Properties

Label 735.2.j.h.638.1
Level $735$
Weight $2$
Character 735.638
Analytic conductor $5.869$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(197,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.197");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 638.1
Character \(\chi\) \(=\) 735.638
Dual form 735.2.j.h.197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.79963 - 1.79963i) q^{2} +(1.66094 - 0.491204i) q^{3} +4.47734i q^{4} +(-1.87996 - 1.21069i) q^{5} +(-3.87306 - 2.10509i) q^{6} +(4.45829 - 4.45829i) q^{8} +(2.51744 - 1.63172i) q^{9} +(1.20443 + 5.56202i) q^{10} +1.56870i q^{11} +(2.19929 + 7.43658i) q^{12} +(-2.21881 - 2.21881i) q^{13} +(-3.71719 - 1.08744i) q^{15} -7.09187 q^{16} +(-3.60725 - 3.60725i) q^{17} +(-7.46695 - 1.59396i) q^{18} -1.68040i q^{19} +(5.42066 - 8.41719i) q^{20} +(2.82308 - 2.82308i) q^{22} +(0.995850 - 0.995850i) q^{23} +(5.21502 - 9.59488i) q^{24} +(2.06847 + 4.55208i) q^{25} +7.98606i q^{26} +(3.37980 - 3.94676i) q^{27} -8.91955 q^{29} +(4.73258 + 8.64655i) q^{30} -2.74834 q^{31} +(3.84616 + 3.84616i) q^{32} +(0.770553 + 2.60552i) q^{33} +12.9834i q^{34} +(7.30576 + 11.2714i) q^{36} +(0.440360 - 0.440360i) q^{37} +(-3.02410 + 3.02410i) q^{38} +(-4.77519 - 2.59542i) q^{39} +(-13.7790 + 2.98379i) q^{40} +6.44292i q^{41} +(-5.47734 - 5.47734i) q^{43} -7.02360 q^{44} +(-6.70817 + 0.0197326i) q^{45} -3.58432 q^{46} +(-3.69358 - 3.69358i) q^{47} +(-11.7792 + 3.48356i) q^{48} +(4.46958 - 11.9145i) q^{50} +(-7.76331 - 4.21952i) q^{51} +(9.93435 - 9.93435i) q^{52} +(2.83358 - 2.83358i) q^{53} +(-13.1851 + 1.02033i) q^{54} +(1.89921 - 2.94909i) q^{55} +(-0.825420 - 2.79104i) q^{57} +(16.0519 + 16.0519i) q^{58} -5.54871 q^{59} +(4.86882 - 16.6431i) q^{60} -7.40665 q^{61} +(4.94599 + 4.94599i) q^{62} +0.340400i q^{64} +(1.48498 + 6.85754i) q^{65} +(3.30226 - 6.07568i) q^{66} +(-3.75240 + 3.75240i) q^{67} +(16.1509 - 16.1509i) q^{68} +(1.16488 - 2.14321i) q^{69} +3.61943i q^{71} +(3.94878 - 18.4981i) q^{72} +(5.89737 + 5.89737i) q^{73} -1.58497 q^{74} +(5.67160 + 6.54469i) q^{75} +7.52372 q^{76} +(3.92279 + 13.2644i) q^{78} -17.0572i q^{79} +(13.3324 + 8.58604i) q^{80} +(3.67497 - 8.21551i) q^{81} +(11.5949 - 11.5949i) q^{82} +(-3.21312 + 3.21312i) q^{83} +(2.41421 + 11.1487i) q^{85} +19.7144i q^{86} +(-14.8148 + 4.38132i) q^{87} +(6.99372 + 6.99372i) q^{88} +9.40273 q^{89} +(12.1077 + 12.0367i) q^{90} +(4.45876 + 4.45876i) q^{92} +(-4.56482 + 1.35000i) q^{93} +13.2941i q^{94} +(-2.03444 + 3.15908i) q^{95} +(8.27749 + 4.49899i) q^{96} +(-4.39640 + 4.39640i) q^{97} +(2.55968 + 3.94911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} + 16 q^{10} - 16 q^{12} + 8 q^{13} - 16 q^{15} - 16 q^{16} - 20 q^{18} + 8 q^{22} - 16 q^{25} + 16 q^{27} + 20 q^{30} - 28 q^{33} + 16 q^{36} - 16 q^{37} - 64 q^{40} - 40 q^{43} - 20 q^{45}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.79963 1.79963i −1.27253 1.27253i −0.944756 0.327775i \(-0.893701\pi\)
−0.327775 0.944756i \(-0.606299\pi\)
\(3\) 1.66094 0.491204i 0.958944 0.283597i
\(4\) 4.47734i 2.23867i
\(5\) −1.87996 1.21069i −0.840742 0.541436i
\(6\) −3.87306 2.10509i −1.58117 0.859399i
\(7\) 0 0
\(8\) 4.45829 4.45829i 1.57624 1.57624i
\(9\) 2.51744 1.63172i 0.839146 0.543907i
\(10\) 1.20443 + 5.56202i 0.380876 + 1.75886i
\(11\) 1.56870i 0.472981i 0.971634 + 0.236491i \(0.0759973\pi\)
−0.971634 + 0.236491i \(0.924003\pi\)
\(12\) 2.19929 + 7.43658i 0.634880 + 2.14676i
\(13\) −2.21881 2.21881i −0.615386 0.615386i 0.328958 0.944345i \(-0.393303\pi\)
−0.944345 + 0.328958i \(0.893303\pi\)
\(14\) 0 0
\(15\) −3.71719 1.08744i −0.959774 0.280775i
\(16\) −7.09187 −1.77297
\(17\) −3.60725 3.60725i −0.874886 0.874886i 0.118114 0.993000i \(-0.462315\pi\)
−0.993000 + 0.118114i \(0.962315\pi\)
\(18\) −7.46695 1.59396i −1.75998 0.375700i
\(19\) 1.68040i 0.385510i −0.981247 0.192755i \(-0.938258\pi\)
0.981247 0.192755i \(-0.0617423\pi\)
\(20\) 5.42066 8.41719i 1.21210 1.88214i
\(21\) 0 0
\(22\) 2.82308 2.82308i 0.601883 0.601883i
\(23\) 0.995850 0.995850i 0.207649 0.207649i −0.595618 0.803268i \(-0.703093\pi\)
0.803268 + 0.595618i \(0.203093\pi\)
\(24\) 5.21502 9.59488i 1.06451 1.95855i
\(25\) 2.06847 + 4.55208i 0.413694 + 0.910416i
\(26\) 7.98606i 1.56620i
\(27\) 3.37980 3.94676i 0.650443 0.759555i
\(28\) 0 0
\(29\) −8.91955 −1.65632 −0.828159 0.560493i \(-0.810612\pi\)
−0.828159 + 0.560493i \(0.810612\pi\)
\(30\) 4.73258 + 8.64655i 0.864047 + 1.57864i
\(31\) −2.74834 −0.493616 −0.246808 0.969064i \(-0.579382\pi\)
−0.246808 + 0.969064i \(0.579382\pi\)
\(32\) 3.84616 + 3.84616i 0.679912 + 0.679912i
\(33\) 0.770553 + 2.60552i 0.134136 + 0.453562i
\(34\) 12.9834i 2.22664i
\(35\) 0 0
\(36\) 7.30576 + 11.2714i 1.21763 + 1.87857i
\(37\) 0.440360 0.440360i 0.0723947 0.0723947i −0.669982 0.742377i \(-0.733698\pi\)
0.742377 + 0.669982i \(0.233698\pi\)
\(38\) −3.02410 + 3.02410i −0.490574 + 0.490574i
\(39\) −4.77519 2.59542i −0.764643 0.415599i
\(40\) −13.7790 + 2.98379i −2.17865 + 0.471778i
\(41\) 6.44292i 1.00622i 0.864224 + 0.503108i \(0.167810\pi\)
−0.864224 + 0.503108i \(0.832190\pi\)
\(42\) 0 0
\(43\) −5.47734 5.47734i −0.835286 0.835286i 0.152948 0.988234i \(-0.451123\pi\)
−0.988234 + 0.152948i \(0.951123\pi\)
\(44\) −7.02360 −1.05885
\(45\) −6.70817 + 0.0197326i −0.999996 + 0.00294156i
\(46\) −3.58432 −0.528480
\(47\) −3.69358 3.69358i −0.538763 0.538763i 0.384402 0.923166i \(-0.374408\pi\)
−0.923166 + 0.384402i \(0.874408\pi\)
\(48\) −11.7792 + 3.48356i −1.70018 + 0.502808i
\(49\) 0 0
\(50\) 4.46958 11.9145i 0.632095 1.68497i
\(51\) −7.76331 4.21952i −1.08708 0.590851i
\(52\) 9.93435 9.93435i 1.37765 1.37765i
\(53\) 2.83358 2.83358i 0.389222 0.389222i −0.485188 0.874410i \(-0.661249\pi\)
0.874410 + 0.485188i \(0.161249\pi\)
\(54\) −13.1851 + 1.02033i −1.79427 + 0.138849i
\(55\) 1.89921 2.94909i 0.256089 0.397655i
\(56\) 0 0
\(57\) −0.825420 2.79104i −0.109330 0.369683i
\(58\) 16.0519 + 16.0519i 2.10772 + 2.10772i
\(59\) −5.54871 −0.722381 −0.361191 0.932492i \(-0.617630\pi\)
−0.361191 + 0.932492i \(0.617630\pi\)
\(60\) 4.86882 16.6431i 0.628562 2.14861i
\(61\) −7.40665 −0.948325 −0.474162 0.880437i \(-0.657249\pi\)
−0.474162 + 0.880437i \(0.657249\pi\)
\(62\) 4.94599 + 4.94599i 0.628141 + 0.628141i
\(63\) 0 0
\(64\) 0.340400i 0.0425500i
\(65\) 1.48498 + 6.85754i 0.184189 + 0.850574i
\(66\) 3.30226 6.07568i 0.406480 0.747864i
\(67\) −3.75240 + 3.75240i −0.458429 + 0.458429i −0.898139 0.439711i \(-0.855081\pi\)
0.439711 + 0.898139i \(0.355081\pi\)
\(68\) 16.1509 16.1509i 1.95858 1.95858i
\(69\) 1.16488 2.14321i 0.140235 0.258012i
\(70\) 0 0
\(71\) 3.61943i 0.429548i 0.976664 + 0.214774i \(0.0689015\pi\)
−0.976664 + 0.214774i \(0.931099\pi\)
\(72\) 3.94878 18.4981i 0.465368 2.18003i
\(73\) 5.89737 + 5.89737i 0.690235 + 0.690235i 0.962284 0.272049i \(-0.0877011\pi\)
−0.272049 + 0.962284i \(0.587701\pi\)
\(74\) −1.58497 −0.184249
\(75\) 5.67160 + 6.54469i 0.654900 + 0.755715i
\(76\) 7.52372 0.863030
\(77\) 0 0
\(78\) 3.92279 + 13.2644i 0.444168 + 1.50189i
\(79\) 17.0572i 1.91909i −0.281558 0.959544i \(-0.590851\pi\)
0.281558 0.959544i \(-0.409149\pi\)
\(80\) 13.3324 + 8.58604i 1.49061 + 0.959949i
\(81\) 3.67497 8.21551i 0.408330 0.912834i
\(82\) 11.5949 11.5949i 1.28044 1.28044i
\(83\) −3.21312 + 3.21312i −0.352686 + 0.352686i −0.861108 0.508422i \(-0.830229\pi\)
0.508422 + 0.861108i \(0.330229\pi\)
\(84\) 0 0
\(85\) 2.41421 + 11.1487i 0.261858 + 1.20925i
\(86\) 19.7144i 2.12585i
\(87\) −14.8148 + 4.38132i −1.58832 + 0.469727i
\(88\) 6.99372 + 6.99372i 0.745533 + 0.745533i
\(89\) 9.40273 0.996688 0.498344 0.866979i \(-0.333942\pi\)
0.498344 + 0.866979i \(0.333942\pi\)
\(90\) 12.1077 + 12.0367i 1.27627 + 1.26878i
\(91\) 0 0
\(92\) 4.45876 + 4.45876i 0.464858 + 0.464858i
\(93\) −4.56482 + 1.35000i −0.473350 + 0.139988i
\(94\) 13.2941i 1.37119i
\(95\) −2.03444 + 3.15908i −0.208729 + 0.324115i
\(96\) 8.27749 + 4.49899i 0.844818 + 0.459176i
\(97\) −4.39640 + 4.39640i −0.446386 + 0.446386i −0.894151 0.447765i \(-0.852220\pi\)
0.447765 + 0.894151i \(0.352220\pi\)
\(98\) 0 0
\(99\) 2.55968 + 3.94911i 0.257258 + 0.396900i
\(100\) −20.3812 + 9.26123i −2.03812 + 0.926123i
\(101\) 1.01132i 0.100630i 0.998733 + 0.0503152i \(0.0160226\pi\)
−0.998733 + 0.0503152i \(0.983977\pi\)
\(102\) 6.37751 + 21.5647i 0.631468 + 2.13522i
\(103\) 4.03058 + 4.03058i 0.397145 + 0.397145i 0.877225 0.480080i \(-0.159392\pi\)
−0.480080 + 0.877225i \(0.659392\pi\)
\(104\) −19.7842 −1.94000
\(105\) 0 0
\(106\) −10.1988 −0.990593
\(107\) 2.81760 + 2.81760i 0.272388 + 0.272388i 0.830061 0.557673i \(-0.188306\pi\)
−0.557673 + 0.830061i \(0.688306\pi\)
\(108\) 17.6710 + 15.1325i 1.70039 + 1.45613i
\(109\) 6.42246i 0.615160i 0.951522 + 0.307580i \(0.0995192\pi\)
−0.951522 + 0.307580i \(0.900481\pi\)
\(110\) −8.72514 + 1.88940i −0.831910 + 0.180147i
\(111\) 0.515104 0.947718i 0.0488915 0.0899534i
\(112\) 0 0
\(113\) 3.29246 3.29246i 0.309729 0.309729i −0.535075 0.844804i \(-0.679717\pi\)
0.844804 + 0.535075i \(0.179717\pi\)
\(114\) −3.53739 + 6.50830i −0.331307 + 0.609558i
\(115\) −3.07782 + 0.666490i −0.287008 + 0.0621505i
\(116\) 39.9358i 3.70795i
\(117\) −9.20618 1.96523i −0.851112 0.181686i
\(118\) 9.98563 + 9.98563i 0.919252 + 0.919252i
\(119\) 0 0
\(120\) −21.4204 + 11.7242i −1.95541 + 1.07027i
\(121\) 8.53918 0.776289
\(122\) 13.3292 + 13.3292i 1.20677 + 1.20677i
\(123\) 3.16479 + 10.7013i 0.285360 + 0.964904i
\(124\) 12.3052i 1.10504i
\(125\) 1.62252 11.0620i 0.145123 0.989414i
\(126\) 0 0
\(127\) 14.2818 14.2818i 1.26730 1.26730i 0.319826 0.947476i \(-0.396376\pi\)
0.947476 0.319826i \(-0.103624\pi\)
\(128\) 8.30492 8.30492i 0.734058 0.734058i
\(129\) −11.7880 6.40703i −1.03788 0.564108i
\(130\) 9.66863 15.0134i 0.847995 1.31677i
\(131\) 4.89729i 0.427878i −0.976847 0.213939i \(-0.931371\pi\)
0.976847 0.213939i \(-0.0686294\pi\)
\(132\) −11.6658 + 3.45002i −1.01538 + 0.300286i
\(133\) 0 0
\(134\) 13.5059 1.16673
\(135\) −11.1322 + 3.32786i −0.958105 + 0.286417i
\(136\) −32.1643 −2.75807
\(137\) −4.55880 4.55880i −0.389485 0.389485i 0.485019 0.874504i \(-0.338813\pi\)
−0.874504 + 0.485019i \(0.838813\pi\)
\(138\) −5.95334 + 1.76064i −0.506782 + 0.149875i
\(139\) 10.2045i 0.865536i −0.901505 0.432768i \(-0.857537\pi\)
0.901505 0.432768i \(-0.142463\pi\)
\(140\) 0 0
\(141\) −7.94911 4.32050i −0.669435 0.363852i
\(142\) 6.51364 6.51364i 0.546613 0.546613i
\(143\) 3.48065 3.48065i 0.291066 0.291066i
\(144\) −17.8533 + 11.5720i −1.48778 + 0.964329i
\(145\) 16.7684 + 10.7988i 1.39254 + 0.896791i
\(146\) 21.2262i 1.75669i
\(147\) 0 0
\(148\) 1.97164 + 1.97164i 0.162068 + 0.162068i
\(149\) −0.923124 −0.0756253 −0.0378126 0.999285i \(-0.512039\pi\)
−0.0378126 + 0.999285i \(0.512039\pi\)
\(150\) 1.57123 21.9848i 0.128291 1.79505i
\(151\) −13.7310 −1.11741 −0.558705 0.829366i \(-0.688702\pi\)
−0.558705 + 0.829366i \(0.688702\pi\)
\(152\) −7.49171 7.49171i −0.607658 0.607658i
\(153\) −14.9670 3.19499i −1.21001 0.258300i
\(154\) 0 0
\(155\) 5.16675 + 3.32738i 0.415004 + 0.267262i
\(156\) 11.6205 21.3801i 0.930389 1.71178i
\(157\) 13.7211 13.7211i 1.09506 1.09506i 0.100086 0.994979i \(-0.468088\pi\)
0.994979 0.100086i \(-0.0319118\pi\)
\(158\) −30.6967 + 30.6967i −2.44210 + 2.44210i
\(159\) 3.31453 6.09826i 0.262859 0.483624i
\(160\) −2.57411 11.8871i −0.203501 0.939759i
\(161\) 0 0
\(162\) −21.3985 + 8.17128i −1.68122 + 0.641997i
\(163\) 6.60566 + 6.60566i 0.517395 + 0.517395i 0.916782 0.399387i \(-0.130777\pi\)
−0.399387 + 0.916782i \(0.630777\pi\)
\(164\) −28.8471 −2.25258
\(165\) 1.70586 5.83116i 0.132801 0.453955i
\(166\) 11.5649 0.897607
\(167\) 3.11442 + 3.11442i 0.241001 + 0.241001i 0.817264 0.576263i \(-0.195490\pi\)
−0.576263 + 0.817264i \(0.695490\pi\)
\(168\) 0 0
\(169\) 3.15379i 0.242599i
\(170\) 15.7189 24.4083i 1.20558 1.87203i
\(171\) −2.74195 4.23030i −0.209682 0.323499i
\(172\) 24.5239 24.5239i 1.86993 1.86993i
\(173\) −8.12870 + 8.12870i −0.618013 + 0.618013i −0.945022 0.327008i \(-0.893960\pi\)
0.327008 + 0.945022i \(0.393960\pi\)
\(174\) 34.5460 + 18.7764i 2.61892 + 1.42344i
\(175\) 0 0
\(176\) 11.1250i 0.838580i
\(177\) −9.21608 + 2.72555i −0.692723 + 0.204865i
\(178\) −16.9214 16.9214i −1.26832 1.26832i
\(179\) 16.5980 1.24059 0.620297 0.784367i \(-0.287012\pi\)
0.620297 + 0.784367i \(0.287012\pi\)
\(180\) −0.0883493 30.0348i −0.00658517 2.23866i
\(181\) −11.6532 −0.866174 −0.433087 0.901352i \(-0.642576\pi\)
−0.433087 + 0.901352i \(0.642576\pi\)
\(182\) 0 0
\(183\) −12.3020 + 3.63818i −0.909390 + 0.268942i
\(184\) 8.87958i 0.654611i
\(185\) −1.36100 + 0.294719i −0.100062 + 0.0216681i
\(186\) 10.6445 + 5.78550i 0.780491 + 0.424213i
\(187\) 5.65869 5.65869i 0.413805 0.413805i
\(188\) 16.5374 16.5374i 1.20611 1.20611i
\(189\) 0 0
\(190\) 9.34642 2.02393i 0.678060 0.146831i
\(191\) 12.8543i 0.930108i −0.885282 0.465054i \(-0.846035\pi\)
0.885282 0.465054i \(-0.153965\pi\)
\(192\) 0.167206 + 0.565384i 0.0120671 + 0.0408031i
\(193\) −8.06158 8.06158i −0.580285 0.580285i 0.354696 0.934982i \(-0.384584\pi\)
−0.934982 + 0.354696i \(0.884584\pi\)
\(194\) 15.8238 1.13608
\(195\) 5.83491 + 10.6605i 0.417847 + 0.763417i
\(196\) 0 0
\(197\) −18.7512 18.7512i −1.33597 1.33597i −0.899929 0.436036i \(-0.856382\pi\)
−0.436036 0.899929i \(-0.643618\pi\)
\(198\) 2.50045 11.7134i 0.177699 0.832436i
\(199\) 4.20728i 0.298246i −0.988819 0.149123i \(-0.952355\pi\)
0.988819 0.149123i \(-0.0476451\pi\)
\(200\) 29.5163 + 11.0727i 2.08712 + 0.782956i
\(201\) −4.38931 + 8.07570i −0.309598 + 0.569616i
\(202\) 1.82001 1.82001i 0.128055 0.128055i
\(203\) 0 0
\(204\) 18.8922 34.7590i 1.32272 2.43361i
\(205\) 7.80037 12.1124i 0.544802 0.845967i
\(206\) 14.5071i 1.01076i
\(207\) 0.882040 4.13194i 0.0613060 0.287190i
\(208\) 15.7355 + 15.7355i 1.09106 + 1.09106i
\(209\) 2.63605 0.182339
\(210\) 0 0
\(211\) −21.5211 −1.48158 −0.740788 0.671739i \(-0.765548\pi\)
−0.740788 + 0.671739i \(0.765548\pi\)
\(212\) 12.6869 + 12.6869i 0.871338 + 0.871338i
\(213\) 1.77788 + 6.01166i 0.121818 + 0.411912i
\(214\) 10.1413i 0.693244i
\(215\) 3.66580 + 16.9285i 0.250006 + 1.15451i
\(216\) −2.52769 32.6639i −0.171988 2.22250i
\(217\) 0 0
\(218\) 11.5581 11.5581i 0.782810 0.782810i
\(219\) 12.6920 + 6.89836i 0.857645 + 0.466148i
\(220\) 13.2041 + 8.50339i 0.890218 + 0.573299i
\(221\) 16.0076i 1.07679i
\(222\) −2.63254 + 0.778544i −0.176684 + 0.0522525i
\(223\) −12.4001 12.4001i −0.830375 0.830375i 0.157193 0.987568i \(-0.449756\pi\)
−0.987568 + 0.157193i \(0.949756\pi\)
\(224\) 0 0
\(225\) 12.6350 + 8.08441i 0.842331 + 0.538961i
\(226\) −11.8504 −0.788279
\(227\) 8.70556 + 8.70556i 0.577809 + 0.577809i 0.934299 0.356490i \(-0.116027\pi\)
−0.356490 + 0.934299i \(0.616027\pi\)
\(228\) 12.4964 3.69568i 0.827597 0.244753i
\(229\) 4.46342i 0.294951i −0.989066 0.147476i \(-0.952885\pi\)
0.989066 0.147476i \(-0.0471148\pi\)
\(230\) 6.73837 + 4.33950i 0.444315 + 0.286138i
\(231\) 0 0
\(232\) −39.7659 + 39.7659i −2.61076 + 2.61076i
\(233\) −5.64161 + 5.64161i −0.369594 + 0.369594i −0.867329 0.497735i \(-0.834165\pi\)
0.497735 + 0.867329i \(0.334165\pi\)
\(234\) 13.0310 + 20.1044i 0.851865 + 1.31427i
\(235\) 2.47199 + 11.4155i 0.161255 + 0.744667i
\(236\) 24.8435i 1.61717i
\(237\) −8.37859 28.3310i −0.544248 1.84030i
\(238\) 0 0
\(239\) 11.8594 0.767124 0.383562 0.923515i \(-0.374697\pi\)
0.383562 + 0.923515i \(0.374697\pi\)
\(240\) 26.3618 + 7.71196i 1.70165 + 0.497805i
\(241\) 18.0723 1.16414 0.582071 0.813138i \(-0.302243\pi\)
0.582071 + 0.813138i \(0.302243\pi\)
\(242\) −15.3674 15.3674i −0.987851 0.987851i
\(243\) 2.06841 15.4506i 0.132689 0.991158i
\(244\) 33.1621i 2.12298i
\(245\) 0 0
\(246\) 13.5629 24.9538i 0.864741 1.59100i
\(247\) −3.72849 + 3.72849i −0.237238 + 0.237238i
\(248\) −12.2529 + 12.2529i −0.778059 + 0.778059i
\(249\) −3.75850 + 6.91510i −0.238185 + 0.438226i
\(250\) −22.8274 + 16.9875i −1.44373 + 1.07439i
\(251\) 3.19253i 0.201511i −0.994911 0.100755i \(-0.967874\pi\)
0.994911 0.100755i \(-0.0321259\pi\)
\(252\) 0 0
\(253\) 1.56219 + 1.56219i 0.0982141 + 0.0982141i
\(254\) −51.4038 −3.22536
\(255\) 9.48616 + 17.3315i 0.594046 + 1.08534i
\(256\) −29.2108 −1.82567
\(257\) −11.8118 11.8118i −0.736799 0.736799i 0.235158 0.971957i \(-0.424439\pi\)
−0.971957 + 0.235158i \(0.924439\pi\)
\(258\) 9.68378 + 32.7443i 0.602886 + 2.03857i
\(259\) 0 0
\(260\) −30.7035 + 6.64874i −1.90415 + 0.412337i
\(261\) −22.4544 + 14.5542i −1.38989 + 0.900883i
\(262\) −8.81331 + 8.81331i −0.544488 + 0.544488i
\(263\) 13.1502 13.1502i 0.810874 0.810874i −0.173891 0.984765i \(-0.555634\pi\)
0.984765 + 0.173891i \(0.0556339\pi\)
\(264\) 15.0515 + 8.18080i 0.926356 + 0.503493i
\(265\) −8.75757 + 1.89642i −0.537974 + 0.116496i
\(266\) 0 0
\(267\) 15.6174 4.61866i 0.955767 0.282658i
\(268\) −16.8008 16.8008i −1.02627 1.02627i
\(269\) 29.3405 1.78892 0.894461 0.447146i \(-0.147559\pi\)
0.894461 + 0.447146i \(0.147559\pi\)
\(270\) 26.0227 + 14.0449i 1.58369 + 0.854744i
\(271\) −3.18366 −0.193394 −0.0966968 0.995314i \(-0.530828\pi\)
−0.0966968 + 0.995314i \(0.530828\pi\)
\(272\) 25.5821 + 25.5821i 1.55114 + 1.55114i
\(273\) 0 0
\(274\) 16.4083i 0.991263i
\(275\) −7.14085 + 3.24481i −0.430610 + 0.195669i
\(276\) 9.59588 + 5.21556i 0.577604 + 0.313940i
\(277\) 16.8636 16.8636i 1.01324 1.01324i 0.0133247 0.999911i \(-0.495758\pi\)
0.999911 0.0133247i \(-0.00424152\pi\)
\(278\) −18.3644 + 18.3644i −1.10142 + 1.10142i
\(279\) −6.91877 + 4.48452i −0.414216 + 0.268481i
\(280\) 0 0
\(281\) 24.8052i 1.47975i 0.672742 + 0.739877i \(0.265116\pi\)
−0.672742 + 0.739877i \(0.734884\pi\)
\(282\) 6.53014 + 22.0808i 0.388864 + 1.31489i
\(283\) −5.41918 5.41918i −0.322137 0.322137i 0.527449 0.849586i \(-0.323148\pi\)
−0.849586 + 0.527449i \(0.823148\pi\)
\(284\) −16.2054 −0.961615
\(285\) −1.82733 + 6.24636i −0.108242 + 0.370003i
\(286\) −12.5277 −0.740781
\(287\) 0 0
\(288\) 15.9583 + 3.40661i 0.940354 + 0.200736i
\(289\) 9.02446i 0.530850i
\(290\) −10.7430 49.6107i −0.630851 2.91324i
\(291\) −5.14262 + 9.46168i −0.301466 + 0.554653i
\(292\) −26.4045 + 26.4045i −1.54521 + 1.54521i
\(293\) −8.60739 + 8.60739i −0.502849 + 0.502849i −0.912322 0.409473i \(-0.865712\pi\)
0.409473 + 0.912322i \(0.365712\pi\)
\(294\) 0 0
\(295\) 10.4313 + 6.71776i 0.607336 + 0.391123i
\(296\) 3.92650i 0.228223i
\(297\) 6.19129 + 5.30190i 0.359255 + 0.307647i
\(298\) 1.66128 + 1.66128i 0.0962355 + 0.0962355i
\(299\) −4.41920 −0.255569
\(300\) −29.3028 + 25.3937i −1.69180 + 1.46610i
\(301\) 0 0
\(302\) 24.7107 + 24.7107i 1.42194 + 1.42194i
\(303\) 0.496766 + 1.67975i 0.0285385 + 0.0964989i
\(304\) 11.9172i 0.683497i
\(305\) 13.9242 + 8.96715i 0.797296 + 0.513457i
\(306\) 21.1853 + 32.6849i 1.21108 + 1.86847i
\(307\) 11.8525 11.8525i 0.676457 0.676457i −0.282740 0.959197i \(-0.591243\pi\)
0.959197 + 0.282740i \(0.0912434\pi\)
\(308\) 0 0
\(309\) 8.67440 + 4.71471i 0.493469 + 0.268211i
\(310\) −3.31019 15.2863i −0.188006 0.868203i
\(311\) 29.2800i 1.66032i 0.557528 + 0.830158i \(0.311750\pi\)
−0.557528 + 0.830158i \(0.688250\pi\)
\(312\) −32.8603 + 9.71807i −1.86035 + 0.550177i
\(313\) −1.22577 1.22577i −0.0692848 0.0692848i 0.671615 0.740900i \(-0.265601\pi\)
−0.740900 + 0.671615i \(0.765601\pi\)
\(314\) −49.3859 −2.78701
\(315\) 0 0
\(316\) 76.3710 4.29620
\(317\) −4.30159 4.30159i −0.241601 0.241601i 0.575911 0.817512i \(-0.304647\pi\)
−0.817512 + 0.575911i \(0.804647\pi\)
\(318\) −16.9395 + 5.00968i −0.949922 + 0.280929i
\(319\) 13.9921i 0.783408i
\(320\) 0.412119 0.639937i 0.0230381 0.0357736i
\(321\) 6.06388 + 3.29585i 0.338453 + 0.183956i
\(322\) 0 0
\(323\) −6.06162 + 6.06162i −0.337278 + 0.337278i
\(324\) 36.7836 + 16.4541i 2.04353 + 0.914116i
\(325\) 5.51066 14.6897i 0.305676 0.814839i
\(326\) 23.7755i 1.31680i
\(327\) 3.15474 + 10.6673i 0.174458 + 0.589904i
\(328\) 28.7244 + 28.7244i 1.58604 + 1.58604i
\(329\) 0 0
\(330\) −13.5638 + 7.42400i −0.746665 + 0.408678i
\(331\) 33.2602 1.82815 0.914074 0.405548i \(-0.132919\pi\)
0.914074 + 0.405548i \(0.132919\pi\)
\(332\) −14.3862 14.3862i −0.789547 0.789547i
\(333\) 0.390034 1.82712i 0.0213737 0.100126i
\(334\) 11.2096i 0.613363i
\(335\) 11.5973 2.51136i 0.633630 0.137210i
\(336\) 0 0
\(337\) 10.3056 10.3056i 0.561383 0.561383i −0.368317 0.929700i \(-0.620066\pi\)
0.929700 + 0.368317i \(0.120066\pi\)
\(338\) −5.67565 + 5.67565i −0.308715 + 0.308715i
\(339\) 3.85131 7.08585i 0.209174 0.384851i
\(340\) −49.9166 + 10.8092i −2.70711 + 0.586214i
\(341\) 4.31132i 0.233471i
\(342\) −2.67849 + 12.5475i −0.144836 + 0.678489i
\(343\) 0 0
\(344\) −48.8391 −2.63323
\(345\) −4.78469 + 2.61884i −0.257599 + 0.140993i
\(346\) 29.2573 1.57288
\(347\) 19.2241 + 19.2241i 1.03200 + 1.03200i 0.999471 + 0.0325323i \(0.0103572\pi\)
0.0325323 + 0.999471i \(0.489643\pi\)
\(348\) −19.6166 66.3310i −1.05156 3.55571i
\(349\) 30.1301i 1.61283i 0.591353 + 0.806413i \(0.298594\pi\)
−0.591353 + 0.806413i \(0.701406\pi\)
\(350\) 0 0
\(351\) −16.2562 + 1.25799i −0.867694 + 0.0671463i
\(352\) −6.03348 + 6.03348i −0.321586 + 0.321586i
\(353\) 17.0339 17.0339i 0.906625 0.906625i −0.0893729 0.995998i \(-0.528486\pi\)
0.995998 + 0.0893729i \(0.0284863\pi\)
\(354\) 21.4905 + 11.6805i 1.14221 + 0.620814i
\(355\) 4.38201 6.80438i 0.232573 0.361139i
\(356\) 42.0992i 2.23125i
\(357\) 0 0
\(358\) −29.8703 29.8703i −1.57869 1.57869i
\(359\) 0.737982 0.0389492 0.0194746 0.999810i \(-0.493801\pi\)
0.0194746 + 0.999810i \(0.493801\pi\)
\(360\) −29.8190 + 29.9950i −1.57160 + 1.58087i
\(361\) 16.1763 0.851382
\(362\) 20.9714 + 20.9714i 1.10223 + 1.10223i
\(363\) 14.1831 4.19448i 0.744417 0.220153i
\(364\) 0 0
\(365\) −3.94692 18.2267i −0.206591 0.954028i
\(366\) 28.6864 + 15.5917i 1.49946 + 0.814990i
\(367\) −23.2923 + 23.2923i −1.21585 + 1.21585i −0.246776 + 0.969073i \(0.579371\pi\)
−0.969073 + 0.246776i \(0.920629\pi\)
\(368\) −7.06244 + 7.06244i −0.368155 + 0.368155i
\(369\) 10.5131 + 16.2196i 0.547288 + 0.844361i
\(370\) 2.97967 + 1.91890i 0.154906 + 0.0997591i
\(371\) 0 0
\(372\) −6.04438 20.4382i −0.313387 1.05967i
\(373\) −5.28110 5.28110i −0.273445 0.273445i 0.557040 0.830485i \(-0.311937\pi\)
−0.830485 + 0.557040i \(0.811937\pi\)
\(374\) −20.3671 −1.05316
\(375\) −2.73878 19.1703i −0.141430 0.989948i
\(376\) −32.9341 −1.69844
\(377\) 19.7908 + 19.7908i 1.01928 + 1.01928i
\(378\) 0 0
\(379\) 3.38353i 0.173800i −0.996217 0.0869000i \(-0.972304\pi\)
0.996217 0.0869000i \(-0.0276961\pi\)
\(380\) −14.1443 9.10888i −0.725585 0.467276i
\(381\) 16.7059 30.7364i 0.855868 1.57467i
\(382\) −23.1331 + 23.1331i −1.18359 + 1.18359i
\(383\) −2.86741 + 2.86741i −0.146518 + 0.146518i −0.776561 0.630043i \(-0.783037\pi\)
0.630043 + 0.776561i \(0.283037\pi\)
\(384\) 9.71455 17.8734i 0.495744 0.912097i
\(385\) 0 0
\(386\) 29.0157i 1.47686i
\(387\) −22.7263 4.85136i −1.15524 0.246609i
\(388\) −19.6841 19.6841i −0.999311 0.999311i
\(389\) −10.2102 −0.517675 −0.258838 0.965921i \(-0.583339\pi\)
−0.258838 + 0.965921i \(0.583339\pi\)
\(390\) 8.68434 29.6857i 0.439749 1.50319i
\(391\) −7.18455 −0.363339
\(392\) 0 0
\(393\) −2.40557 8.13410i −0.121345 0.410311i
\(394\) 67.4903i 3.40011i
\(395\) −20.6510 + 32.0668i −1.03906 + 1.61346i
\(396\) −17.6815 + 11.4606i −0.888528 + 0.575915i
\(397\) 24.0534 24.0534i 1.20721 1.20721i 0.235280 0.971928i \(-0.424399\pi\)
0.971928 0.235280i \(-0.0756009\pi\)
\(398\) −7.57156 + 7.57156i −0.379528 + 0.379528i
\(399\) 0 0
\(400\) −14.6693 32.2828i −0.733465 1.61414i
\(401\) 20.0912i 1.00331i −0.865068 0.501654i \(-0.832725\pi\)
0.865068 0.501654i \(-0.167275\pi\)
\(402\) 22.4324 6.63414i 1.11883 0.330881i
\(403\) 6.09803 + 6.09803i 0.303765 + 0.303765i
\(404\) −4.52803 −0.225278
\(405\) −16.8552 + 10.9955i −0.837542 + 0.546373i
\(406\) 0 0
\(407\) 0.690793 + 0.690793i 0.0342413 + 0.0342413i
\(408\) −53.4229 + 15.7992i −2.64483 + 0.782179i
\(409\) 33.5102i 1.65697i −0.560008 0.828487i \(-0.689202\pi\)
0.560008 0.828487i \(-0.310798\pi\)
\(410\) −35.8356 + 7.76008i −1.76980 + 0.383243i
\(411\) −9.81120 5.33259i −0.483951 0.263037i
\(412\) −18.0463 + 18.0463i −0.889077 + 0.889077i
\(413\) 0 0
\(414\) −9.02331 + 5.84862i −0.443471 + 0.287444i
\(415\) 9.93061 2.15044i 0.487475 0.105561i
\(416\) 17.0678i 0.836817i
\(417\) −5.01251 16.9491i −0.245463 0.830000i
\(418\) −4.74391 4.74391i −0.232032 0.232032i
\(419\) −25.8773 −1.26419 −0.632093 0.774892i \(-0.717804\pi\)
−0.632093 + 0.774892i \(0.717804\pi\)
\(420\) 0 0
\(421\) 10.4030 0.507013 0.253507 0.967334i \(-0.418416\pi\)
0.253507 + 0.967334i \(0.418416\pi\)
\(422\) 38.7301 + 38.7301i 1.88535 + 1.88535i
\(423\) −15.3252 3.27146i −0.745138 0.159064i
\(424\) 25.2658i 1.22702i
\(425\) 8.95900 23.8820i 0.434576 1.15844i
\(426\) 7.61923 14.0183i 0.369153 0.679188i
\(427\) 0 0
\(428\) −12.6154 + 12.6154i −0.609786 + 0.609786i
\(429\) 4.07143 7.49085i 0.196571 0.361662i
\(430\) 23.8679 37.0621i 1.15101 1.78729i
\(431\) 0.449005i 0.0216278i 0.999942 + 0.0108139i \(0.00344224\pi\)
−0.999942 + 0.0108139i \(0.996558\pi\)
\(432\) −23.9691 + 27.9899i −1.15321 + 1.34667i
\(433\) 17.7813 + 17.7813i 0.854517 + 0.854517i 0.990686 0.136169i \(-0.0434790\pi\)
−0.136169 + 0.990686i \(0.543479\pi\)
\(434\) 0 0
\(435\) 33.1556 + 9.69944i 1.58969 + 0.465053i
\(436\) −28.7555 −1.37714
\(437\) −1.67343 1.67343i −0.0800509 0.0800509i
\(438\) −10.4264 35.2554i −0.498192 1.68457i
\(439\) 29.5293i 1.40936i 0.709526 + 0.704679i \(0.248909\pi\)
−0.709526 + 0.704679i \(0.751091\pi\)
\(440\) −4.68067 21.6151i −0.223142 1.03046i
\(441\) 0 0
\(442\) 28.8077 28.8077i 1.37024 1.37024i
\(443\) −15.5643 + 15.5643i −0.739483 + 0.739483i −0.972478 0.232995i \(-0.925147\pi\)
0.232995 + 0.972478i \(0.425147\pi\)
\(444\) 4.24325 + 2.30630i 0.201376 + 0.109452i
\(445\) −17.6767 11.3838i −0.837957 0.539643i
\(446\) 44.6313i 2.11336i
\(447\) −1.53325 + 0.453443i −0.0725204 + 0.0214471i
\(448\) 0 0
\(449\) 16.3214 0.770252 0.385126 0.922864i \(-0.374158\pi\)
0.385126 + 0.922864i \(0.374158\pi\)
\(450\) −8.18931 37.2872i −0.386048 1.75774i
\(451\) −10.1070 −0.475921
\(452\) 14.7415 + 14.7415i 0.693380 + 0.693380i
\(453\) −22.8063 + 6.74471i −1.07153 + 0.316894i
\(454\) 31.3336i 1.47056i
\(455\) 0 0
\(456\) −16.1232 8.76332i −0.755040 0.410380i
\(457\) −20.6299 + 20.6299i −0.965028 + 0.965028i −0.999409 0.0343811i \(-0.989054\pi\)
0.0343811 + 0.999409i \(0.489054\pi\)
\(458\) −8.03251 + 8.03251i −0.375335 + 0.375335i
\(459\) −26.4287 + 2.04518i −1.23359 + 0.0954609i
\(460\) −2.98410 13.7804i −0.139134 0.642516i
\(461\) 15.2893i 0.712094i 0.934468 + 0.356047i \(0.115876\pi\)
−0.934468 + 0.356047i \(0.884124\pi\)
\(462\) 0 0
\(463\) 0.492195 + 0.492195i 0.0228743 + 0.0228743i 0.718451 0.695577i \(-0.244851\pi\)
−0.695577 + 0.718451i \(0.744851\pi\)
\(464\) 63.2563 2.93660
\(465\) 10.2161 + 2.98864i 0.473760 + 0.138595i
\(466\) 20.3056 0.940640
\(467\) 9.00044 + 9.00044i 0.416491 + 0.416491i 0.883992 0.467501i \(-0.154846\pi\)
−0.467501 + 0.883992i \(0.654846\pi\)
\(468\) 8.79901 41.2192i 0.406734 1.90536i
\(469\) 0 0
\(470\) 16.0951 24.9924i 0.742410 1.15281i
\(471\) 16.0501 29.5298i 0.739548 1.36066i
\(472\) −24.7378 + 24.7378i −1.13865 + 1.13865i
\(473\) 8.59230 8.59230i 0.395075 0.395075i
\(474\) −35.9070 + 66.0637i −1.64926 + 3.03441i
\(475\) 7.64932 3.47586i 0.350975 0.159483i
\(476\) 0 0
\(477\) 2.50974 11.7570i 0.114913 0.538314i
\(478\) −21.3426 21.3426i −0.976188 0.976188i
\(479\) 22.7572 1.03980 0.519901 0.854226i \(-0.325969\pi\)
0.519901 + 0.854226i \(0.325969\pi\)
\(480\) −10.1144 18.4794i −0.461659 0.843464i
\(481\) −1.95415 −0.0891015
\(482\) −32.5235 32.5235i −1.48141 1.48141i
\(483\) 0 0
\(484\) 38.2328i 1.73785i
\(485\) 13.5877 2.94237i 0.616986 0.133606i
\(486\) −31.5278 + 24.0830i −1.43013 + 1.09243i
\(487\) −11.4919 + 11.4919i −0.520746 + 0.520746i −0.917797 0.397051i \(-0.870034\pi\)
0.397051 + 0.917797i \(0.370034\pi\)
\(488\) −33.0210 + 33.0210i −1.49479 + 1.49479i
\(489\) 14.2163 + 7.72687i 0.642884 + 0.349421i
\(490\) 0 0
\(491\) 0.301729i 0.0136168i −0.999977 0.00680841i \(-0.997833\pi\)
0.999977 0.00680841i \(-0.00216720\pi\)
\(492\) −47.9133 + 14.1698i −2.16010 + 0.638826i
\(493\) 32.1750 + 32.1750i 1.44909 + 1.44909i
\(494\) 13.4198 0.603785
\(495\) −0.0309545 10.5231i −0.00139130 0.472979i
\(496\) 19.4909 0.875165
\(497\) 0 0
\(498\) 19.2085 5.68071i 0.860754 0.254559i
\(499\) 20.2207i 0.905202i −0.891713 0.452601i \(-0.850496\pi\)
0.891713 0.452601i \(-0.149504\pi\)
\(500\) 49.5282 + 7.26458i 2.21497 + 0.324882i
\(501\) 6.70268 + 3.64305i 0.299454 + 0.162759i
\(502\) −5.74537 + 5.74537i −0.256428 + 0.256428i
\(503\) 23.8859 23.8859i 1.06502 1.06502i 0.0672882 0.997734i \(-0.478565\pi\)
0.997734 0.0672882i \(-0.0214347\pi\)
\(504\) 0 0
\(505\) 1.22440 1.90124i 0.0544850 0.0846042i
\(506\) 5.62273i 0.249961i
\(507\) −1.54915 5.23825i −0.0688004 0.232639i
\(508\) 63.9443 + 63.9443i 2.83707 + 2.83707i
\(509\) 11.7721 0.521788 0.260894 0.965368i \(-0.415983\pi\)
0.260894 + 0.965368i \(0.415983\pi\)
\(510\) 14.1186 48.2618i 0.625184 2.13707i
\(511\) 0 0
\(512\) 35.9587 + 35.9587i 1.58917 + 1.58917i
\(513\) −6.63215 5.67942i −0.292816 0.250752i
\(514\) 42.5137i 1.87520i
\(515\) −2.69754 12.4571i −0.118868 0.548925i
\(516\) 28.6864 52.7789i 1.26285 2.32346i
\(517\) 5.79412 5.79412i 0.254825 0.254825i
\(518\) 0 0
\(519\) −9.50842 + 17.4941i −0.417373 + 0.767907i
\(520\) 37.1934 + 23.9525i 1.63104 + 1.05038i
\(521\) 29.7872i 1.30500i −0.757789 0.652500i \(-0.773720\pi\)
0.757789 0.652500i \(-0.226280\pi\)
\(522\) 66.6018 + 14.2174i 2.91508 + 0.622279i
\(523\) −17.4673 17.4673i −0.763792 0.763792i 0.213214 0.977006i \(-0.431607\pi\)
−0.977006 + 0.213214i \(0.931607\pi\)
\(524\) 21.9268 0.957877
\(525\) 0 0
\(526\) −47.3309 −2.06373
\(527\) 9.91393 + 9.91393i 0.431858 + 0.431858i
\(528\) −5.46466 18.4780i −0.237819 0.804151i
\(529\) 21.0166i 0.913764i
\(530\) 19.1732 + 12.3475i 0.832833 + 0.536343i
\(531\) −13.9685 + 9.05395i −0.606183 + 0.392908i
\(532\) 0 0
\(533\) 14.2956 14.2956i 0.619211 0.619211i
\(534\) −36.4174 19.7936i −1.57593 0.856553i
\(535\) −1.88573 8.70821i −0.0815272 0.376489i
\(536\) 33.4586i 1.44519i
\(537\) 27.5683 8.15302i 1.18966 0.351829i
\(538\) −52.8021 52.8021i −2.27646 2.27646i
\(539\) 0 0
\(540\) −14.8999 49.8425i −0.641192 2.14488i
\(541\) −23.1117 −0.993650 −0.496825 0.867851i \(-0.665501\pi\)
−0.496825 + 0.867851i \(0.665501\pi\)
\(542\) 5.72941 + 5.72941i 0.246099 + 0.246099i
\(543\) −19.3552 + 5.72409i −0.830612 + 0.245644i
\(544\) 27.7481i 1.18969i
\(545\) 7.77560 12.0739i 0.333070 0.517191i
\(546\) 0 0
\(547\) −25.6689 + 25.6689i −1.09752 + 1.09752i −0.102823 + 0.994700i \(0.532787\pi\)
−0.994700 + 0.102823i \(0.967213\pi\)
\(548\) 20.4113 20.4113i 0.871928 0.871928i
\(549\) −18.6458 + 12.0856i −0.795783 + 0.515801i
\(550\) 18.6904 + 7.01144i 0.796959 + 0.298969i
\(551\) 14.9884i 0.638528i
\(552\) −4.36169 14.7484i −0.185646 0.627735i
\(553\) 0 0
\(554\) −60.6965 −2.57875
\(555\) −2.11576 + 1.15804i −0.0898092 + 0.0491559i
\(556\) 45.6891 1.93765
\(557\) −10.5779 10.5779i −0.448199 0.448199i 0.446556 0.894756i \(-0.352650\pi\)
−0.894756 + 0.446556i \(0.852650\pi\)
\(558\) 20.5217 + 4.38074i 0.868753 + 0.185452i
\(559\) 24.3063i 1.02805i
\(560\) 0 0
\(561\) 6.61917 12.1783i 0.279462 0.514169i
\(562\) 44.6402 44.6402i 1.88303 1.88303i
\(563\) 10.9216 10.9216i 0.460291 0.460291i −0.438460 0.898751i \(-0.644476\pi\)
0.898751 + 0.438460i \(0.144476\pi\)
\(564\) 19.3444 35.5908i 0.814544 1.49864i
\(565\) −10.1758 + 2.20354i −0.428100 + 0.0927036i
\(566\) 19.5050i 0.819858i
\(567\) 0 0
\(568\) 16.1365 + 16.1365i 0.677072 + 0.677072i
\(569\) 42.0710 1.76371 0.881854 0.471523i \(-0.156295\pi\)
0.881854 + 0.471523i \(0.156295\pi\)
\(570\) 14.5297 7.95263i 0.608581 0.333099i
\(571\) 10.8342 0.453399 0.226699 0.973965i \(-0.427207\pi\)
0.226699 + 0.973965i \(0.427207\pi\)
\(572\) 15.5840 + 15.5840i 0.651601 + 0.651601i
\(573\) −6.31411 21.3503i −0.263776 0.891921i
\(574\) 0 0
\(575\) 6.59308 + 2.47331i 0.274950 + 0.103144i
\(576\) 0.555438 + 0.856936i 0.0231433 + 0.0357057i
\(577\) −14.6975 + 14.6975i −0.611865 + 0.611865i −0.943432 0.331567i \(-0.892423\pi\)
0.331567 + 0.943432i \(0.392423\pi\)
\(578\) 16.2407 16.2407i 0.675523 0.675523i
\(579\) −17.3497 9.42991i −0.721028 0.391894i
\(580\) −48.3498 + 75.0776i −2.00762 + 3.11743i
\(581\) 0 0
\(582\) 26.2823 7.77271i 1.08944 0.322189i
\(583\) 4.44503 + 4.44503i 0.184094 + 0.184094i
\(584\) 52.5844 2.17596
\(585\) 14.9279 + 14.8404i 0.617194 + 0.613574i
\(586\) 30.9802 1.27978
\(587\) −4.89737 4.89737i −0.202136 0.202136i 0.598779 0.800915i \(-0.295653\pi\)
−0.800915 + 0.598779i \(0.795653\pi\)
\(588\) 0 0
\(589\) 4.61831i 0.190294i
\(590\) −6.68306 30.8620i −0.275137 1.27057i
\(591\) −40.3552 21.9339i −1.65999 0.902240i
\(592\) −3.12297 + 3.12297i −0.128353 + 0.128353i
\(593\) 22.5635 22.5635i 0.926573 0.926573i −0.0709102 0.997483i \(-0.522590\pi\)
0.997483 + 0.0709102i \(0.0225904\pi\)
\(594\) −1.60059 20.6835i −0.0656729 0.848654i
\(595\) 0 0
\(596\) 4.13314i 0.169300i
\(597\) −2.06664 6.98804i −0.0845818 0.286002i
\(598\) 7.95292 + 7.95292i 0.325219 + 0.325219i
\(599\) 6.81971 0.278646 0.139323 0.990247i \(-0.455507\pi\)
0.139323 + 0.990247i \(0.455507\pi\)
\(600\) 54.4637 + 3.89247i 2.22347 + 0.158910i
\(601\) 8.46733 0.345390 0.172695 0.984975i \(-0.444753\pi\)
0.172695 + 0.984975i \(0.444753\pi\)
\(602\) 0 0
\(603\) −3.32356 + 15.5693i −0.135346 + 0.634031i
\(604\) 61.4782i 2.50151i
\(605\) −16.0533 10.3383i −0.652658 0.420311i
\(606\) 2.12893 3.91692i 0.0864817 0.159114i
\(607\) −6.30295 + 6.30295i −0.255829 + 0.255829i −0.823355 0.567526i \(-0.807900\pi\)
0.567526 + 0.823355i \(0.307900\pi\)
\(608\) 6.46309 6.46309i 0.262113 0.262113i
\(609\) 0 0
\(610\) −8.92083 41.1959i −0.361194 1.66797i
\(611\) 16.3907i 0.663095i
\(612\) 14.3051 67.0125i 0.578248 2.70882i
\(613\) −5.24728 5.24728i −0.211935 0.211935i 0.593154 0.805089i \(-0.297883\pi\)
−0.805089 + 0.593154i \(0.797883\pi\)
\(614\) −42.6601 −1.72162
\(615\) 7.00627 23.9496i 0.282520 0.965739i
\(616\) 0 0
\(617\) −2.10719 2.10719i −0.0848323 0.0848323i 0.663417 0.748250i \(-0.269105\pi\)
−0.748250 + 0.663417i \(0.769105\pi\)
\(618\) −7.12596 24.0954i −0.286648 0.969261i
\(619\) 21.0734i 0.847012i 0.905893 + 0.423506i \(0.139201\pi\)
−0.905893 + 0.423506i \(0.860799\pi\)
\(620\) −14.8978 + 23.1333i −0.598310 + 0.929055i
\(621\) −0.564612 7.29616i −0.0226571 0.292785i
\(622\) 52.6932 52.6932i 2.11280 2.11280i
\(623\) 0 0
\(624\) 33.8650 + 18.4063i 1.35569 + 0.736844i
\(625\) −16.4429 + 18.8317i −0.657715 + 0.753267i
\(626\) 4.41188i 0.176334i
\(627\) 4.37831 1.29484i 0.174853 0.0517108i
\(628\) 61.4341 + 61.4341i 2.45149 + 2.45149i
\(629\) −3.17697 −0.126674
\(630\) 0 0
\(631\) −11.6376 −0.463287 −0.231643 0.972801i \(-0.574410\pi\)
−0.231643 + 0.972801i \(0.574410\pi\)
\(632\) −76.0461 76.0461i −3.02495 3.02495i
\(633\) −35.7453 + 10.5713i −1.42075 + 0.420170i
\(634\) 15.4825i 0.614890i
\(635\) −44.1399 + 9.55833i −1.75164 + 0.379311i
\(636\) 27.3040 + 14.8403i 1.08267 + 0.588455i
\(637\) 0 0
\(638\) −25.1806 + 25.1806i −0.996910 + 0.996910i
\(639\) 5.90591 + 9.11170i 0.233634 + 0.360453i
\(640\) −25.6675 + 5.55821i −1.01460 + 0.219708i
\(641\) 36.1036i 1.42601i 0.701161 + 0.713003i \(0.252665\pi\)
−0.701161 + 0.713003i \(0.747335\pi\)
\(642\) −4.98144 16.8441i −0.196602 0.664782i
\(643\) 21.0115 + 21.0115i 0.828614 + 0.828614i 0.987325 0.158711i \(-0.0507337\pi\)
−0.158711 + 0.987325i \(0.550734\pi\)
\(644\) 0 0
\(645\) 14.4040 + 26.3165i 0.567158 + 1.03621i
\(646\) 21.8173 0.858392
\(647\) −18.9025 18.9025i −0.743133 0.743133i 0.230046 0.973180i \(-0.426112\pi\)
−0.973180 + 0.230046i \(0.926112\pi\)
\(648\) −20.2430 53.0112i −0.795221 2.08248i
\(649\) 8.70428i 0.341673i
\(650\) −36.3532 + 16.5189i −1.42589 + 0.647925i
\(651\) 0 0
\(652\) −29.5757 + 29.5757i −1.15828 + 1.15828i
\(653\) 12.2864 12.2864i 0.480803 0.480803i −0.424585 0.905388i \(-0.639580\pi\)
0.905388 + 0.424585i \(0.139580\pi\)
\(654\) 13.5199 24.8746i 0.528668 0.972674i
\(655\) −5.92909 + 9.20669i −0.231669 + 0.359735i
\(656\) 45.6924i 1.78399i
\(657\) 24.4691 + 5.22339i 0.954631 + 0.203784i
\(658\) 0 0
\(659\) 0.708622 0.0276040 0.0138020 0.999905i \(-0.495607\pi\)
0.0138020 + 0.999905i \(0.495607\pi\)
\(660\) 26.1080 + 7.63772i 1.01625 + 0.297298i
\(661\) −17.4206 −0.677582 −0.338791 0.940862i \(-0.610018\pi\)
−0.338791 + 0.940862i \(0.610018\pi\)
\(662\) −59.8561 59.8561i −2.32637 2.32637i
\(663\) 7.86299 + 26.5876i 0.305373 + 1.03258i
\(664\) 28.6500i 1.11184i
\(665\) 0 0
\(666\) −3.99006 + 2.58623i −0.154612 + 0.100214i
\(667\) −8.88253 + 8.88253i −0.343933 + 0.343933i
\(668\) −13.9443 + 13.9443i −0.539522 + 0.539522i
\(669\) −26.6869 14.5049i −1.03177 0.560791i
\(670\) −25.3904 16.3514i −0.980918 0.631709i
\(671\) 11.6188i 0.448540i
\(672\) 0 0
\(673\) −8.20389 8.20389i −0.316237 0.316237i 0.531083 0.847320i \(-0.321785\pi\)
−0.847320 + 0.531083i \(0.821785\pi\)
\(674\) −37.0926 −1.42875
\(675\) 24.9570 + 7.22137i 0.960595 + 0.277951i
\(676\) 14.1206 0.543099
\(677\) −32.8605 32.8605i −1.26293 1.26293i −0.949666 0.313264i \(-0.898578\pi\)
−0.313264 0.949666i \(-0.601422\pi\)
\(678\) −19.6828 + 5.82098i −0.755915 + 0.223554i
\(679\) 0 0
\(680\) 60.4675 + 38.9409i 2.31882 + 1.49332i
\(681\) 18.7356 + 10.1832i 0.717951 + 0.390221i
\(682\) −7.75878 + 7.75878i −0.297099 + 0.297099i
\(683\) −28.4978 + 28.4978i −1.09044 + 1.09044i −0.0949562 + 0.995481i \(0.530271\pi\)
−0.995481 + 0.0949562i \(0.969729\pi\)
\(684\) 18.9405 12.2766i 0.724208 0.469408i
\(685\) 3.05106 + 14.0896i 0.116575 + 0.538338i
\(686\) 0 0
\(687\) −2.19245 7.41347i −0.0836473 0.282842i
\(688\) 38.8446 + 38.8446i 1.48093 + 1.48093i
\(689\) −12.5743 −0.479043
\(690\) 13.3236 + 3.89773i 0.507221 + 0.148384i
\(691\) −5.79939 −0.220619 −0.110310 0.993897i \(-0.535184\pi\)
−0.110310 + 0.993897i \(0.535184\pi\)
\(692\) −36.3949 36.3949i −1.38353 1.38353i
\(693\) 0 0
\(694\) 69.1925i 2.62651i
\(695\) −12.3545 + 19.1840i −0.468633 + 0.727692i
\(696\) −46.5156 + 85.5820i −1.76317 + 3.24398i
\(697\) 23.2412 23.2412i 0.880324 0.880324i
\(698\) 54.2230 54.2230i 2.05237 2.05237i
\(699\) −6.59919 + 12.1416i −0.249604 + 0.459236i
\(700\) 0 0
\(701\) 4.92775i 0.186118i −0.995661 0.0930592i \(-0.970335\pi\)
0.995661 0.0930592i \(-0.0296646\pi\)
\(702\) 31.5191 + 26.9913i 1.18961 + 1.01872i
\(703\) −0.739981 0.739981i −0.0279089 0.0279089i
\(704\) −0.533986 −0.0201254
\(705\) 9.71318 + 17.7462i 0.365820 + 0.668362i
\(706\) −61.3096 −2.30742
\(707\) 0 0
\(708\) −12.2032 41.2635i −0.458625 1.55078i
\(709\) 17.1922i 0.645666i 0.946456 + 0.322833i \(0.104635\pi\)
−0.946456 + 0.322833i \(0.895365\pi\)
\(710\) −20.1313 + 4.35937i −0.755516 + 0.163604i
\(711\) −27.8326 42.9405i −1.04381 1.61039i
\(712\) 41.9201 41.9201i 1.57102 1.57102i
\(713\) −2.73693 + 2.73693i −0.102499 + 0.102499i
\(714\) 0 0
\(715\) −10.7574 + 2.32948i −0.402305 + 0.0871177i
\(716\) 74.3149i 2.77728i
\(717\) 19.6978 5.82541i 0.735628 0.217554i
\(718\) −1.32809 1.32809i −0.0495640 0.0495640i
\(719\) −12.2556 −0.457059 −0.228529 0.973537i \(-0.573392\pi\)
−0.228529 + 0.973537i \(0.573392\pi\)
\(720\) 47.5735 0.139941i 1.77296 0.00521528i
\(721\) 0 0
\(722\) −29.1113 29.1113i −1.08341 1.08341i
\(723\) 30.0170 8.87721i 1.11635 0.330147i
\(724\) 52.1752i 1.93908i
\(725\) −18.4498 40.6025i −0.685208 1.50794i
\(726\) −33.0728 17.9757i −1.22745 0.667142i
\(727\) −5.83842 + 5.83842i −0.216535 + 0.216535i −0.807037 0.590501i \(-0.798930\pi\)
0.590501 + 0.807037i \(0.298930\pi\)
\(728\) 0 0
\(729\) −4.15390 26.6786i −0.153848 0.988094i
\(730\) −25.6983 + 39.9043i −0.951136 + 1.47692i
\(731\) 39.5162i 1.46156i
\(732\) −16.2894 55.0802i −0.602072 2.03582i
\(733\) −13.5940 13.5940i −0.502105 0.502105i 0.409987 0.912091i \(-0.365533\pi\)
−0.912091 + 0.409987i \(0.865533\pi\)
\(734\) 83.8351 3.09441
\(735\) 0 0
\(736\) 7.66040 0.282366
\(737\) −5.88639 5.88639i −0.216828 0.216828i
\(738\) 10.2698 48.1090i 0.378035 1.77092i
\(739\) 15.1801i 0.558411i 0.960231 + 0.279205i \(0.0900710\pi\)
−0.960231 + 0.279205i \(0.909929\pi\)
\(740\) −1.31955 6.09364i −0.0485078 0.224007i
\(741\) −4.36134 + 8.02424i −0.160218 + 0.294778i
\(742\) 0 0
\(743\) −34.4215 + 34.4215i −1.26280 + 1.26280i −0.313073 + 0.949729i \(0.601358\pi\)
−0.949729 + 0.313073i \(0.898642\pi\)
\(744\) −14.3326 + 26.3700i −0.525459 + 0.966770i
\(745\) 1.73543 + 1.11762i 0.0635813 + 0.0409463i
\(746\) 19.0080i 0.695934i
\(747\) −2.84591 + 13.3317i −0.104126 + 0.487783i
\(748\) 25.3359 + 25.3359i 0.926371 + 0.926371i
\(749\) 0 0
\(750\) −29.5706 + 39.4282i −1.07977 + 1.43971i
\(751\) −22.2515 −0.811970 −0.405985 0.913880i \(-0.633071\pi\)
−0.405985 + 0.913880i \(0.633071\pi\)
\(752\) 26.1944 + 26.1944i 0.955210 + 0.955210i
\(753\) −1.56818 5.30260i −0.0571478 0.193237i
\(754\) 71.2321i 2.59412i
\(755\) 25.8136 + 16.6239i 0.939454 + 0.605007i
\(756\) 0 0
\(757\) −1.88407 + 1.88407i −0.0684777 + 0.0684777i −0.740516 0.672038i \(-0.765419\pi\)
0.672038 + 0.740516i \(0.265419\pi\)
\(758\) −6.08909 + 6.08909i −0.221166 + 0.221166i
\(759\) 3.36206 + 1.82735i 0.122035 + 0.0663286i
\(760\) 5.01396 + 23.1542i 0.181875 + 0.839892i
\(761\) 35.6674i 1.29294i 0.762938 + 0.646472i \(0.223756\pi\)
−0.762938 + 0.646472i \(0.776244\pi\)
\(762\) −85.3786 + 25.2498i −3.09294 + 0.914703i
\(763\) 0 0
\(764\) 57.5532 2.08220
\(765\) 24.2692 + 24.1269i 0.877456 + 0.872309i
\(766\) 10.3206 0.372897
\(767\) 12.3115 + 12.3115i 0.444543 + 0.444543i
\(768\) −48.5173 + 14.3485i −1.75072 + 0.517755i
\(769\) 31.7331i 1.14432i −0.820141 0.572162i \(-0.806105\pi\)
0.820141 0.572162i \(-0.193895\pi\)
\(770\) 0 0
\(771\) −25.4207 13.8167i −0.915503 0.497595i
\(772\) 36.0944 36.0944i 1.29907 1.29907i
\(773\) −4.97844 + 4.97844i −0.179062 + 0.179062i −0.790947 0.611885i \(-0.790412\pi\)
0.611885 + 0.790947i \(0.290412\pi\)
\(774\) 32.1683 + 49.6296i 1.15627 + 1.78390i
\(775\) −5.68485 12.5107i −0.204206 0.449396i
\(776\) 39.2008i 1.40723i
\(777\) 0 0
\(778\) 18.3745 + 18.3745i 0.658758 + 0.658758i
\(779\) 10.8267 0.387907
\(780\) −47.7308 + 26.1249i −1.70904 + 0.935420i
\(781\) −5.67781 −0.203168
\(782\) 12.9295 + 12.9295i 0.462359 + 0.462359i
\(783\) −30.1463 + 35.2034i −1.07734 + 1.25807i
\(784\) 0 0
\(785\) −42.4071 + 9.18310i −1.51357 + 0.327759i
\(786\) −10.3092 + 18.9675i −0.367718 + 0.676548i
\(787\) −18.7554 + 18.7554i −0.668557 + 0.668557i −0.957382 0.288825i \(-0.906735\pi\)
0.288825 + 0.957382i \(0.406735\pi\)
\(788\) 83.9553 83.9553i 2.99078 2.99078i
\(789\) 15.3822 28.3011i 0.547621 1.00754i
\(790\) 94.8726 20.5443i 3.37542 0.730934i
\(791\) 0 0
\(792\) 29.0181 + 6.19445i 1.03111 + 0.220110i
\(793\) 16.4339 + 16.4339i 0.583586 + 0.583586i
\(794\) −86.5746 −3.07242
\(795\) −13.6143 + 7.45160i −0.482848 + 0.264281i
\(796\) 18.8374 0.667675
\(797\) 7.92792 + 7.92792i 0.280821 + 0.280821i 0.833437 0.552615i \(-0.186370\pi\)
−0.552615 + 0.833437i \(0.686370\pi\)
\(798\) 0 0
\(799\) 26.6473i 0.942713i
\(800\) −9.55238 + 25.4637i −0.337728 + 0.900278i
\(801\) 23.6708 15.3426i 0.836366 0.542105i
\(802\) −36.1568 + 36.1568i −1.27674 + 1.27674i
\(803\) −9.25121 + 9.25121i −0.326468 + 0.326468i
\(804\) −36.1576 19.6524i −1.27518 0.693088i
\(805\) 0 0
\(806\) 21.9484i 0.773099i
\(807\) 48.7328 14.4122i 1.71548 0.507333i
\(808\) 4.50877 + 4.50877i 0.158618 + 0.158618i
\(809\) 33.2281 1.16824 0.584119 0.811668i \(-0.301440\pi\)
0.584119 + 0.811668i \(0.301440\pi\)
\(810\) 50.1210 + 10.5452i 1.76107 + 0.370521i
\(811\) 49.8680 1.75110 0.875550 0.483127i \(-0.160499\pi\)
0.875550 + 0.483127i \(0.160499\pi\)
\(812\) 0 0
\(813\) −5.28787 + 1.56383i −0.185454 + 0.0548458i
\(814\) 2.48634i 0.0871463i
\(815\) −4.42095 20.4157i −0.154859 0.715132i
\(816\) 55.0564 + 29.9243i 1.92736 + 1.04756i
\(817\) −9.20412 + 9.20412i −0.322011 + 0.322011i
\(818\) −60.3060 + 60.3060i −2.10855 + 2.10855i
\(819\) 0 0
\(820\) 54.2313 + 34.9249i 1.89384 + 1.21963i
\(821\) 32.4420i 1.13223i −0.824325 0.566116i \(-0.808445\pi\)
0.824325 0.566116i \(-0.191555\pi\)
\(822\) 8.05984 + 27.2532i 0.281119 + 0.950565i
\(823\) −32.7235 32.7235i −1.14067 1.14067i −0.988328 0.152341i \(-0.951319\pi\)
−0.152341 0.988328i \(-0.548681\pi\)
\(824\) 35.9390 1.25200
\(825\) −10.2667 + 8.89705i −0.357439 + 0.309755i
\(826\) 0 0
\(827\) −36.7198 36.7198i −1.27687 1.27687i −0.942408 0.334465i \(-0.891444\pi\)
−0.334465 0.942408i \(-0.608556\pi\)
\(828\) 18.5001 + 3.94919i 0.642922 + 0.137244i
\(829\) 14.2972i 0.496562i 0.968688 + 0.248281i \(0.0798657\pi\)
−0.968688 + 0.248281i \(0.920134\pi\)
\(830\) −21.7414 14.0014i −0.754656 0.485997i
\(831\) 19.7259 36.2929i 0.684285 1.25899i
\(832\) 0.755282 0.755282i 0.0261847 0.0261847i
\(833\) 0 0
\(834\) −21.4814 + 39.5227i −0.743841 + 1.36856i
\(835\) −2.08438 9.62557i −0.0721330 0.333107i
\(836\) 11.8025i 0.408197i
\(837\) −9.28883 + 10.8470i −0.321069 + 0.374929i
\(838\) 46.5695 + 46.5695i 1.60872 + 1.60872i
\(839\) 33.6309 1.16107 0.580534 0.814236i \(-0.302844\pi\)
0.580534 + 0.814236i \(0.302844\pi\)
\(840\) 0 0
\(841\) 50.5583 1.74339
\(842\) −18.7216 18.7216i −0.645190 0.645190i
\(843\) 12.1844 + 41.1999i 0.419654 + 1.41900i
\(844\) 96.3574i 3.31676i
\(845\) −3.81826 + 5.92898i −0.131352 + 0.203963i
\(846\) 21.6923 + 33.4672i 0.745798 + 1.15062i
\(847\) 0 0
\(848\) −20.0953 + 20.0953i −0.690077 + 0.690077i
\(849\) −11.6629 6.33901i −0.400268 0.217554i
\(850\) −59.1016 + 26.8558i −2.02717 + 0.921146i
\(851\) 0.877065i 0.0300654i
\(852\) −26.9162 + 7.96017i −0.922134 + 0.272711i
\(853\) −26.5544 26.5544i −0.909206 0.909206i 0.0870025 0.996208i \(-0.472271\pi\)
−0.996208 + 0.0870025i \(0.972271\pi\)
\(854\) 0 0
\(855\) 0.0331586 + 11.2724i 0.00113400 + 0.385509i
\(856\) 25.1234 0.858699
\(857\) −23.0711 23.0711i −0.788092 0.788092i 0.193089 0.981181i \(-0.438149\pi\)
−0.981181 + 0.193089i \(0.938149\pi\)
\(858\) −20.8078 + 6.15368i −0.710367 + 0.210083i
\(859\) 17.3242i 0.591095i 0.955328 + 0.295548i \(0.0955021\pi\)
−0.955328 + 0.295548i \(0.904498\pi\)
\(860\) −75.7946 + 16.4130i −2.58457 + 0.559680i
\(861\) 0 0
\(862\) 0.808044 0.808044i 0.0275221 0.0275221i
\(863\) −9.05228 + 9.05228i −0.308143 + 0.308143i −0.844189 0.536046i \(-0.819917\pi\)
0.536046 + 0.844189i \(0.319917\pi\)
\(864\) 28.1792 2.18064i 0.958674 0.0741868i
\(865\) 25.1229 5.44027i 0.854204 0.184975i
\(866\) 63.9997i 2.17480i
\(867\) 4.43285 + 14.9891i 0.150548 + 0.509056i
\(868\) 0 0
\(869\) 26.7577 0.907693
\(870\) −42.2125 77.1233i −1.43114 2.61472i
\(871\) 16.6517 0.564221
\(872\) 28.6332 + 28.6332i 0.969642 + 0.969642i
\(873\) −3.89396 + 18.2413i −0.131790 + 0.617376i
\(874\) 6.02310i 0.203734i
\(875\) 0 0
\(876\) −30.8863 + 56.8263i −1.04355 + 1.91998i
\(877\) 15.4630 15.4630i 0.522148 0.522148i −0.396072 0.918220i \(-0.629627\pi\)
0.918220 + 0.396072i \(0.129627\pi\)
\(878\) 53.1419 53.1419i 1.79345 1.79345i
\(879\) −10.0684 + 18.5243i −0.339597 + 0.624810i
\(880\) −13.4689 + 20.9146i −0.454038 + 0.705029i
\(881\) 3.93409i 0.132543i −0.997802 0.0662714i \(-0.978890\pi\)
0.997802 0.0662714i \(-0.0211103\pi\)
\(882\) 0 0
\(883\) 13.5688 + 13.5688i 0.456625 + 0.456625i 0.897546 0.440921i \(-0.145348\pi\)
−0.440921 + 0.897546i \(0.645348\pi\)
\(884\) −71.6713 −2.41057
\(885\) 20.6256 + 6.03388i 0.693322 + 0.202827i
\(886\) 56.0200 1.88203
\(887\) −4.92491 4.92491i −0.165362 0.165362i 0.619575 0.784937i \(-0.287305\pi\)
−0.784937 + 0.619575i \(0.787305\pi\)
\(888\) −1.92872 6.52168i −0.0647235 0.218853i
\(889\) 0 0
\(890\) 11.3250 + 52.2982i 0.379614 + 1.75304i
\(891\) 12.8877 + 5.76494i 0.431753 + 0.193133i
\(892\) 55.5196 55.5196i 1.85893 1.85893i
\(893\) −6.20669 + 6.20669i −0.207699 + 0.207699i
\(894\) 3.57532 + 1.94326i 0.119577 + 0.0649923i
\(895\) −31.2035 20.0950i −1.04302 0.671703i
\(896\) 0 0
\(897\) −7.34002 + 2.17073i −0.245076 + 0.0724786i
\(898\) −29.3724 29.3724i −0.980170 0.980170i
\(899\) 24.5139 0.817585
\(900\) −36.1966 + 56.5710i −1.20655 + 1.88570i
\(901\) −20.4428 −0.681049
\(902\) 18.1889 + 18.1889i 0.605624 + 0.605624i
\(903\) 0 0
\(904\) 29.3575i 0.976416i
\(905\) 21.9075 + 14.1084i 0.728229 + 0.468978i
\(906\) 53.1809 + 28.9049i 1.76682 + 0.960302i
\(907\) −19.0317 + 19.0317i −0.631938 + 0.631938i −0.948554 0.316616i \(-0.897453\pi\)
0.316616 + 0.948554i \(0.397453\pi\)
\(908\) −38.9777 + 38.9777i −1.29352 + 1.29352i
\(909\) 1.65020 + 2.54594i 0.0547336 + 0.0844436i
\(910\) 0 0
\(911\) 17.7669i 0.588644i −0.955706 0.294322i \(-0.904906\pi\)
0.955706 0.294322i \(-0.0950938\pi\)
\(912\) 5.85377 + 19.7937i 0.193838 + 0.655435i
\(913\) −5.04043 5.04043i −0.166814 0.166814i
\(914\) 74.2525 2.45605
\(915\) 27.5319 + 8.05427i 0.910177 + 0.266266i
\(916\) 19.9842 0.660298
\(917\) 0 0
\(918\) 51.2425 + 43.8814i 1.69125 + 1.44830i
\(919\) 8.50470i 0.280544i −0.990113 0.140272i \(-0.955202\pi\)
0.990113 0.140272i \(-0.0447977\pi\)
\(920\) −10.7504 + 16.6932i −0.354430 + 0.550359i
\(921\) 13.8643 25.5082i 0.456843 0.840525i
\(922\) 27.5151 27.5151i 0.906162 0.906162i
\(923\) 8.03083 8.03083i 0.264338 0.264338i
\(924\) 0 0
\(925\) 2.91542 + 1.09368i 0.0958586 + 0.0359601i
\(926\) 1.77154i 0.0582164i
\(927\) 16.7235 + 3.56995i 0.549273 + 0.117253i
\(928\) −34.3060 34.3060i −1.12615 1.12615i
\(929\) 14.1589 0.464538 0.232269 0.972652i \(-0.425385\pi\)
0.232269 + 0.972652i \(0.425385\pi\)
\(930\) −13.0067 23.7636i −0.426507 0.779240i
\(931\) 0 0
\(932\) −25.2594 25.2594i −0.827399 0.827399i
\(933\) 14.3825 + 48.6323i 0.470861 + 1.59215i
\(934\) 32.3949i 1.05999i
\(935\) −17.4890 + 3.78718i −0.571952 + 0.123854i
\(936\) −49.8054 + 32.2822i −1.62794 + 1.05518i
\(937\) −28.7165 + 28.7165i −0.938127 + 0.938127i −0.998194 0.0600678i \(-0.980868\pi\)
0.0600678 + 0.998194i \(0.480868\pi\)
\(938\) 0 0
\(939\) −2.63804 1.43383i −0.0860891 0.0467912i
\(940\) −51.1112 + 11.0679i −1.66706 + 0.360996i
\(941\) 17.4001i 0.567228i −0.958939 0.283614i \(-0.908467\pi\)
0.958939 0.283614i \(-0.0915335\pi\)
\(942\) −82.0269 + 24.2586i −2.67258 + 0.790387i
\(943\) 6.41619 + 6.41619i 0.208940 + 0.208940i
\(944\) 39.3508 1.28076
\(945\) 0 0
\(946\) −30.9259 −1.00549
\(947\) −8.15693 8.15693i −0.265065 0.265065i 0.562043 0.827108i \(-0.310015\pi\)
−0.827108 + 0.562043i \(0.810015\pi\)
\(948\) 126.848 37.5138i 4.11982 1.21839i
\(949\) 26.1703i 0.849522i
\(950\) −20.0212 7.51069i −0.649574 0.243679i
\(951\) −9.25764 5.03172i −0.300199 0.163165i
\(952\) 0 0
\(953\) 38.6159 38.6159i 1.25089 1.25089i 0.295569 0.955321i \(-0.404491\pi\)
0.955321 0.295569i \(-0.0955091\pi\)
\(954\) −25.6748 + 16.6416i −0.831251 + 0.538790i
\(955\) −15.5626 + 24.1656i −0.503594 + 0.781981i
\(956\) 53.0987i 1.71734i
\(957\) −6.87298 23.2400i −0.222172 0.751244i
\(958\) −40.9545 40.9545i −1.32318 1.32318i
\(959\) 0 0
\(960\) 0.370164 1.26533i 0.0119470 0.0408384i
\(961\) −23.4466 −0.756343
\(962\) 3.51674 + 3.51674i 0.113384 + 0.113384i
\(963\) 11.6907 + 2.49559i 0.376727 + 0.0804194i
\(964\) 80.9159i 2.60613i
\(965\) 5.39535 + 24.9155i 0.173683 + 0.802058i
\(966\) 0 0
\(967\) −18.6836 + 18.6836i −0.600824 + 0.600824i −0.940531 0.339707i \(-0.889672\pi\)
0.339707 + 0.940531i \(0.389672\pi\)
\(968\) 38.0701 38.0701i 1.22362 1.22362i
\(969\) −7.09049 + 13.0455i −0.227779 + 0.419081i
\(970\) −29.7480 19.1577i −0.955151 0.615115i
\(971\) 57.4980i 1.84520i −0.385761 0.922599i \(-0.626061\pi\)
0.385761 0.922599i \(-0.373939\pi\)
\(972\) 69.1776 + 9.26098i 2.21887 + 0.297046i
\(973\) 0 0
\(974\) 41.3622 1.32533
\(975\) 1.93721 27.1056i 0.0620404 0.868074i
\(976\) 52.5270 1.68135
\(977\) −2.08515 2.08515i −0.0667100 0.0667100i 0.672965 0.739675i \(-0.265021\pi\)
−0.739675 + 0.672965i \(0.765021\pi\)
\(978\) −11.6786 39.4896i −0.373441 1.26274i
\(979\) 14.7501i 0.471415i
\(980\) 0 0
\(981\) 10.4797 + 16.1681i 0.334590 + 0.516209i
\(982\) −0.543000 + 0.543000i −0.0173278 + 0.0173278i
\(983\) −11.6041 + 11.6041i −0.370114 + 0.370114i −0.867519 0.497405i \(-0.834286\pi\)
0.497405 + 0.867519i \(0.334286\pi\)
\(984\) 61.8191 + 33.5999i 1.97072 + 1.07113i
\(985\) 12.5496 + 57.9532i 0.399862 + 1.84654i
\(986\) 115.806i 3.68802i
\(987\) 0 0
\(988\) −16.6937 16.6937i −0.531097 0.531097i
\(989\) −10.9092 −0.346893
\(990\) −18.8820 + 18.9934i −0.600110 + 0.603651i
\(991\) −6.34125 −0.201436 −0.100718 0.994915i \(-0.532114\pi\)
−0.100718 + 0.994915i \(0.532114\pi\)
\(992\) −10.5706 10.5706i −0.335615 0.335615i
\(993\) 55.2432 16.3376i 1.75309 0.518457i
\(994\) 0 0
\(995\) −5.09371 + 7.90951i −0.161481 + 0.250748i
\(996\) −30.9612 16.8281i −0.981044 0.533218i
\(997\) −1.89647 + 1.89647i −0.0600618 + 0.0600618i −0.736500 0.676438i \(-0.763523\pi\)
0.676438 + 0.736500i \(0.263523\pi\)
\(998\) −36.3897 + 36.3897i −1.15190 + 1.15190i
\(999\) −0.249668 3.22633i −0.00789916 0.102076i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.j.h.638.1 24
3.2 odd 2 inner 735.2.j.h.638.12 24
5.2 odd 4 inner 735.2.j.h.197.12 24
7.2 even 3 735.2.y.g.263.1 48
7.3 odd 6 735.2.y.j.128.12 48
7.4 even 3 735.2.y.g.128.12 48
7.5 odd 6 735.2.y.j.263.1 48
7.6 odd 2 105.2.j.a.8.1 24
15.2 even 4 inner 735.2.j.h.197.1 24
21.2 odd 6 735.2.y.g.263.12 48
21.5 even 6 735.2.y.j.263.12 48
21.11 odd 6 735.2.y.g.128.1 48
21.17 even 6 735.2.y.j.128.1 48
21.20 even 2 105.2.j.a.8.12 yes 24
35.2 odd 12 735.2.y.g.557.1 48
35.12 even 12 735.2.y.j.557.1 48
35.13 even 4 525.2.j.b.407.1 24
35.17 even 12 735.2.y.j.422.12 48
35.27 even 4 105.2.j.a.92.12 yes 24
35.32 odd 12 735.2.y.g.422.12 48
35.34 odd 2 525.2.j.b.218.12 24
105.2 even 12 735.2.y.g.557.12 48
105.17 odd 12 735.2.y.j.422.1 48
105.32 even 12 735.2.y.g.422.1 48
105.47 odd 12 735.2.y.j.557.12 48
105.62 odd 4 105.2.j.a.92.1 yes 24
105.83 odd 4 525.2.j.b.407.12 24
105.104 even 2 525.2.j.b.218.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.j.a.8.1 24 7.6 odd 2
105.2.j.a.8.12 yes 24 21.20 even 2
105.2.j.a.92.1 yes 24 105.62 odd 4
105.2.j.a.92.12 yes 24 35.27 even 4
525.2.j.b.218.1 24 105.104 even 2
525.2.j.b.218.12 24 35.34 odd 2
525.2.j.b.407.1 24 35.13 even 4
525.2.j.b.407.12 24 105.83 odd 4
735.2.j.h.197.1 24 15.2 even 4 inner
735.2.j.h.197.12 24 5.2 odd 4 inner
735.2.j.h.638.1 24 1.1 even 1 trivial
735.2.j.h.638.12 24 3.2 odd 2 inner
735.2.y.g.128.1 48 21.11 odd 6
735.2.y.g.128.12 48 7.4 even 3
735.2.y.g.263.1 48 7.2 even 3
735.2.y.g.263.12 48 21.2 odd 6
735.2.y.g.422.1 48 105.32 even 12
735.2.y.g.422.12 48 35.32 odd 12
735.2.y.g.557.1 48 35.2 odd 12
735.2.y.g.557.12 48 105.2 even 12
735.2.y.j.128.1 48 21.17 even 6
735.2.y.j.128.12 48 7.3 odd 6
735.2.y.j.263.1 48 7.5 odd 6
735.2.y.j.263.12 48 21.5 even 6
735.2.y.j.422.1 48 105.17 odd 12
735.2.y.j.422.12 48 35.17 even 12
735.2.y.j.557.1 48 35.12 even 12
735.2.y.j.557.12 48 105.47 odd 12