740i) q^{30} +(-1.37417 + 2.38013i) q^{31} +(1.40779 + 5.25396i) q^{32} +(2.64172 - 0.635440i) q^{33} +12.9834i q^{34} +(7.30576 - 11.2714i) q^{36} +(0.161183 - 0.601543i) q^{37} +(-4.13100 + 1.10690i) q^{38} +(0.139900 - 5.43314i) q^{39} +(-4.30546 - 13.4248i) q^{40} +6.44292i q^{41} +(-5.47734 + 5.47734i) q^{43} +(3.51180 + 6.08262i) q^{44} +(-3.37118 + 5.79958i) q^{45} +(1.79216 - 3.10412i) q^{46} +(-5.04552 - 1.35194i) q^{47} +(11.7792 + 3.48356i) q^{48} +(4.46958 + 11.9145i) q^{50} +(7.53587 + 4.61346i) q^{51} +(13.5706 - 3.63622i) q^{52} +(-3.87074 + 1.03716i) q^{53} +(-5.70892 - 11.9288i) q^{54} +(-1.89921 - 2.94909i) q^{55} +(-0.825420 + 2.79104i) q^{57} +(-21.9273 - 5.87540i) q^{58} +(-2.77436 + 4.80533i) q^{59} +(-16.8478 - 4.10503i) q^{60} +(-3.70333 - 6.41435i) q^{61} +(-4.94599 + 4.94599i) q^{62} -0.340400i q^{64} +(-6.68129 + 2.14274i) q^{65} +(6.91282 + 0.178000i) q^{66} +(5.12587 - 1.37347i) q^{67} +(-5.91162 + 22.0625i) q^{68} +(-1.16488 - 2.14321i) q^{69} -3.61943i q^{71} +(14.0455 - 12.6688i) q^{72} +(-2.15859 - 8.05596i) q^{73} +(0.792485 - 1.37262i) q^{74} +(8.50367 + 1.63941i) q^{75} -7.52372 q^{76} +(3.92279 - 13.2644i) q^{78} +(14.7720 - 8.52862i) q^{79} +(-0.769530 - 15.8392i) q^{80} +(-8.95233 - 0.925133i) q^{81} +(-4.24402 + 15.8389i) q^{82} +(3.21312 + 3.21312i) q^{83} +(2.41421 - 11.1487i) q^{85} +(-17.0731 + 9.85718i) q^{86} +(-11.2017 + 10.6394i) q^{87} +(2.55988 + 9.55360i) q^{88} +(4.70137 + 8.14301i) q^{89} +(-12.1077 + 12.0367i) q^{90} +(4.45876 - 4.45876i) q^{92} +(1.11328 + 4.62825i) q^{93} +(-11.5131 - 6.64707i) q^{94} +(3.75306 - 0.182338i) q^{95} +(8.03498 + 4.91902i) q^{96} +(4.39640 + 4.39640i) q^{97} +(2.55968 - 3.94911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} + 16 q^{10} - 16 q^{12} - 16 q^{13} - 32 q^{15} + 16 q^{16} + 20 q^{18} + 16 q^{22} + 16 q^{25} - 32 q^{27} - 20 q^{30} - 28 q^{33} + 32 q^{36} + 16 q^{37} - 64 q^{40} - 80 q^{43} - 20 q^{45}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45834 + 0.658710i 1.73831 + 0.465779i 0.982070 0.188517i \(-0.0603680\pi\)
0.756239 + 0.654295i \(0.227035\pi\)
\(3\) 1.25586 1.19281i 0.725074 0.688671i
\(4\) 3.87749 + 2.23867i 1.93874 + 1.11933i
\(5\) −1.98846 1.02275i −0.889268 0.457386i
\(6\) 3.87306 2.10509i 1.58117 0.859399i
\(7\) 0 0
\(8\) 4.45829 + 4.45829i 1.57624 + 1.57624i
\(9\) 0.154393 2.99602i 0.0514645 0.998675i
\(10\) −4.21463 3.82408i −1.33278 1.20928i
\(11\) 1.35854 + 0.784351i 0.409614 + 0.236491i 0.690624 0.723214i \(-0.257336\pi\)
−0.281010 + 0.959705i \(0.590669\pi\)
\(12\) 7.53991 1.81365i 2.17659 0.523556i
\(13\) 2.21881 2.21881i 0.615386 0.615386i −0.328958 0.944345i \(-0.606697\pi\)
0.944345 + 0.328958i \(0.106697\pi\)
\(14\) 0 0
\(15\) −3.71719 + 1.08744i −0.959774 + 0.280775i
\(16\) 3.54593 + 6.14174i 0.886484 + 1.53543i
\(17\) 1.32034 + 4.92759i 0.320230 + 1.19512i 0.919020 + 0.394210i \(0.128982\pi\)
−0.598790 + 0.800906i \(0.704352\pi\)
\(18\) 2.35306 7.26355i 0.554622 1.71203i
\(19\) −1.45527 + 0.840200i −0.333862 + 0.192755i −0.657554 0.753407i \(-0.728409\pi\)
0.323693 + 0.946162i \(0.395076\pi\)
\(20\) −5.42066 8.41719i −1.21210 1.88214i
\(21\) 0 0
\(22\) 2.82308 + 2.82308i 0.601883 + 0.601883i
\(23\) 0.364506 1.36036i 0.0760049 0.283654i −0.917454 0.397841i \(-0.869760\pi\)
0.993459 + 0.114187i \(0.0364263\pi\)
\(24\) 10.9169 + 0.281103i 2.22841 + 0.0573799i
\(25\) 2.90798 + 4.06739i 0.581597 + 0.813477i
\(26\) 6.91613 3.99303i 1.35637 0.783098i
\(27\) −3.37980 3.94676i −0.650443 0.759555i
\(28\) 0 0
\(29\) −8.91955 −1.65632 −0.828159 0.560493i \(-0.810612\pi\)
−0.828159 + 0.560493i \(0.810612\pi\)
\(30\) −9.85442 + 0.224740i −1.79916 + 0.0410317i
\(31\) −1.37417 + 2.38013i −0.246808 + 0.427484i −0.962638 0.270790i \(-0.912715\pi\)
0.715830 + 0.698274i \(0.246048\pi\)
\(32\) 1.40779 + 5.25396i 0.248865 + 0.928777i
\(33\) 2.64172 0.635440i 0.459865 0.110616i
\(34\) 12.9834i 2.22664i
\(35\) 0 0
\(36\) 7.30576 11.2714i 1.21763 1.87857i
\(37\) 0.161183 0.601543i 0.0264983 0.0988930i −0.951410 0.307926i \(-0.900365\pi\)
0.977909 + 0.209033i \(0.0670317\pi\)
\(38\) −4.13100 + 1.10690i −0.670136 + 0.179562i
\(39\) 0.139900 5.43314i 0.0224019 0.869999i
\(40\) −4.30546 13.4248i −0.680752 2.12265i
\(41\) 6.44292i 1.00622i 0.864224 + 0.503108i \(0.167810\pi\)
−0.864224 + 0.503108i \(0.832190\pi\)
\(42\) 0 0
\(43\) −5.47734 + 5.47734i −0.835286 + 0.835286i −0.988234 0.152948i \(-0.951123\pi\)
0.152948 + 0.988234i \(0.451123\pi\)
\(44\) 3.51180 + 6.08262i 0.529424 + 0.916989i
\(45\) −3.37118 + 5.79958i −0.502545 + 0.864551i
\(46\) 1.79216 3.10412i 0.264240 0.457677i
\(47\) −5.04552 1.35194i −0.735965 0.197201i −0.128681 0.991686i \(-0.541074\pi\)
−0.607284 + 0.794485i \(0.707741\pi\)
\(48\) 11.7792 + 3.48356i 1.70018 + 0.502808i
\(49\) 0 0
\(50\) 4.46958 + 11.9145i 0.632095 + 1.68497i
\(51\) 7.53587 + 4.61346i 1.05523 + 0.646014i
\(52\) 13.5706 3.63622i 1.88190 0.504253i
\(53\) −3.87074 + 1.03716i −0.531687 + 0.142465i −0.514667 0.857390i \(-0.672084\pi\)
−0.0170196 + 0.999855i \(0.505418\pi\)
\(54\) −5.70892 11.9288i −0.776886 1.62330i
\(55\) −1.89921 2.94909i −0.256089 0.397655i
\(56\) 0 0
\(57\) −0.825420 + 2.79104i −0.109330 + 0.369683i
\(58\) −21.9273 5.87540i −2.87919 0.771478i
\(59\) −2.77436 + 4.80533i −0.361191 + 0.625600i −0.988157 0.153446i \(-0.950963\pi\)
0.626967 + 0.779046i \(0.284296\pi\)
\(60\) −16.8478 4.10503i −2.17504 0.529957i
\(61\) −3.70333 6.41435i −0.474162 0.821273i 0.525400 0.850855i \(-0.323916\pi\)
−0.999562 + 0.0295820i \(0.990582\pi\)
\(62\) −4.94599 + 4.94599i −0.628141 + 0.628141i
\(63\) 0 0
\(64\) 0.340400i 0.0425500i
\(65\) −6.68129 + 2.14274i −0.828713 + 0.265775i
\(66\) 6.91282 + 0.178000i 0.850909 + 0.0219103i
\(67\) 5.12587 1.37347i 0.626225 0.167797i 0.0682690 0.997667i \(-0.478252\pi\)
0.557956 + 0.829870i \(0.311586\pi\)
\(68\) −5.91162 + 22.0625i −0.716890 + 2.67547i
\(69\) −1.16488 2.14321i −0.140235 0.258012i
\(70\) 0 0
\(71\) 3.61943i 0.429548i −0.976664 0.214774i \(-0.931099\pi\)
0.976664 0.214774i \(-0.0689015\pi\)
\(72\) 14.0455 12.6688i 1.65527 1.49303i
\(73\) −2.15859 8.05596i −0.252644 0.942878i −0.969386 0.245541i \(-0.921034\pi\)
0.716743 0.697338i \(-0.245632\pi\)
\(74\) 0.792485 1.37262i 0.0921245 0.159564i
\(75\) 8.50367 + 1.63941i 0.981919 + 0.189302i
\(76\) −7.52372 −0.863030
\(77\) 0 0
\(78\) 3.92279 13.2644i 0.444168 1.50189i
\(79\) 14.7720 8.52862i 1.66198 0.959544i 0.690211 0.723608i \(-0.257518\pi\)
0.971769 0.235936i \(-0.0758156\pi\)
\(80\) −0.769530 15.8392i −0.0860361 1.77088i
\(81\) −8.95233 0.925133i −0.994703 0.102793i
\(82\) −4.24402 + 15.8389i −0.468674 + 1.74911i
\(83\) 3.21312 + 3.21312i 0.352686 + 0.352686i 0.861108 0.508422i \(-0.169771\pi\)
−0.508422 + 0.861108i \(0.669771\pi\)
\(84\) 0 0
\(85\) 2.41421 11.1487i 0.261858 1.20925i
\(86\) −17.0731 + 9.85718i −1.84104 + 1.06293i
\(87\) −11.2017 + 10.6394i −1.20095 + 1.14066i
\(88\) 2.55988 + 9.55360i 0.272884 + 1.01842i
\(89\) 4.70137 + 8.14301i 0.498344 + 0.863157i 0.999998 0.00191126i \(-0.000608372\pi\)
−0.501654 + 0.865068i \(0.667275\pi\)
\(90\) −12.1077 + 12.0367i −1.27627 + 1.26878i
\(91\) 0 0
\(92\) 4.45876 4.45876i 0.464858 0.464858i
\(93\) 1.11328 + 4.62825i 0.115442 + 0.479927i
\(94\) −11.5131 6.64707i −1.18748 0.685593i
\(95\) 3.75306 0.182338i 0.385056 0.0187075i
\(96\) 8.03498 + 4.91902i 0.820067 + 0.502046i
\(97\) 4.39640 + 4.39640i 0.446386 + 0.446386i 0.894151 0.447765i \(-0.147780\pi\)
−0.447765 + 0.894151i \(0.647780\pi\)
\(98\) 0 0
\(99\) 2.55968 3.94911i 0.257258 0.396900i
\(100\) 2.17014 + 22.2812i 0.217014 + 2.22812i
\(101\) −0.875832 0.505662i −0.0871485 0.0503152i 0.455792 0.890086i \(-0.349356\pi\)
−0.542941 + 0.839771i \(0.682689\pi\)
\(102\) 15.4868 + 16.3054i 1.53342 + 1.61448i
\(103\) 5.50588 + 1.47530i 0.542511 + 0.145365i 0.519659 0.854374i \(-0.326059\pi\)
0.0228513 + 0.999739i \(0.492726\pi\)
\(104\) 19.7842 1.94000
\(105\) 0 0
\(106\) −10.1988 −0.990593
\(107\) −3.84892 1.03131i −0.372089 0.0997009i 0.0679285 0.997690i \(-0.478361\pi\)
−0.440017 + 0.897989i \(0.645028\pi\)
\(108\) −4.26963 22.8698i −0.410846 2.20065i
\(109\) 5.56202 + 3.21123i 0.532744 + 0.307580i 0.742133 0.670252i \(-0.233814\pi\)
−0.209389 + 0.977832i \(0.567147\pi\)
\(110\) −2.72630 8.50089i −0.259943 0.810528i
\(111\) −0.515104 0.947718i −0.0488915 0.0899534i
\(112\) 0 0
\(113\) 3.29246 + 3.29246i 0.309729 + 0.309729i 0.844804 0.535075i \(-0.179717\pi\)
−0.535075 + 0.844804i \(0.679717\pi\)
\(114\) −3.86765 + 6.31762i −0.362239 + 0.591699i
\(115\) −2.11611 + 2.33222i −0.197328 + 0.217481i
\(116\) −34.5854 19.9679i −3.21118 1.85397i
\(117\) −6.30503 6.99017i −0.582900 0.646241i
\(118\) −9.98563 + 9.98563i −0.919252 + 0.919252i
\(119\) 0 0
\(120\) −21.4204 11.7242i −1.95541 1.07027i
\(121\) −4.26959 7.39514i −0.388144 0.672286i
\(122\) −4.87884 18.2081i −0.441709 1.64848i
\(123\) 7.68520 + 8.09144i 0.692951 + 0.729581i
\(124\) −10.6566 + 6.15262i −0.956995 + 0.552521i
\(125\) −1.62252 11.0620i −0.145123 0.989414i
\(126\) 0 0
\(127\) 14.2818 + 14.2818i 1.26730 + 1.26730i 0.947476 + 0.319826i \(0.103624\pi\)
0.319826 + 0.947476i \(0.396376\pi\)
\(128\) 3.03981 11.3447i 0.268684 1.00274i
\(129\) −0.345356 + 13.4122i −0.0304069 + 1.18088i
\(130\) −17.8363 + 0.866558i −1.56435 + 0.0760022i
\(131\) −4.24118 + 2.44864i −0.370553 + 0.213939i −0.673700 0.739005i \(-0.735296\pi\)
0.303147 + 0.952944i \(0.401963\pi\)
\(132\) 11.6658 + 3.45002i 1.01538 + 0.300286i
\(133\) 0 0
\(134\) 13.5059 1.16673
\(135\) 2.68408 + 11.3047i 0.231009 + 0.972952i
\(136\) −16.0821 + 27.8551i −1.37903 + 2.38856i
\(137\) −1.66864 6.22744i −0.142561 0.532046i −0.999852 0.0172133i \(-0.994521\pi\)
0.857290 0.514833i \(-0.172146\pi\)
\(138\) −1.45192 6.03606i −0.123595 0.513824i
\(139\) 10.2045i 0.865536i −0.901505 0.432768i \(-0.857537\pi\)
0.901505 0.432768i \(-0.142463\pi\)
\(140\) 0 0
\(141\) −7.94911 + 4.32050i −0.669435 + 0.363852i
\(142\) 2.38416 8.89780i 0.200074 0.746687i
\(143\) 4.75465 1.27400i 0.397604 0.106538i
\(144\) 18.9483 9.67546i 1.57902 0.806289i
\(145\) 17.7362 + 9.12243i 1.47291 + 0.757576i
\(146\) 21.2262i 1.75669i
\(147\) 0 0
\(148\) 1.97164 1.97164i 0.162068 0.162068i
\(149\) 0.461562 + 0.799449i 0.0378126 + 0.0654934i 0.884312 0.466896i \(-0.154628\pi\)
−0.846500 + 0.532389i \(0.821294\pi\)
\(150\) 19.8250 + 9.63167i 1.61871 + 0.786423i
\(151\) 6.86549 11.8914i 0.558705 0.967706i −0.438900 0.898536i \(-0.644632\pi\)
0.997605 0.0691699i \(-0.0220350\pi\)
\(152\) −10.2339 2.74216i −0.830077 0.222418i
\(153\) 14.9670 3.19499i 1.21001 0.258300i
\(154\) 0 0
\(155\) 5.16675 3.32738i 0.415004 0.267262i
\(156\) 12.7055 20.7538i 1.01725 1.66163i
\(157\) 18.7434 5.02228i 1.49589 0.400822i 0.584166 0.811634i \(-0.301422\pi\)
0.911720 + 0.410812i \(0.134755\pi\)
\(158\) 41.9325 11.2358i 3.33597 0.893870i
\(159\) −3.62398 + 5.91960i −0.287401 + 0.469455i
\(160\) 2.57411 11.8871i 0.203501 0.939759i
\(161\) 0 0
\(162\) −21.3985 8.17128i −1.68122 0.641997i
\(163\) −9.02349 2.41784i −0.706775 0.189380i −0.112512 0.993650i \(-0.535890\pi\)
−0.594263 + 0.804271i \(0.702556\pi\)
\(164\) −14.4236 + 24.9823i −1.12629 + 1.95079i
\(165\) −5.90286 1.43826i −0.459537 0.111968i
\(166\) 5.78243 + 10.0155i 0.448804 + 0.777350i
\(167\) −3.11442 + 3.11442i −0.241001 + 0.241001i −0.817264 0.576263i \(-0.804510\pi\)
0.576263 + 0.817264i \(0.304510\pi\)
\(168\) 0 0
\(169\) 3.15379i 0.242599i
\(170\) 13.2787 25.8171i 1.01843 1.98008i
\(171\) 2.29258 + 4.48975i 0.175318 + 0.343339i
\(172\) −33.5002 + 8.97636i −2.55437 + 0.684441i
\(173\) 2.97531 11.1040i 0.226209 0.844222i −0.755708 0.654909i \(-0.772707\pi\)
0.981917 0.189313i \(-0.0606262\pi\)
\(174\) −34.5460 + 18.7764i −2.61892 + 1.42344i
\(175\) 0 0
\(176\) 11.1250i 0.838580i
\(177\) 2.24764 + 9.34413i 0.168943 + 0.702348i
\(178\) 6.19368 + 23.1151i 0.464236 + 1.73255i
\(179\) −8.29901 + 14.3743i −0.620297 + 1.07439i 0.369133 + 0.929377i \(0.379655\pi\)
−0.989430 + 0.145010i \(0.953679\pi\)
\(180\) −26.0550 + 14.9409i −1.94203 + 1.11363i
\(181\) 11.6532 0.866174 0.433087 0.901352i \(-0.357424\pi\)
0.433087 + 0.901352i \(0.357424\pi\)
\(182\) 0 0
\(183\) −12.3020 3.63818i −0.909390 0.268942i
\(184\) 7.68994 4.43979i 0.566910 0.327306i
\(185\) −0.935732 + 1.03130i −0.0687964 + 0.0758225i
\(186\) −0.311853 + 12.1111i −0.0228662 + 0.888032i
\(187\) −2.07123 + 7.72992i −0.151463 + 0.565268i
\(188\) −16.5374 16.5374i −1.20611 1.20611i
\(189\) 0 0
\(190\) 9.34642 + 2.02393i 0.678060 + 0.146831i
\(191\) 11.1322 6.42717i 0.805497 0.465054i −0.0398927 0.999204i \(-0.512702\pi\)
0.845390 + 0.534150i \(0.179368\pi\)
\(192\) −0.406034 0.427497i −0.0293030 0.0308519i
\(193\) −2.95074 11.0123i −0.212399 0.792684i −0.987066 0.160315i \(-0.948749\pi\)
0.774667 0.632370i \(-0.217918\pi\)
\(194\) 7.91189 + 13.7038i 0.568040 + 0.983875i
\(195\) −5.83491 + 10.6605i −0.417847 + 0.763417i
\(196\) 0 0
\(197\) −18.7512 + 18.7512i −1.33597 + 1.33597i −0.436036 + 0.899929i \(0.643618\pi\)
−0.899929 + 0.436036i \(0.856382\pi\)
\(198\) 8.89389 8.02216i 0.632061 0.570110i
\(199\) 3.64362 + 2.10364i 0.258289 + 0.149123i 0.623554 0.781780i \(-0.285688\pi\)
−0.365265 + 0.930904i \(0.619022\pi\)
\(200\) −5.16895 + 31.0982i −0.365500 + 2.19898i
\(201\) 4.79911 7.83911i 0.338503 0.552928i
\(202\) −1.82001 1.82001i −0.128055 0.128055i
\(203\) 0 0
\(204\) 18.8922 + 34.7590i 1.32272 + 2.43361i
\(205\) 6.58947 12.8115i 0.460229 0.894796i
\(206\) 12.5635 + 7.25356i 0.875343 + 0.505380i
\(207\) −4.01938 1.30210i −0.279367 0.0905022i
\(208\) 21.4951 + 5.75959i 1.49042 + 0.399356i
\(209\) −2.63605 −0.182339
\(210\) 0 0
\(211\) −21.5211 −1.48158 −0.740788 0.671739i \(-0.765548\pi\)
−0.740788 + 0.671739i \(0.765548\pi\)
\(212\) −17.3306 4.64372i −1.19027 0.318932i
\(213\) −4.31731 4.54552i −0.295817 0.311454i
\(214\) −8.78261 5.07064i −0.600367 0.346622i
\(215\) 16.4934 5.28957i 1.12484 0.360746i
\(216\) 2.52769 32.6639i 0.171988 2.22250i
\(217\) 0 0
\(218\) 11.5581 + 11.5581i 0.782810 + 0.782810i
\(219\) −12.3201 7.54240i −0.832518 0.509668i
\(220\) −0.762123 15.6868i −0.0513823 1.05760i
\(221\) 13.8630 + 8.00378i 0.932524 + 0.538393i
\(222\) −0.642030 2.66912i −0.0430902 0.179139i
\(223\) 12.4001 12.4001i 0.830375 0.830375i −0.157193 0.987568i \(-0.550244\pi\)
0.987568 + 0.157193i \(0.0502445\pi\)
\(224\) 0 0
\(225\) 12.6350 8.08441i 0.842331 0.538961i
\(226\) 5.92522 + 10.2628i 0.394139 + 0.682670i
\(227\) −3.18646 11.8920i −0.211493 0.789301i −0.987372 0.158420i \(-0.949360\pi\)
0.775879 0.630881i \(-0.217307\pi\)
\(228\) −9.44878 + 8.97439i −0.625761 + 0.594344i
\(229\) −3.86544 + 2.23171i −0.255435 + 0.147476i −0.622251 0.782818i \(-0.713781\pi\)
0.366815 + 0.930294i \(0.380448\pi\)
\(230\) −6.73837 + 4.33950i −0.444315 + 0.286138i
\(231\) 0 0
\(232\) −39.7659 39.7659i −2.61076 2.61076i
\(233\) −2.06497 + 7.70659i −0.135281 + 0.504875i 0.864716 + 0.502262i \(0.167499\pi\)
−0.999997 + 0.00261362i \(0.999168\pi\)
\(234\) −10.8954 21.3374i −0.712256 1.39487i
\(235\) 8.65014 + 7.84857i 0.564273 + 0.511984i
\(236\) −21.5151 + 12.4217i −1.40051 + 0.808586i
\(237\) 8.37859 28.3310i 0.544248 1.84030i
\(238\) 0 0
\(239\) 11.8594 0.767124 0.383562 0.923515i \(-0.374697\pi\)
0.383562 + 0.923515i \(0.374697\pi\)
\(240\) −19.8597 18.9740i −1.28194 1.22477i
\(241\) 9.03617 15.6511i 0.582071 1.00818i −0.413163 0.910657i \(-0.635576\pi\)
0.995234 0.0975190i \(-0.0310907\pi\)
\(242\) −5.62484 20.9922i −0.361579 1.34943i
\(243\) −12.3464 + 9.51661i −0.792023 + 0.610491i
\(244\) 33.1621i 2.12298i
\(245\) 0 0
\(246\) 13.5629 + 24.9538i 0.864741 + 1.59100i
\(247\) −1.36472 + 5.09321i −0.0868351 + 0.324073i
\(248\) −16.7378 + 4.48487i −1.06285 + 0.284789i
\(249\) 7.86790 + 0.202593i 0.498608 + 0.0128388i
\(250\) 3.29793 28.2629i 0.208579 1.78750i
\(251\) 3.19253i 0.201511i −0.994911 0.100755i \(-0.967874\pi\)
0.994911 0.100755i \(-0.0321259\pi\)
\(252\) 0 0
\(253\) 1.56219 1.56219i 0.0982141 0.0982141i
\(254\) 25.7019 + 44.5170i 1.61268 + 2.79324i
\(255\) −10.2664 16.8810i −0.642907 1.05713i
\(256\) 14.6054 25.2973i 0.912836 1.58108i
\(257\) −16.1352 4.32342i −1.00649 0.269687i −0.282326 0.959319i \(-0.591106\pi\)
−0.724161 + 0.689631i \(0.757773\pi\)
\(258\) −9.68378 + 32.7443i −0.602886 + 2.03857i
\(259\) 0 0
\(260\) −30.7035 6.64874i −1.90415 0.412337i
\(261\) −1.37712 + 26.7232i −0.0852416 + 1.65412i
\(262\) −12.0392 + 3.22589i −0.743784 + 0.199296i
\(263\) −17.9635 + 4.81330i −1.10768 + 0.296801i −0.765886 0.642976i \(-0.777699\pi\)
−0.341789 + 0.939777i \(0.611033\pi\)
\(264\) 14.6105 + 8.94458i 0.899216 + 0.550501i
\(265\) 8.75757 + 1.89642i 0.537974 + 0.116496i
\(266\) 0 0
\(267\) 15.6174 + 4.61866i 0.955767 + 0.282658i
\(268\) 22.9503 + 6.14950i 1.40191 + 0.375641i
\(269\) 14.6703 25.4096i 0.894461 1.54925i 0.0599909 0.998199i \(-0.480893\pi\)
0.834470 0.551053i \(-0.185774\pi\)
\(270\) −0.848131 + 29.5588i −0.0516156 + 1.79889i
\(271\) −1.59183 2.75713i −0.0966968 0.167484i 0.813619 0.581399i \(-0.197494\pi\)
−0.910316 + 0.413915i \(0.864161\pi\)
\(272\) −25.5821 + 25.5821i −1.55114 + 1.55114i
\(273\) 0 0
\(274\) 16.4083i 0.991263i
\(275\) 0.760341 + 7.80657i 0.0458503 + 0.470754i
\(276\) 0.281132 10.9181i 0.0169222 0.657190i
\(277\) −23.0361 + 6.17251i −1.38411 + 0.370870i −0.872611 0.488416i \(-0.837575\pi\)
−0.511495 + 0.859286i \(0.670908\pi\)
\(278\) 6.72182 25.0862i 0.403148 1.50457i
\(279\) 6.91877 + 4.48452i 0.414216 + 0.268481i
\(280\) 0 0
\(281\) 24.8052i 1.47975i −0.672742 0.739877i \(-0.734884\pi\)
0.672742 0.739877i \(-0.265116\pi\)
\(282\) −22.3876 + 5.38511i −1.33316 + 0.320679i
\(283\) 1.98356 + 7.40274i 0.117910 + 0.440047i 0.999488 0.0319914i \(-0.0101849\pi\)
−0.881578 + 0.472039i \(0.843518\pi\)
\(284\) 8.10271 14.0343i 0.480807 0.832783i
\(285\) 4.49585 4.70570i 0.266311 0.278741i
\(286\) 12.5277 0.740781
\(287\) 0 0
\(288\) 15.9583 3.40661i 0.940354 0.200736i
\(289\) −7.81541 + 4.51223i −0.459730 + 0.265425i
\(290\) 37.5926 + 34.1091i 2.20751 + 2.00295i
\(291\) 10.7654 + 0.277201i 0.631077 + 0.0162498i
\(292\) 9.66472 36.0692i 0.565585 2.11079i
\(293\) 8.60739 + 8.60739i 0.502849 + 0.502849i 0.912322 0.409473i \(-0.134288\pi\)
−0.409473 + 0.912322i \(0.634288\pi\)
\(294\) 0 0
\(295\) 10.4313 6.71776i 0.607336 0.391123i
\(296\) 3.40045 1.96325i 0.197647 0.114112i
\(297\) −1.49593 8.01277i −0.0868027 0.464948i
\(298\) 0.608072 + 2.26935i 0.0352246 + 0.131460i
\(299\) −2.20960 3.82714i −0.127784 0.221329i
\(300\) 29.3028 + 25.3937i 1.69180 + 1.46610i
\(301\) 0 0
\(302\) 24.7107 24.7107i 1.42194 1.42194i
\(303\) −1.70309 + 0.409661i −0.0978397 + 0.0235344i
\(304\) −10.3206 5.95859i −0.591926 0.341749i
\(305\) 0.803687 + 16.5423i 0.0460190 + 0.947208i
\(306\) 38.8986 + 2.00456i 2.22369 + 0.114593i
\(307\) −11.8525 11.8525i −0.676457 0.676457i 0.282740 0.959197i \(-0.408757\pi\)
−0.959197 + 0.282740i \(0.908757\pi\)
\(308\) 0 0
\(309\) 8.67440 4.71471i 0.493469 0.268211i
\(310\) 14.8934 4.77644i 0.845889 0.271283i
\(311\) −25.3572 14.6400i −1.43788 0.830158i −0.440174 0.897912i \(-0.645083\pi\)
−0.997702 + 0.0677541i \(0.978417\pi\)
\(312\) 24.8462 23.5988i 1.40664 1.33602i
\(313\) −1.67444 0.448664i −0.0946448 0.0253600i 0.211186 0.977446i \(-0.432267\pi\)
−0.305831 + 0.952086i \(0.598934\pi\)
\(314\) 49.3859 2.78701
\(315\) 0 0
\(316\) 76.3710 4.29620
\(317\) 5.87608 + 1.57449i 0.330034 + 0.0884322i 0.420031 0.907510i \(-0.362019\pi\)
−0.0899974 + 0.995942i \(0.528686\pi\)
\(318\) −12.8083 + 12.1652i −0.718253 + 0.682192i
\(319\) −12.1175 6.99605i −0.678451 0.391704i
\(320\) −0.348143 + 0.676874i −0.0194618 + 0.0378384i
\(321\) −6.06388 + 3.29585i −0.338453 + 0.183956i
\(322\) 0 0
\(323\) −6.06162 6.06162i −0.337278 0.337278i
\(324\) −32.6415 23.6285i −1.81341 1.31269i
\(325\) 15.4770 + 2.57249i 0.858510 + 0.142696i
\(326\) −20.5902 11.8877i −1.14038 0.658401i
\(327\) 10.8155 2.60157i 0.598101 0.143867i
\(328\) −28.7244 + 28.7244i −1.58604 + 1.58604i
\(329\) 0 0
\(330\) −13.5638 7.42400i −0.746665 0.408678i
\(331\) −16.6301 28.8042i −0.914074 1.58322i −0.808252 0.588837i \(-0.799586\pi\)
−0.105822 0.994385i \(-0.533747\pi\)
\(332\) 5.26572 + 19.6519i 0.288994 + 1.07854i
\(333\) −1.77735 0.575782i −0.0973983 0.0315527i
\(334\) −9.70781 + 5.60481i −0.531188 + 0.306681i
\(335\) −11.5973 2.51136i −0.633630 0.137210i
\(336\) 0 0
\(337\) 10.3056 + 10.3056i 0.561383 + 0.561383i 0.929700 0.368317i \(-0.120066\pi\)
−0.368317 + 0.929700i \(0.620066\pi\)
\(338\) −2.07743 + 7.75309i −0.112997 + 0.421712i
\(339\) 8.06218 + 0.207596i 0.437878 + 0.0112750i
\(340\) 34.3194 37.8244i 1.86123 2.05131i
\(341\) −3.73371 + 2.15566i −0.202192 + 0.116736i
\(342\) 2.67849 + 12.5475i 0.144836 + 0.678489i
\(343\) 0 0
\(344\) −48.8391 −2.63323
\(345\) 0.124363 + 5.45308i 0.00669548 + 0.293584i
\(346\) 14.6286 25.3376i 0.786441 1.36216i
\(347\) 7.03650 + 26.2606i 0.377739 + 1.40974i 0.849301 + 0.527909i \(0.177024\pi\)
−0.471562 + 0.881833i \(0.656309\pi\)
\(348\) −67.2526 + 16.1770i −3.60512 + 0.867176i
\(349\) 30.1301i 1.61283i 0.591353 + 0.806413i \(0.298594\pi\)
−0.591353 + 0.806413i \(0.701406\pi\)
\(350\) 0 0
\(351\) −16.2562 1.25799i −0.867694 0.0671463i
\(352\) −2.20841 + 8.24189i −0.117708 + 0.439294i
\(353\) 23.2688 6.23486i 1.23847 0.331848i 0.420600 0.907246i \(-0.361820\pi\)
0.817873 + 0.575398i \(0.195153\pi\)
\(354\) −0.629612 + 24.4516i −0.0334635 + 1.29959i
\(355\) −3.70176 + 7.19712i −0.196469 + 0.381983i
\(356\) 42.0992i 2.23125i
\(357\) 0 0
\(358\) −29.8703 + 29.8703i −1.57869 + 1.57869i
\(359\) −0.368991 0.639111i −0.0194746 0.0337310i 0.856124 0.516771i \(-0.172866\pi\)
−0.875598 + 0.483040i \(0.839533\pi\)
\(360\) −40.8859 + 10.8265i −2.15488 + 0.570609i
\(361\) −8.08813 + 14.0090i −0.425691 + 0.737318i
\(362\) 28.6475 + 7.67607i 1.50568 + 0.403445i
\(363\) −14.1831 4.19448i −0.744417 0.220153i
\(364\) 0 0
\(365\) −3.94692 + 18.2267i −0.206591 + 0.954028i
\(366\) −27.8460 17.0473i −1.45553 0.891079i
\(367\) −31.8179 + 8.52557i −1.66088 + 0.445031i −0.962629 0.270822i \(-0.912704\pi\)
−0.698250 + 0.715854i \(0.746038\pi\)
\(368\) 9.64747 2.58503i 0.502909 0.134754i
\(369\) 19.3032 + 0.994745i 1.00488 + 0.0517844i
\(370\) −2.97967 + 1.91890i −0.154906 + 0.0997591i
\(371\) 0 0
\(372\) −6.04438 + 20.4382i −0.313387 + 1.05967i
\(373\) 7.21411 + 1.93302i 0.373533 + 0.100088i 0.440701 0.897654i \(-0.354730\pi\)
−0.0671685 + 0.997742i \(0.521397\pi\)
\(374\) −10.1836 + 17.6384i −0.526579 + 0.912062i
\(375\) −15.2325 11.9570i −0.786605 0.617456i
\(376\) −16.4670 28.5217i −0.849222 1.47090i
\(377\) −19.7908 + 19.7908i −1.01928 + 1.01928i
\(378\) 0 0
\(379\) 3.38353i 0.173800i 0.996217 + 0.0869000i \(0.0276961\pi\)
−0.996217 + 0.0869000i \(0.972304\pi\)
\(380\) 14.9607 + 7.69485i 0.767465 + 0.394738i
\(381\) 34.9715 + 0.900491i 1.79164 + 0.0461335i
\(382\) 31.6004 8.46729i 1.61681 0.433224i
\(383\) 1.04955 3.91696i 0.0536293 0.200147i −0.933913 0.357500i \(-0.883629\pi\)
0.987542 + 0.157353i \(0.0502959\pi\)
\(384\) −9.71455 17.8734i −0.495744 0.912097i
\(385\) 0 0
\(386\) 29.0157i 1.47686i
\(387\) 15.5646 + 17.2559i 0.791192 + 0.877167i
\(388\) 7.20490 + 26.8890i 0.365773 + 1.36508i
\(389\) 5.10508 8.84225i 0.258838 0.448320i −0.707093 0.707120i \(-0.749994\pi\)
0.965931 + 0.258800i \(0.0833272\pi\)
\(390\) −21.3664 + 22.3637i −1.08193 + 1.13243i
\(391\) 7.18455 0.363339
\(392\) 0 0
\(393\) −2.40557 + 8.13410i −0.121345 + 0.410311i
\(394\) −58.4483 + 33.7452i −2.94458 + 1.70006i
\(395\) −38.0962 + 1.85086i −1.91683 + 0.0931269i
\(396\) 18.7659 9.58233i 0.943021 0.481530i
\(397\) −8.80417 + 32.8576i −0.441869 + 1.64908i 0.282205 + 0.959354i \(0.408934\pi\)
−0.724074 + 0.689723i \(0.757732\pi\)
\(398\) 7.57156 + 7.57156i 0.379528 + 0.379528i
\(399\) 0 0
\(400\) −14.6693 + 32.2828i −0.733465 + 1.61414i
\(401\) 17.3995 10.0456i 0.868891 0.501654i 0.00191140 0.999998i \(-0.499392\pi\)
0.866980 + 0.498344i \(0.166058\pi\)
\(402\) 16.9615 16.1100i 0.845965 0.803492i
\(403\) 2.23203 + 8.33007i 0.111186 + 0.414950i
\(404\) −2.26402 3.92139i −0.112639 0.195097i
\(405\) 16.8552 + 10.9955i 0.837542 + 0.546373i
\(406\) 0 0
\(407\) 0.690793 0.690793i 0.0342413 0.0342413i
\(408\) 13.0289 + 54.1652i 0.645028 + 2.68158i
\(409\) 29.0207 + 16.7551i 1.43498 + 0.828487i 0.997495 0.0707377i \(-0.0225353\pi\)
0.437487 + 0.899225i \(0.355869\pi\)
\(410\) 24.6382 27.1545i 1.21680 1.34107i
\(411\) −9.52376 5.83045i −0.469772 0.287595i
\(412\) 18.0463 + 18.0463i 0.889077 + 0.889077i
\(413\) 0 0
\(414\) −9.02331 5.84862i −0.443471 0.287444i
\(415\) −3.10297 9.67538i −0.152319 0.474946i
\(416\) 14.7811 + 8.53389i 0.724705 + 0.418408i
\(417\) −12.1721 12.8155i −0.596070 0.627578i
\(418\) −6.48030 1.73639i −0.316962 0.0849297i
\(419\) 25.8773 1.26419 0.632093 0.774892i \(-0.282196\pi\)
0.632093 + 0.774892i \(0.282196\pi\)
\(420\) 0 0
\(421\) 10.4030 0.507013 0.253507 0.967334i \(-0.418416\pi\)
0.253507 + 0.967334i \(0.418416\pi\)
\(422\) −52.9063 14.1762i −2.57544 0.690086i
\(423\) −4.82945 + 14.9078i −0.234816 + 0.724840i
\(424\) −21.8808 12.6329i −1.06263 0.613508i
\(425\) −16.2029 + 19.6997i −0.785955 + 0.955576i
\(426\) −7.61923 14.0183i −0.369153 0.679188i
\(427\) 0 0
\(428\) −12.6154 12.6154i −0.609786 0.609786i
\(429\) 4.45155 7.27139i 0.214923 0.351066i
\(430\) 44.0307 2.13918i 2.12335 0.103160i
\(431\) 0.388850 + 0.224503i 0.0187303 + 0.0108139i 0.509336 0.860568i \(-0.329891\pi\)
−0.490606 + 0.871382i \(0.663224\pi\)
\(432\) 12.2554 34.7528i 0.589641 1.67205i
\(433\) −17.7813 + 17.7813i −0.854517 + 0.854517i −0.990686 0.136169i \(-0.956521\pi\)
0.136169 + 0.990686i \(0.456521\pi\)
\(434\) 0 0
\(435\) 33.1556 9.69944i 1.58969 0.465053i
\(436\) 14.3778 + 24.9030i 0.688570 + 1.19264i
\(437\) 0.612517 + 2.28594i 0.0293007 + 0.109352i
\(438\) −25.3189 26.6572i −1.20978 1.27373i
\(439\) 25.5732 14.7647i 1.22054 0.704679i 0.255507 0.966807i \(-0.417757\pi\)
0.965033 + 0.262128i \(0.0844241\pi\)
\(440\) 4.68067 21.6151i 0.223142 1.03046i
\(441\) 0 0
\(442\) 28.8077 + 28.8077i 1.37024 + 1.37024i
\(443\) −5.69694 + 21.2613i −0.270670 + 1.01015i 0.688018 + 0.725693i \(0.258481\pi\)
−0.958688 + 0.284460i \(0.908186\pi\)
\(444\) 0.124315 4.82791i 0.00589975 0.229123i
\(445\) −1.02028 21.0004i −0.0483659 0.995514i
\(446\) 38.6519 22.3157i 1.83022 1.05668i
\(447\) 1.53325 + 0.453443i 0.0725204 + 0.0214471i
\(448\) 0 0
\(449\) 16.3214 0.770252 0.385126 0.922864i \(-0.374158\pi\)
0.385126 + 0.922864i \(0.374158\pi\)
\(450\) 36.3863 11.5515i 1.71527 0.544541i
\(451\) −5.05351 + 8.75294i −0.237961 + 0.412160i
\(452\) 5.39575 + 20.1372i 0.253795 + 0.947175i
\(453\) −5.56206 23.1232i −0.261328 1.08642i
\(454\) 31.3336i 1.47056i
\(455\) 0 0
\(456\) −16.1232 + 8.76332i −0.755040 + 0.410380i
\(457\) −7.55108 + 28.1810i −0.353225 + 1.31825i 0.529479 + 0.848323i \(0.322387\pi\)
−0.882704 + 0.469929i \(0.844279\pi\)
\(458\) −10.9726 + 2.94010i −0.512717 + 0.137382i
\(459\) 14.9855 21.8654i 0.699465 1.02059i
\(460\) −13.4263 + 4.30591i −0.626002 + 0.200764i
\(461\) 15.2893i 0.712094i 0.934468 + 0.356047i \(0.115876\pi\)
−0.934468 + 0.356047i \(0.884124\pi\)
\(462\) 0 0
\(463\) 0.492195 0.492195i 0.0228743 0.0228743i −0.695577 0.718451i \(-0.744851\pi\)
0.718451 + 0.695577i \(0.244851\pi\)
\(464\) −31.6281 54.7815i −1.46830 2.54317i
\(465\) 2.51980 10.3417i 0.116853 0.479585i
\(466\) −10.1528 + 17.5852i −0.470320 + 0.814619i
\(467\) 12.2948 + 3.29439i 0.568937 + 0.152446i 0.531809 0.846864i \(-0.321512\pi\)
0.0371280 + 0.999311i \(0.488179\pi\)
\(468\) −8.79901 41.2192i −0.406734 1.90536i
\(469\) 0 0
\(470\) 16.0951 + 24.9924i 0.742410 + 1.15281i
\(471\) 17.5485 28.6647i 0.808594 1.32080i
\(472\) −33.7924 + 9.05465i −1.55542 + 0.416774i
\(473\) −11.7373 + 3.14500i −0.539682 + 0.144607i
\(474\) 39.2594 64.1282i 1.80324 2.94551i
\(475\) −7.64932 3.47586i −0.350975 0.159483i
\(476\) 0 0
\(477\) 2.50974 + 11.7570i 0.114913 + 0.538314i
\(478\) 29.1546 + 7.81194i 1.33350 + 0.357310i
\(479\) 11.3786 19.7083i 0.519901 0.900496i −0.479831 0.877361i \(-0.659302\pi\)
0.999732 0.0231347i \(-0.00736465\pi\)
\(480\) −10.9464 17.9990i −0.499631 0.821540i
\(481\) −0.977074 1.69234i −0.0445507 0.0771641i
\(482\) 32.5235 32.5235i 1.48141 1.48141i
\(483\) 0 0
\(484\) 38.2328i 1.73785i
\(485\) −4.24568 13.2385i −0.192787 0.601128i
\(486\) −36.6204 + 15.2623i −1.66113 + 0.692314i
\(487\) 15.6982 4.20631i 0.711352 0.190606i 0.115042 0.993361i \(-0.463300\pi\)
0.596310 + 0.802754i \(0.296633\pi\)
\(488\) 12.0865 45.1075i 0.547131 2.04192i
\(489\) −14.2163 + 7.72687i −0.642884 + 0.349421i
\(490\) 0 0
\(491\) 0.301729i 0.0136168i 0.999977 + 0.00680841i \(0.00216720\pi\)
−0.999977 + 0.00680841i \(0.997833\pi\)
\(492\) 11.6852 + 48.5791i 0.526811 + 2.19011i
\(493\) −11.7769 43.9519i −0.530404 1.97949i
\(494\) −6.70989 + 11.6219i −0.301892 + 0.522893i
\(495\) −9.12877 + 5.23475i −0.410308 + 0.235285i
\(496\) −19.4909 −0.875165
\(497\) 0 0
\(498\) 19.2085 + 5.68071i 0.860754 + 0.254559i
\(499\) 17.5116 10.1103i 0.783928 0.452601i −0.0538926 0.998547i \(-0.517163\pi\)
0.837821 + 0.545946i \(0.183830\pi\)
\(500\) 18.4728 46.5250i 0.826129 2.08066i
\(501\) −0.196370 + 7.62622i −0.00877315 + 0.340714i
\(502\) 2.10295 7.84832i 0.0938593 0.350288i
\(503\) −23.8859 23.8859i −1.06502 1.06502i −0.997734 0.0672882i \(-0.978565\pi\)
−0.0672882 0.997734i \(-0.521435\pi\)
\(504\) 0 0
\(505\) 1.22440 + 1.90124i 0.0544850 + 0.0846042i
\(506\) 4.86943 2.81137i 0.216473 0.124980i
\(507\) 3.76188 + 3.96073i 0.167071 + 0.175902i
\(508\) 23.4052 + 87.3495i 1.03844 + 3.87551i
\(509\) 5.88603 + 10.1949i 0.260894 + 0.451881i 0.966480 0.256743i \(-0.0826494\pi\)
−0.705586 + 0.708624i \(0.749316\pi\)
\(510\) −14.1186 48.2618i −0.625184 2.13707i
\(511\) 0 0
\(512\) 35.9587 35.9587i 1.58917 1.58917i
\(513\) 8.23459 + 2.90390i 0.363566 + 0.128210i
\(514\) −36.8179 21.2569i −1.62397 0.937600i
\(515\) −9.43940 8.56469i −0.415950 0.377405i
\(516\) −31.3647 + 51.2326i −1.38075 + 2.25539i
\(517\) −5.79412 5.79412i −0.254825 0.254825i
\(518\) 0 0
\(519\) −9.50842 17.4941i −0.417373 0.767907i
\(520\) −39.3401 20.2342i −1.72518 0.887327i
\(521\) 25.7965 + 14.8936i 1.13016 + 0.652500i 0.943976 0.330014i \(-0.107053\pi\)
0.186187 + 0.982514i \(0.440387\pi\)
\(522\) −20.9883 + 64.7876i −0.918632 + 2.83567i
\(523\) −23.8608 6.39348i −1.04336 0.279567i −0.303854 0.952719i \(-0.598274\pi\)
−0.739505 + 0.673151i \(0.764940\pi\)
\(524\) −21.9268 −0.957877
\(525\) 0 0
\(526\) −47.3309 −2.06373
\(527\) −13.5427 3.62875i −0.589929 0.158071i
\(528\) 13.2701 + 13.9715i 0.577506 + 0.608033i
\(529\) 18.2009 + 10.5083i 0.791343 + 0.456882i
\(530\) 20.2799 + 10.4308i 0.880903 + 0.453083i
\(531\) 13.9685 + 9.05395i 0.606183 + 0.392908i
\(532\) 0 0
\(533\) 14.2956 + 14.2956i 0.619211 + 0.619211i
\(534\) 35.3504 + 21.6416i 1.52976 + 0.936522i
\(535\) 6.59866 + 5.98719i 0.285285 + 0.258849i
\(536\) 28.9760 + 16.7293i 1.25157 + 0.722595i
\(537\) 6.72343 + 27.9514i 0.290137 + 1.20619i
\(538\) 52.8021 52.8021i 2.27646 2.27646i
\(539\) 0 0
\(540\) −14.8999 + 49.8425i −0.641192 + 2.14488i
\(541\) 11.5559 + 20.0153i 0.496825 + 0.860526i 0.999993 0.00366246i \(-0.00116580\pi\)
−0.503168 + 0.864188i \(0.667832\pi\)
\(542\) −2.09711 7.82652i −0.0900786 0.336178i
\(543\) 14.6348 13.9001i 0.628040 0.596509i
\(544\) −24.0306 + 13.8741i −1.03030 + 0.594845i
\(545\) −7.77560 12.0739i −0.333070 0.517191i
\(546\) 0 0
\(547\) −25.6689 25.6689i −1.09752 1.09752i −0.994700 0.102823i \(-0.967213\pi\)
−0.102823 0.994700i \(-0.532787\pi\)
\(548\) 7.47105 27.8824i 0.319148 1.19108i
\(549\) −19.7893 + 10.1049i −0.844588 + 0.431268i
\(550\) −3.27309 + 19.6920i −0.139565 + 0.839671i
\(551\) 12.9804 7.49421i 0.552982 0.319264i
\(552\) 4.36169 14.7484i 0.185646 0.627735i
\(553\) 0 0
\(554\) −60.6965 −2.57875
\(555\) 0.0549927 + 2.41132i 0.00233431 + 0.102355i
\(556\) 22.8445 39.5679i 0.968824 1.67805i
\(557\) −3.87177 14.4497i −0.164052 0.612252i −0.998159 0.0606487i \(-0.980683\pi\)
0.834107 0.551603i \(-0.185984\pi\)
\(558\) 14.0547 + 15.5819i 0.594982 + 0.659636i
\(559\) 24.3063i 1.02805i
\(560\) 0 0
\(561\) 6.61917 + 12.1783i 0.279462 + 0.514169i
\(562\) 16.3394 60.9796i 0.689238 2.57227i
\(563\) 14.9192 3.99759i 0.628769 0.168478i 0.0696580 0.997571i \(-0.477809\pi\)
0.559111 + 0.829093i \(0.311143\pi\)
\(564\) −40.4947 1.04271i −1.70514 0.0439061i
\(565\) −3.17959 9.91430i −0.133767 0.417098i
\(566\) 19.5050i 0.819858i
\(567\) 0 0
\(568\) 16.1365 16.1365i 0.677072 0.677072i
\(569\) −21.0355 36.4346i −0.881854 1.52742i −0.849277 0.527947i \(-0.822962\pi\)
−0.0325765 0.999469i \(-0.510371\pi\)
\(570\) 14.1520 8.60674i 0.592762 0.360497i
\(571\) −5.41712 + 9.38272i −0.226699 + 0.392655i −0.956828 0.290655i \(-0.906127\pi\)
0.730129 + 0.683310i \(0.239460\pi\)
\(572\) 21.2882 + 5.70415i 0.890103 + 0.238502i
\(573\) 6.31411 21.3503i 0.263776 0.891921i
\(574\) 0 0
\(575\) 6.59308 2.47331i 0.274950 0.103144i
\(576\) −1.01985 0.0525556i −0.0424936 0.00218982i
\(577\) −20.0772 + 5.37966i −0.835823 + 0.223958i −0.651253 0.758861i \(-0.725756\pi\)
−0.184571 + 0.982819i \(0.559089\pi\)
\(578\) −22.1852 + 5.94450i −0.922782 + 0.247259i
\(579\) −16.8414 10.3103i −0.699904 0.428482i
\(580\) 48.3498 + 75.0776i 2.00762 + 3.11743i
\(581\) 0 0
\(582\) 26.2823 + 7.77271i 1.08944 + 0.322189i
\(583\) −6.07203 1.62700i −0.251478 0.0673833i
\(584\) 26.2922 45.5394i 1.08798 1.88443i
\(585\) 5.38817 + 20.3481i 0.222773 + 0.841292i
\(586\) 15.4901 + 26.8297i 0.639891 + 1.10832i
\(587\) 4.89737 4.89737i 0.202136 0.202136i −0.598779 0.800915i \(-0.704347\pi\)
0.800915 + 0.598779i \(0.204347\pi\)
\(588\) 0 0
\(589\) 4.61831i 0.190294i
\(590\) 30.0688 9.64332i 1.23791 0.397009i
\(591\) −1.18229 + 45.9156i −0.0486331 + 1.88871i
\(592\) 4.26606 1.14309i 0.175334 0.0469806i
\(593\) −8.25882 + 30.8223i −0.339149 + 1.26572i 0.560151 + 0.828390i \(0.310743\pi\)
−0.899300 + 0.437331i \(0.855924\pi\)
\(594\) 1.60059 20.6835i 0.0656729 0.848654i
\(595\) 0 0
\(596\) 4.13314i 0.169300i
\(597\) 7.08514 1.70426i 0.289976 0.0697508i
\(598\) −2.91097 10.8639i −0.119039 0.444258i
\(599\) −3.40986 + 5.90604i −0.139323 + 0.241314i −0.927241 0.374466i \(-0.877826\pi\)
0.787918 + 0.615781i \(0.211159\pi\)
\(600\) 30.6029 + 45.2208i 1.24936 + 1.84613i
\(601\) −8.46733 −0.345390 −0.172695 0.984975i \(-0.555247\pi\)
−0.172695 + 0.984975i \(0.555247\pi\)
\(602\) 0 0
\(603\) −3.32356 15.5693i −0.135346 0.634031i
\(604\) 53.2417 30.7391i 2.16637 1.25076i
\(605\) 0.926576 + 19.0717i 0.0376707 + 0.775374i
\(606\) −4.45661 0.114755i −0.181038 0.00466159i
\(607\) 2.30704 8.60998i 0.0936398 0.349468i −0.903170 0.429283i \(-0.858766\pi\)
0.996810 + 0.0798148i \(0.0254329\pi\)
\(608\) −6.46309 6.46309i −0.262113 0.262113i
\(609\) 0 0
\(610\) −8.92083 + 41.1959i −0.361194 + 1.66797i
\(611\) −14.1947 + 8.19533i −0.574258 + 0.331548i
\(612\) 65.1870 + 21.1177i 2.63503 + 0.853631i
\(613\) −1.92064 7.16791i −0.0775738 0.289509i 0.916231 0.400651i \(-0.131216\pi\)
−0.993805 + 0.111142i \(0.964549\pi\)
\(614\) −21.3301 36.9448i −0.860812 1.49097i
\(615\) −7.00627 23.9496i −0.282520 0.965739i
\(616\) 0 0
\(617\) −2.10719 + 2.10719i −0.0848323 + 0.0848323i −0.748250 0.663417i \(-0.769105\pi\)
0.663417 + 0.748250i \(0.269105\pi\)
\(618\) 24.4302 5.87646i 0.982729 0.236386i
\(619\) −18.2501 10.5367i −0.733534 0.423506i 0.0861795 0.996280i \(-0.472534\pi\)
−0.819714 + 0.572773i \(0.805867\pi\)
\(620\) 27.4829 1.33523i 1.10374 0.0536240i
\(621\) −6.60097 + 3.15911i −0.264888 + 0.126771i
\(622\) −52.6932 52.6932i −2.11280 2.11280i
\(623\) 0 0
\(624\) 33.8650 18.4063i 1.35569 0.736844i
\(625\) −8.08726 + 23.6558i −0.323491 + 0.946231i
\(626\) −3.82080 2.20594i −0.152710 0.0881670i
\(627\) −3.31052 + 3.14431i −0.132209 + 0.125572i
\(628\) 83.9205 + 22.4864i 3.34879 + 0.897306i
\(629\) 3.17697 0.126674
\(630\) 0 0
\(631\) −11.6376 −0.463287 −0.231643 0.972801i \(-0.574410\pi\)
−0.231643 + 0.972801i \(0.574410\pi\)
\(632\) 103.881 + 27.8348i 4.13216 + 1.10721i
\(633\) −27.0276 + 25.6707i −1.07425 + 1.02032i
\(634\) 13.4083 + 7.74127i 0.532511 + 0.307445i
\(635\) −13.7922 43.0054i −0.547326 1.70662i
\(636\) −27.3040 + 14.8403i −1.08267 + 0.588455i
\(637\) 0 0
\(638\) −25.1806 25.1806i −0.996910 0.996910i
\(639\) −10.8439 0.558817i −0.428979 0.0221065i
\(640\) −17.6473 + 19.4496i −0.697572 + 0.768815i
\(641\) 31.2666 + 18.0518i 1.23496 + 0.713003i 0.968059 0.250722i \(-0.0806680\pi\)
0.266898 + 0.963725i \(0.414001\pi\)
\(642\) −17.0781 + 4.10797i −0.674019 + 0.162129i
\(643\) −21.0115 + 21.0115i −0.828614 + 0.828614i −0.987325 0.158711i \(-0.949266\pi\)
0.158711 + 0.987325i \(0.449266\pi\)
\(644\) 0 0
\(645\) 14.4040 26.3165i 0.567158 1.03621i
\(646\) −10.9087 18.8944i −0.429196 0.743389i
\(647\) 6.91879 + 25.8213i 0.272006 + 1.01514i 0.957821 + 0.287364i \(0.0927789\pi\)
−0.685816 + 0.727775i \(0.740554\pi\)
\(648\) −35.7875 44.0366i −1.40587 1.72992i
\(649\) −7.53812 + 4.35214i −0.295897 + 0.170836i
\(650\) 36.3532 + 16.5189i 1.42589 + 0.647925i
\(651\) 0 0
\(652\) −29.5757 29.5757i −1.15828 1.15828i
\(653\) 4.49712 16.7835i 0.175986 0.656788i −0.820396 0.571796i \(-0.806247\pi\)
0.996382 0.0849922i \(-0.0270865\pi\)
\(654\) 28.3020 + 0.728756i 1.10669 + 0.0284966i
\(655\) 10.9378 0.531399i 0.427374 0.0207635i
\(656\) −39.5707 + 22.8462i −1.54498 + 0.891994i
\(657\) −24.4691 + 5.22339i −0.954631 + 0.203784i
\(658\) 0 0
\(659\) 0.708622 0.0276040 0.0138020 0.999905i \(-0.495607\pi\)
0.0138020 + 0.999905i \(0.495607\pi\)
\(660\) −19.6685 18.7914i −0.765595 0.731453i
\(661\) −8.71029 + 15.0867i −0.338791 + 0.586803i −0.984206 0.177029i \(-0.943351\pi\)
0.645414 + 0.763833i \(0.276685\pi\)
\(662\) −21.9089 81.7650i −0.851512 3.17789i
\(663\) 26.9570 6.48425i 1.04692 0.251827i
\(664\) 28.6500i 1.11184i
\(665\) 0 0
\(666\) −3.99006 2.58623i −0.154612 0.100214i
\(667\) −3.25123 + 12.1338i −0.125888 + 0.469821i
\(668\) −19.0483 + 5.10397i −0.737000 + 0.197479i
\(669\) 0.781851 30.3640i 0.0302281 1.17394i
\(670\) −26.8559 13.8131i −1.03754 0.533645i
\(671\) 11.6188i 0.448540i
\(672\) 0 0
\(673\) −8.20389 + 8.20389i −0.316237 + 0.316237i −0.847320 0.531083i \(-0.821785\pi\)
0.531083 + 0.847320i \(0.321785\pi\)
\(674\) 18.5463 + 32.1231i 0.714377 + 1.23734i
\(675\) 6.22461 25.2241i 0.239585 0.970875i
\(676\) −7.06029 + 12.2288i −0.271550 + 0.470338i
\(677\) −44.8882 12.0278i −1.72519 0.462264i −0.746128 0.665803i \(-0.768089\pi\)
−0.979067 + 0.203539i \(0.934756\pi\)
\(678\) 19.6828 + 5.82098i 0.755915 + 0.223554i
\(679\) 0 0
\(680\) 60.4675 38.9409i 2.31882 1.49332i
\(681\) −18.1867 11.1339i −0.696917 0.426653i
\(682\) −10.5987 + 2.83991i −0.405845 + 0.108746i
\(683\) 38.9287 10.4309i 1.48957 0.399128i 0.579975 0.814634i \(-0.303062\pi\)
0.909590 + 0.415506i \(0.136396\pi\)
\(684\) −1.16161 + 22.5413i −0.0444154 + 0.861886i
\(685\) −3.05106 + 14.0896i −0.116575 + 0.538338i
\(686\) 0 0
\(687\) −2.19245 + 7.41347i −0.0836473 + 0.282842i
\(688\) −53.0626 14.2181i −2.02299 0.542060i
\(689\) −6.28716 + 10.8897i −0.239522 + 0.414864i
\(690\) −3.28627 + 13.4874i −0.125106 + 0.513458i
\(691\) −2.89969 5.02242i −0.110310 0.191062i 0.805586 0.592480i \(-0.201851\pi\)
−0.915895 + 0.401418i \(0.868518\pi\)
\(692\) 36.3949 36.3949i 1.38353 1.38353i
\(693\) 0 0
\(694\) 69.1925i 2.62651i
\(695\) −10.4366 + 20.2913i −0.395884 + 0.769694i
\(696\) −97.3740 2.50731i −3.69095 0.0950394i
\(697\) −31.7481 + 8.50687i −1.20254 + 0.322221i
\(698\) −19.8470 + 74.0699i −0.751219 + 2.80359i
\(699\) 6.59919 + 12.1416i 0.249604 + 0.459236i
\(700\) 0 0
\(701\) 4.92775i 0.186118i 0.995661 + 0.0930592i \(0.0296646\pi\)
−0.995661 + 0.0930592i \(0.970335\pi\)
\(702\) −39.1347 13.8007i −1.47704 0.520874i
\(703\) 0.270852 + 1.01083i 0.0102154 + 0.0381243i
\(704\) 0.266993 0.462446i 0.0100627 0.0174291i
\(705\) 20.2253 0.461258i 0.761729 0.0173720i
\(706\) 61.3096 2.30742
\(707\) 0 0
\(708\) −12.2032 + 41.2635i −0.458625 + 1.55078i
\(709\) −14.8889 + 8.59609i −0.559163 + 0.322833i −0.752809 0.658239i \(-0.771302\pi\)
0.193647 + 0.981071i \(0.437968\pi\)
\(710\) −13.8410 + 15.2546i −0.519443 + 0.572494i
\(711\) −23.2712 45.5740i −0.872740 1.70916i
\(712\) −15.3438 + 57.2639i −0.575034 + 2.14606i
\(713\) 2.73693 + 2.73693i 0.102499 + 0.102499i
\(714\) 0 0
\(715\) −10.7574 2.32948i −0.402305 0.0871177i
\(716\) −64.3586 + 37.1575i −2.40519 + 1.38864i
\(717\) 14.8939 14.1461i 0.556221 0.528296i
\(718\) −0.486116 1.81421i −0.0181417 0.0677057i
\(719\) −6.12782 10.6137i −0.228529 0.395824i 0.728843 0.684681i \(-0.240058\pi\)
−0.957372 + 0.288856i \(0.906725\pi\)
\(720\) −47.5735 0.139941i −1.77296 0.00521528i
\(721\) 0 0
\(722\) −29.1113 + 29.1113i −1.08341 + 1.08341i
\(723\) −7.32063 30.4341i −0.272257 1.13186i
\(724\) 45.1850 + 26.0876i 1.67929 + 0.969538i
\(725\) −25.9379 36.2792i −0.963309 1.34738i
\(726\) −32.1038 19.6540i −1.19148 0.729428i
\(727\) 5.83842 + 5.83842i 0.216535 + 0.216535i 0.807037 0.590501i \(-0.201070\pi\)
−0.590501 + 0.807037i \(0.701070\pi\)
\(728\) 0 0
\(729\) −4.15390 + 26.6786i −0.153848 + 0.988094i
\(730\) −21.7090 + 42.2075i −0.803485 + 1.56217i
\(731\) −34.2220 19.7581i −1.26575 0.730780i
\(732\) −39.5562 41.6471i −1.46204 1.53932i
\(733\) −18.5697 4.97574i −0.685888 0.183783i −0.100987 0.994888i \(-0.532200\pi\)
−0.584901 + 0.811105i \(0.698867\pi\)
\(734\) −83.8351 −3.09441
\(735\) 0 0
\(736\) 7.66040 0.282366
\(737\) 8.04096 + 2.15457i 0.296193 + 0.0793646i
\(738\) 46.7985 + 15.1606i 1.72268 + 0.558070i
\(739\) 13.1464 + 7.59007i 0.483598 + 0.279205i 0.721915 0.691982i \(-0.243262\pi\)
−0.238317 + 0.971187i \(0.576596\pi\)
\(740\) −5.93702 + 1.90405i −0.218249 + 0.0699943i
\(741\) 4.36134 + 8.02424i 0.160218 + 0.294778i
\(742\) 0 0
\(743\) −34.4215 34.4215i −1.26280 1.26280i −0.949729 0.313073i \(-0.898642\pi\)
−0.313073 0.949729i \(-0.601358\pi\)
\(744\) −15.6707 + 25.5974i −0.574517 + 0.938446i
\(745\) −0.100167 2.06174i −0.00366984 0.0755362i
\(746\) 16.4614 + 9.50402i 0.602696 + 0.347967i
\(747\) 10.1227 9.13050i 0.370369 0.334068i
\(748\) −25.3359 + 25.3359i −0.926371 + 0.926371i
\(749\) 0 0
\(750\) −29.5706 39.4282i −1.07977 1.43971i
\(751\) 11.1258 + 19.2704i 0.405985 + 0.703186i 0.994436 0.105347i \(-0.0335952\pi\)
−0.588451 + 0.808533i \(0.700262\pi\)
\(752\) −9.58780 35.7822i −0.349631 1.30484i
\(753\) −3.80809 4.00939i −0.138775 0.146110i
\(754\) −61.6888 + 35.6160i −2.24657 + 1.29706i
\(755\) −25.8136 + 16.6239i −0.939454 + 0.605007i
\(756\) 0 0
\(757\) −1.88407 1.88407i −0.0684777 0.0684777i 0.672038 0.740516i \(-0.265419\pi\)
−0.740516 + 0.672038i \(0.765419\pi\)
\(758\) −2.22876 + 8.31786i −0.0809523 + 0.302118i
\(759\) 0.0984989 3.82530i 0.00357529 0.138850i
\(760\) 17.5452 + 15.9193i 0.636430 + 0.577455i
\(761\) 30.8889 17.8337i 1.11972 0.646472i 0.178392 0.983960i \(-0.442911\pi\)
0.941330 + 0.337488i \(0.109577\pi\)
\(762\) 85.3786 + 25.2498i 3.09294 + 0.914703i
\(763\) 0 0
\(764\) 57.5532 2.08220
\(765\) −33.0291 8.95433i −1.19417 0.323745i
\(766\) 5.16028 8.93787i 0.186449 0.322938i
\(767\) 4.50633 + 16.8179i 0.162714 + 0.607258i
\(768\) −11.8325 49.1914i −0.426969 1.77504i
\(769\) 31.7331i 1.14432i −0.820141 0.572162i \(-0.806105\pi\)
0.820141 0.572162i \(-0.193895\pi\)
\(770\) 0 0
\(771\) −25.4207 + 13.8167i −0.915503 + 0.497595i
\(772\) 13.2115 49.3059i 0.475491 1.77456i
\(773\) −6.80067 + 1.82223i −0.244603 + 0.0655412i −0.379038 0.925381i \(-0.623745\pi\)
0.134434 + 0.990922i \(0.457078\pi\)
\(774\) 26.8964 + 52.6734i 0.966770 + 1.89331i
\(775\) −13.6770 + 1.33210i −0.491291 + 0.0478506i
\(776\) 39.2008i 1.40723i
\(777\) 0 0
\(778\) 18.3745 18.3745i 0.658758 0.658758i
\(779\) −5.41335 9.37619i −0.193953 0.335937i
\(780\) −46.4902 + 28.2737i −1.66462 + 1.01236i
\(781\) 2.83891 4.91713i 0.101584 0.175949i
\(782\) 17.6621 + 4.73254i 0.631595 + 0.169235i
\(783\) 30.1463 + 35.2034i 1.07734 + 1.25807i
\(784\) 0 0
\(785\) −42.4071 9.18310i −1.51357 0.327759i
\(786\) −11.2717 + 18.4118i −0.402049 + 0.656727i
\(787\) −25.6203 + 6.86494i −0.913266 + 0.244709i −0.684705 0.728821i \(-0.740069\pi\)
−0.228561 + 0.973530i \(0.573402\pi\)
\(788\) −114.685 + 30.7298i −4.08549 + 1.09470i
\(789\) −16.8183 + 27.4719i −0.598748 + 0.978026i
\(790\) −94.8726 20.5443i −3.37542 0.730934i
\(791\) 0 0
\(792\) 29.0181 6.19445i 1.03111 0.220110i
\(793\) −22.4492 6.01524i −0.797194 0.213607i
\(794\) −43.2873 + 74.9758i −1.53621 + 2.66079i
\(795\) 13.2604 8.06450i 0.470298 0.286018i
\(796\) 9.41871 + 16.3137i 0.333837 + 0.578223i
\(797\) −7.92792 + 7.92792i −0.280821 + 0.280821i −0.833437 0.552615i \(-0.813630\pi\)
0.552615 + 0.833437i \(0.313630\pi\)
\(798\) 0 0
\(799\) 26.6473i 0.942713i
\(800\) −17.2760 + 21.0045i −0.610800 + 0.742620i
\(801\) 25.1225 12.8282i 0.887660 0.453262i
\(802\) 49.3911 13.2343i 1.74406 0.467320i
\(803\) 3.38618 12.6374i 0.119496 0.445964i
\(804\) 36.1576 19.6524i 1.27518 0.693088i
\(805\) 0 0
\(806\) 21.9484i 0.773099i
\(807\) −11.8851 49.4099i −0.418375 1.73931i
\(808\) −1.65032 6.15910i −0.0580582 0.216676i
\(809\) −16.6141 + 28.7764i −0.584119 + 1.01172i 0.410865 + 0.911696i \(0.365227\pi\)
−0.994985 + 0.100028i \(0.968107\pi\)
\(810\) 34.1930 + 38.1335i 1.20142 + 1.33987i
\(811\) −49.8680 −1.75110 −0.875550 0.483127i \(-0.839501\pi\)
−0.875550 + 0.483127i \(0.839501\pi\)
\(812\) 0 0
\(813\) −5.28787 1.56383i −0.185454 0.0548458i
\(814\) 2.15324 1.24317i 0.0754709 0.0435732i
\(815\) 15.4701 + 14.0365i 0.541893 + 0.491678i
\(816\) −1.61300 + 62.6424i −0.0564662 + 2.19292i
\(817\) 3.36894 12.5731i 0.117864 0.439876i
\(818\) 60.3060 + 60.3060i 2.10855 + 2.10855i
\(819\) 0 0
\(820\) 54.2313 34.9249i 1.89384 1.21963i
\(821\) 28.0956 16.2210i 0.980542 0.566116i 0.0781084 0.996945i \(-0.475112\pi\)
0.902434 + 0.430829i \(0.141779\pi\)
\(822\) −19.5721 20.6066i −0.682654 0.718739i
\(823\) −11.9776 44.7011i −0.417514 1.55818i −0.779747 0.626095i \(-0.784652\pi\)
0.362233 0.932088i \(-0.382015\pi\)
\(824\) 17.9695 + 31.1241i 0.625998 + 1.08426i
\(825\) 10.2667 + 8.89705i 0.357439 + 0.309755i
\(826\) 0 0
\(827\) −36.7198 + 36.7198i −1.27687 + 1.27687i −0.334465 + 0.942408i \(0.608556\pi\)
−0.942408 + 0.334465i \(0.891444\pi\)
\(828\) −12.6701 14.0469i −0.440318 0.488165i
\(829\) −12.3817 7.14860i −0.430036 0.248281i 0.269326 0.963049i \(-0.413199\pi\)
−0.699362 + 0.714768i \(0.746532\pi\)
\(830\) −1.25489 25.8293i −0.0435578 0.896550i
\(831\) −21.5676 + 35.2296i −0.748172 + 1.22210i
\(832\) −0.755282 0.755282i −0.0261847 0.0261847i
\(833\) 0 0
\(834\) −21.4814 39.5227i −0.743841 1.36856i
\(835\) 9.37818 3.00766i 0.324545 0.104084i
\(836\) −10.2212 5.90123i −0.353509 0.204098i
\(837\) 14.0382 2.62084i 0.485232 0.0905896i
\(838\) 63.6151 + 17.0456i 2.19755 + 0.588831i
\(839\) −33.6309 −1.16107 −0.580534 0.814236i \(-0.697156\pi\)
−0.580534 + 0.814236i \(0.697156\pi\)
\(840\) 0 0
\(841\) 50.5583 1.74339
\(842\) 25.5742 + 6.85259i 0.881346 + 0.236156i
\(843\) −29.5880 31.1520i −1.01906 1.07293i
\(844\) −83.4479 48.1787i −2.87240 1.65838i
\(845\) 3.22552 6.27120i 0.110961 0.215736i
\(846\) −21.6923 + 33.4672i −0.745798 + 1.15062i
\(847\) 0 0
\(848\) −20.0953 20.0953i −0.690077 0.690077i
\(849\) 11.3212 + 6.93083i 0.388542 + 0.237865i
\(850\) −52.8086 + 37.7556i −1.81132 + 1.29501i
\(851\) −0.759561 0.438533i −0.0260374 0.0150327i
\(852\) −6.56440 27.2902i −0.224893 0.934947i
\(853\) 26.5544 26.5544i 0.909206 0.909206i −0.0870025 0.996208i \(-0.527729\pi\)
0.996208 + 0.0870025i \(0.0277288\pi\)
\(854\) 0 0
\(855\) 0.0331586 11.2724i 0.00113400 0.385509i
\(856\) −12.5617 21.7575i −0.429350 0.743655i
\(857\) 8.44459 + 31.5157i 0.288462 + 1.07655i 0.946272 + 0.323371i \(0.104816\pi\)
−0.657810 + 0.753184i \(0.728517\pi\)
\(858\) 15.7332 14.9433i 0.537121 0.510155i
\(859\) 15.0032 8.66212i 0.511903 0.295548i −0.221712 0.975112i \(-0.571165\pi\)
0.733616 + 0.679565i \(0.237831\pi\)
\(860\) 75.7946 + 16.4130i 2.58457 + 0.559680i
\(861\) 0 0
\(862\) 0.808044 + 0.808044i 0.0275221 + 0.0275221i
\(863\) −3.31336 + 12.3656i −0.112788 + 0.420931i −0.999112 0.0421348i \(-0.986584\pi\)
0.886324 + 0.463066i \(0.153251\pi\)
\(864\) 15.9781 23.3135i 0.543585 0.793143i
\(865\) −17.2729 + 19.0369i −0.587295 + 0.647275i
\(866\) −55.4253 + 31.9998i −1.88343 + 1.08740i
\(867\) −4.43285 + 14.9891i −0.150548 + 0.509056i
\(868\) 0 0
\(869\) 26.7577 0.907693
\(870\) 87.8970 2.00458i 2.97999 0.0679616i
\(871\) 8.32585 14.4208i 0.282111 0.488630i
\(872\) 10.4805 + 39.1137i 0.354914 + 1.32456i
\(873\) 13.8505 12.4929i 0.468768 0.422822i
\(874\) 6.02310i 0.203734i
\(875\) 0 0
\(876\) −30.8863 56.8263i −1.04355 1.91998i
\(877\) 5.65985 21.1228i 0.191119 0.713267i −0.802118 0.597166i \(-0.796293\pi\)
0.993237 0.116102i \(-0.0370399\pi\)
\(878\) 72.5932 19.4513i 2.44990 0.656449i
\(879\) 21.0767 + 0.542711i 0.710900 + 0.0183052i
\(880\) 11.3781 22.1217i 0.383555 0.745723i
\(881\) 3.93409i 0.132543i −0.997802 0.0662714i \(-0.978890\pi\)
0.997802 0.0662714i \(-0.0211103\pi\)
\(882\) 0 0
\(883\) 13.5688 13.5688i 0.456625 0.456625i −0.440921 0.897546i \(-0.645348\pi\)
0.897546 + 0.440921i \(0.145348\pi\)
\(884\) 35.8356 + 62.0691i 1.20528 + 2.08761i
\(885\) 5.08732 20.8792i 0.171008 0.701848i
\(886\) −28.0100 + 48.5148i −0.941015 + 1.62989i
\(887\) −6.72756 1.80264i −0.225889 0.0605269i 0.144099 0.989563i \(-0.453972\pi\)
−0.369988 + 0.929036i \(0.620638\pi\)
\(888\) 1.92872 6.52168i 0.0647235 0.218853i
\(889\) 0 0
\(890\) 11.3250 52.2982i 0.379614 1.75304i
\(891\) −11.4364 8.27859i −0.383134 0.277343i
\(892\) 75.8412 20.3216i 2.53935 0.680417i
\(893\) 8.47850 2.27181i 0.283722 0.0760231i
\(894\) 3.47057 + 2.12469i 0.116073 + 0.0710601i
\(895\) 31.2035 20.0950i 1.04302 0.671703i
\(896\) 0 0
\(897\) −7.34002 2.17073i −0.245076 0.0724786i
\(898\) 40.1234 + 10.7510i 1.33894 + 0.358767i
\(899\) 12.2570 21.2297i 0.408793 0.708050i
\(900\) 67.0902 3.06171i 2.23634 0.102057i
\(901\) −10.2214 17.7040i −0.340524 0.589806i
\(902\) −18.1889 + 18.1889i −0.605624 + 0.605624i
\(903\) 0 0
\(904\) 29.3575i 0.976416i
\(905\) −23.1719 11.9182i −0.770261 0.396176i
\(906\) 1.55805 60.5085i 0.0517628 2.01026i
\(907\) 25.9978 6.96610i 0.863244 0.231305i 0.200080 0.979780i \(-0.435880\pi\)
0.663164 + 0.748474i \(0.269213\pi\)
\(908\) 14.2668 53.2446i 0.473462 1.76698i
\(909\) −1.65020 + 2.54594i −0.0547336 + 0.0844436i
\(910\) 0 0
\(911\) 17.7669i 0.588644i 0.955706 + 0.294322i \(0.0950938\pi\)
−0.955706 + 0.294322i \(0.904906\pi\)
\(912\) −20.0687 + 4.82734i −0.664543 + 0.159849i
\(913\) 1.84492 + 6.88535i 0.0610581 + 0.227872i
\(914\) −37.1263 + 64.3046i −1.22803 + 2.12701i
\(915\) 20.7412 + 19.8162i 0.685682 + 0.655104i
\(916\) −19.9842 −0.660298
\(917\) 0 0
\(918\) 51.2425 43.8814i 1.69125 1.44830i
\(919\) 7.36529 4.25235i 0.242958 0.140272i −0.373577 0.927599i \(-0.621869\pi\)
0.616536 + 0.787327i \(0.288536\pi\)
\(920\) −19.8319 + 0.963512i −0.653840 + 0.0317661i
\(921\) −29.0229 0.747320i −0.956337 0.0246250i
\(922\) −10.0712 + 37.5863i −0.331678 + 1.23784i
\(923\) −8.03083 8.03083i −0.264338 0.264338i
\(924\) 0 0
\(925\) 2.91542 1.09368i 0.0958586 0.0359601i
\(926\) 1.53420 0.885769i 0.0504169 0.0291082i
\(927\) 5.27010 16.2680i 0.173093 0.534310i
\(928\) −12.5569 46.8629i −0.412200 1.53835i
\(929\) 7.07945 + 12.2620i 0.232269 + 0.402302i 0.958476 0.285175i \(-0.0920517\pi\)
−0.726206 + 0.687477i \(0.758718\pi\)
\(930\) 13.0067 23.7636i 0.426507 0.779240i
\(931\) 0 0
\(932\) −25.2594 + 25.2594i −0.827399 + 0.827399i
\(933\) −49.3080 + 11.8606i −1.61427 + 0.388298i
\(934\) 28.0548 + 16.1975i 0.917982 + 0.529997i
\(935\) 12.0243 13.2523i 0.393237 0.433398i
\(936\) 3.05455 59.2739i 0.0998410 1.93743i
\(937\) 28.7165 + 28.7165i 0.938127 + 0.938127i 0.998194 0.0600678i \(-0.0191317\pi\)
−0.0600678 + 0.998194i \(0.519132\pi\)
\(938\) 0 0
\(939\) −2.63804 + 1.43383i −0.0860891 + 0.0467912i
\(940\) 15.9705 + 49.7975i 0.520899 + 1.62422i
\(941\) 15.0690 + 8.70007i 0.491234 + 0.283614i 0.725086 0.688658i \(-0.241800\pi\)
−0.233852 + 0.972272i \(0.575133\pi\)
\(942\) 62.0220 58.9081i 2.02079 1.91933i
\(943\) 8.76467 + 2.34849i 0.285417 + 0.0764773i
\(944\) −39.3508 −1.28076
\(945\) 0 0
\(946\) −30.9259 −1.00549
\(947\) 11.1426 + 2.98564i 0.362085 + 0.0970204i 0.435275 0.900298i \(-0.356651\pi\)
−0.0731898 + 0.997318i \(0.523318\pi\)
\(948\) 95.9116 91.0963i 3.11506 2.95867i
\(949\) −22.6641 13.0851i −0.735708 0.424761i
\(950\) −16.5151 13.5835i −0.535819 0.440708i
\(951\) 9.25764 5.03172i 0.300199 0.163165i
\(952\) 0 0
\(953\) 38.6159 + 38.6159i 1.25089 + 1.25089i 0.955321 + 0.295569i \(0.0955091\pi\)
0.295569 + 0.955321i \(0.404491\pi\)
\(954\) −1.57462 + 30.5558i −0.0509804 + 0.989280i
\(955\) −28.7093 + 1.39481i −0.929012 + 0.0451350i
\(956\) 45.9848 + 26.5494i 1.48726 + 0.858668i
\(957\) −23.5630 + 5.66784i −0.761682 + 0.183215i
\(958\) 40.9545 40.9545i 1.32318 1.32318i
\(959\) 0 0
\(960\) 0.370164 + 1.26533i 0.0119470 + 0.0408384i
\(961\) 11.7233 + 20.3054i 0.378172 + 0.655012i
\(962\) −1.28722 4.80396i −0.0415015 0.154886i
\(963\) −3.68409 + 11.3722i −0.118718 + 0.366465i
\(964\) 70.0753 40.4580i 2.25697 1.30306i
\(965\) −5.39535 + 24.9155i −0.173683 + 0.802058i
\(966\) 0 0
\(967\) −18.6836 18.6836i −0.600824 0.600824i 0.339707 0.940531i \(-0.389672\pi\)
−0.940531 + 0.339707i \(0.889672\pi\)
\(968\) 13.9346 52.0047i 0.447876 1.67150i
\(969\) −14.8430 0.382196i −0.476825 0.0122779i
\(970\) −1.71702 35.3414i −0.0551302 1.13474i
\(971\) −49.7947 + 28.7490i −1.59799 + 0.922599i −0.606114 + 0.795378i \(0.707272\pi\)
−0.991874 + 0.127221i \(0.959394\pi\)
\(972\) −69.1776 + 9.26098i −2.21887 + 0.297046i
\(973\) 0 0
\(974\) 41.3622 1.32533
\(975\) 22.5055 15.2305i 0.720754 0.487765i
\(976\) 26.2635 45.4897i 0.840674 1.45609i
\(977\) −0.763219 2.84837i −0.0244175 0.0911275i 0.952642 0.304095i \(-0.0983539\pi\)
−0.977059 + 0.212967i \(0.931687\pi\)
\(978\) −40.0383 + 9.63083i −1.28028 + 0.307960i
\(979\) 14.7501i 0.471415i
\(980\) 0 0
\(981\) 10.4797 16.1681i 0.334590 0.516209i
\(982\) −0.198752 + 0.741751i −0.00634242 + 0.0236702i
\(983\) −15.8515 + 4.24741i −0.505585 + 0.135471i −0.502591 0.864524i \(-0.667620\pi\)
−0.00299438 + 0.999996i \(0.500953\pi\)
\(984\) −1.81113 + 70.3368i −0.0577366 + 2.24226i
\(985\) 56.4637 18.1084i 1.79908 0.576980i
\(986\) 115.806i 3.68802i
\(987\) 0 0
\(988\) −16.6937 + 16.6937i −0.531097 + 0.531097i
\(989\) 5.45461 + 9.44766i 0.173446 + 0.300418i
\(990\) −25.8898 + 6.85559i −0.822832 + 0.217885i
\(991\) 3.17062 5.49168i 0.100718 0.174449i −0.811263 0.584682i \(-0.801219\pi\)
0.911981 + 0.410233i \(0.134553\pi\)
\(992\) −14.4396 3.86909i −0.458459 0.122844i
\(993\) −55.2432 16.3376i −1.75309 0.518457i
\(994\) 0 0
\(995\) −5.09371 7.90951i −0.161481 0.250748i
\(996\) 30.0541 + 18.3992i 0.952302 + 0.583000i
\(997\) −2.59062 + 0.694156i −0.0820459 + 0.0219841i −0.299608 0.954062i \(-0.596856\pi\)
0.217563 + 0.976046i \(0.430189\pi\)
\(998\) 49.7093 13.3196i 1.57352 0.421624i
\(999\) −2.91891 + 1.39694i −0.0923504 + 0.0441973i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.j.557.12 48
3.2 odd 2 inner 735.2.y.j.557.1 48
5.3 odd 4 inner 735.2.y.j.263.12 48
7.2 even 3 inner 735.2.y.j.422.1 48
7.3 odd 6 735.2.j.h.197.1 24
7.4 even 3 105.2.j.a.92.1 yes 24
7.5 odd 6 735.2.y.g.422.1 48
7.6 odd 2 735.2.y.g.557.12 48
15.8 even 4 inner 735.2.y.j.263.1 48
21.2 odd 6 inner 735.2.y.j.422.12 48
21.5 even 6 735.2.y.g.422.12 48
21.11 odd 6 105.2.j.a.92.12 yes 24
21.17 even 6 735.2.j.h.197.12 24
21.20 even 2 735.2.y.g.557.1 48
35.3 even 12 735.2.j.h.638.12 24
35.4 even 6 525.2.j.b.407.12 24
35.13 even 4 735.2.y.g.263.12 48
35.18 odd 12 105.2.j.a.8.12 yes 24
35.23 odd 12 inner 735.2.y.j.128.1 48
35.32 odd 12 525.2.j.b.218.1 24
35.33 even 12 735.2.y.g.128.1 48
105.23 even 12 inner 735.2.y.j.128.12 48
105.32 even 12 525.2.j.b.218.12 24
105.38 odd 12 735.2.j.h.638.1 24
105.53 even 12 105.2.j.a.8.1 24
105.68 odd 12 735.2.y.g.128.12 48
105.74 odd 6 525.2.j.b.407.1 24
105.83 odd 4 735.2.y.g.263.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.j.a.8.1 24 105.53 even 12
105.2.j.a.8.12 yes 24 35.18 odd 12
105.2.j.a.92.1 yes 24 7.4 even 3
105.2.j.a.92.12 yes 24 21.11 odd 6
525.2.j.b.218.1 24 35.32 odd 12
525.2.j.b.218.12 24 105.32 even 12
525.2.j.b.407.1 24 105.74 odd 6
525.2.j.b.407.12 24 35.4 even 6
735.2.j.h.197.1 24 7.3 odd 6
735.2.j.h.197.12 24 21.17 even 6
735.2.j.h.638.1 24 105.38 odd 12
735.2.j.h.638.12 24 35.3 even 12
735.2.y.g.128.1 48 35.33 even 12
735.2.y.g.128.12 48 105.68 odd 12
735.2.y.g.263.1 48 105.83 odd 4
735.2.y.g.263.12 48 35.13 even 4
735.2.y.g.422.1 48 7.5 odd 6
735.2.y.g.422.12 48 21.5 even 6
735.2.y.g.557.1 48 21.20 even 2
735.2.y.g.557.12 48 7.6 odd 2
735.2.y.j.128.1 48 35.23 odd 12 inner
735.2.y.j.128.12 48 105.23 even 12 inner
735.2.y.j.263.1 48 15.8 even 4 inner
735.2.y.j.263.12 48 5.3 odd 4 inner
735.2.y.j.422.1 48 7.2 even 3 inner
735.2.y.j.422.12 48 21.2 odd 6 inner
735.2.y.j.557.1 48 3.2 odd 2 inner
735.2.y.j.557.12 48 1.1 even 1 trivial