Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [735,2,Mod(197,735)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(735, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("735.197");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 735.j (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.86900454856\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 105) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
197.1 | −1.79963 | + | 1.79963i | 1.66094 | + | 0.491204i | − | 4.47734i | −1.87996 | + | 1.21069i | −3.87306 | + | 2.10509i | 0 | 4.45829 | + | 4.45829i | 2.51744 | + | 1.63172i | 1.20443 | − | 5.56202i | |||
197.2 | −1.54414 | + | 1.54414i | 0.00622252 | − | 1.73204i | − | 2.76875i | −0.252500 | − | 2.22177i | 2.66491 | + | 2.68412i | 0 | 1.18705 | + | 1.18705i | −2.99992 | − | 0.0215553i | 3.82062 | + | 3.04083i | |||
197.3 | −1.24414 | + | 1.24414i | −1.66575 | + | 0.474620i | − | 1.09578i | −1.67522 | + | 1.48109i | 1.48194 | − | 2.66293i | 0 | −1.12498 | − | 1.12498i | 2.54947 | − | 1.58120i | 0.241524 | − | 3.92690i | |||
197.4 | −0.800553 | + | 0.800553i | 1.34285 | − | 1.09397i | 0.718229i | 2.10480 | + | 0.754855i | −0.199242 | + | 1.95080i | 0 | −2.17609 | − | 2.17609i | 0.606476 | − | 2.93806i | −2.28931 | + | 1.08070i | ||||
197.5 | −0.347054 | + | 0.347054i | −1.72305 | + | 0.176396i | 1.75911i | 1.16790 | − | 1.90683i | 0.536770 | − | 0.659208i | 0 | −1.30461 | − | 1.30461i | 2.93777 | − | 0.607876i | 0.256447 | + | 1.06710i | ||||
197.6 | −0.260263 | + | 0.260263i | 1.52191 | + | 0.826909i | 1.86453i | −0.895238 | − | 2.04904i | −0.611312 | + | 0.180884i | 0 | −1.00579 | − | 1.00579i | 1.63244 | + | 2.51697i | 0.766286 | + | 0.300291i | ||||
197.7 | 0.260263 | − | 0.260263i | −0.826909 | − | 1.52191i | 1.86453i | 0.895238 | + | 2.04904i | −0.611312 | − | 0.180884i | 0 | 1.00579 | + | 1.00579i | −1.63244 | + | 2.51697i | 0.766286 | + | 0.300291i | ||||
197.8 | 0.347054 | − | 0.347054i | −0.176396 | + | 1.72305i | 1.75911i | −1.16790 | + | 1.90683i | 0.536770 | + | 0.659208i | 0 | 1.30461 | + | 1.30461i | −2.93777 | − | 0.607876i | 0.256447 | + | 1.06710i | ||||
197.9 | 0.800553 | − | 0.800553i | 1.09397 | − | 1.34285i | 0.718229i | −2.10480 | − | 0.754855i | −0.199242 | − | 1.95080i | 0 | 2.17609 | + | 2.17609i | −0.606476 | − | 2.93806i | −2.28931 | + | 1.08070i | ||||
197.10 | 1.24414 | − | 1.24414i | −0.474620 | + | 1.66575i | − | 1.09578i | 1.67522 | − | 1.48109i | 1.48194 | + | 2.66293i | 0 | 1.12498 | + | 1.12498i | −2.54947 | − | 1.58120i | 0.241524 | − | 3.92690i | |||
197.11 | 1.54414 | − | 1.54414i | 1.73204 | − | 0.00622252i | − | 2.76875i | 0.252500 | + | 2.22177i | 2.66491 | − | 2.68412i | 0 | −1.18705 | − | 1.18705i | 2.99992 | − | 0.0215553i | 3.82062 | + | 3.04083i | |||
197.12 | 1.79963 | − | 1.79963i | −0.491204 | − | 1.66094i | − | 4.47734i | 1.87996 | − | 1.21069i | −3.87306 | − | 2.10509i | 0 | −4.45829 | − | 4.45829i | −2.51744 | + | 1.63172i | 1.20443 | − | 5.56202i | |||
638.1 | −1.79963 | − | 1.79963i | 1.66094 | − | 0.491204i | 4.47734i | −1.87996 | − | 1.21069i | −3.87306 | − | 2.10509i | 0 | 4.45829 | − | 4.45829i | 2.51744 | − | 1.63172i | 1.20443 | + | 5.56202i | ||||
638.2 | −1.54414 | − | 1.54414i | 0.00622252 | + | 1.73204i | 2.76875i | −0.252500 | + | 2.22177i | 2.66491 | − | 2.68412i | 0 | 1.18705 | − | 1.18705i | −2.99992 | + | 0.0215553i | 3.82062 | − | 3.04083i | ||||
638.3 | −1.24414 | − | 1.24414i | −1.66575 | − | 0.474620i | 1.09578i | −1.67522 | − | 1.48109i | 1.48194 | + | 2.66293i | 0 | −1.12498 | + | 1.12498i | 2.54947 | + | 1.58120i | 0.241524 | + | 3.92690i | ||||
638.4 | −0.800553 | − | 0.800553i | 1.34285 | + | 1.09397i | − | 0.718229i | 2.10480 | − | 0.754855i | −0.199242 | − | 1.95080i | 0 | −2.17609 | + | 2.17609i | 0.606476 | + | 2.93806i | −2.28931 | − | 1.08070i | |||
638.5 | −0.347054 | − | 0.347054i | −1.72305 | − | 0.176396i | − | 1.75911i | 1.16790 | + | 1.90683i | 0.536770 | + | 0.659208i | 0 | −1.30461 | + | 1.30461i | 2.93777 | + | 0.607876i | 0.256447 | − | 1.06710i | |||
638.6 | −0.260263 | − | 0.260263i | 1.52191 | − | 0.826909i | − | 1.86453i | −0.895238 | + | 2.04904i | −0.611312 | − | 0.180884i | 0 | −1.00579 | + | 1.00579i | 1.63244 | − | 2.51697i | 0.766286 | − | 0.300291i | |||
638.7 | 0.260263 | + | 0.260263i | −0.826909 | + | 1.52191i | − | 1.86453i | 0.895238 | − | 2.04904i | −0.611312 | + | 0.180884i | 0 | 1.00579 | − | 1.00579i | −1.63244 | − | 2.51697i | 0.766286 | − | 0.300291i | |||
638.8 | 0.347054 | + | 0.347054i | −0.176396 | − | 1.72305i | − | 1.75911i | −1.16790 | − | 1.90683i | 0.536770 | − | 0.659208i | 0 | 1.30461 | − | 1.30461i | −2.93777 | + | 0.607876i | 0.256447 | − | 1.06710i | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 735.2.j.h | 24 | |
3.b | odd | 2 | 1 | inner | 735.2.j.h | 24 | |
5.c | odd | 4 | 1 | inner | 735.2.j.h | 24 | |
7.b | odd | 2 | 1 | 105.2.j.a | ✓ | 24 | |
7.c | even | 3 | 2 | 735.2.y.g | 48 | ||
7.d | odd | 6 | 2 | 735.2.y.j | 48 | ||
15.e | even | 4 | 1 | inner | 735.2.j.h | 24 | |
21.c | even | 2 | 1 | 105.2.j.a | ✓ | 24 | |
21.g | even | 6 | 2 | 735.2.y.j | 48 | ||
21.h | odd | 6 | 2 | 735.2.y.g | 48 | ||
35.c | odd | 2 | 1 | 525.2.j.b | 24 | ||
35.f | even | 4 | 1 | 105.2.j.a | ✓ | 24 | |
35.f | even | 4 | 1 | 525.2.j.b | 24 | ||
35.k | even | 12 | 2 | 735.2.y.j | 48 | ||
35.l | odd | 12 | 2 | 735.2.y.g | 48 | ||
105.g | even | 2 | 1 | 525.2.j.b | 24 | ||
105.k | odd | 4 | 1 | 105.2.j.a | ✓ | 24 | |
105.k | odd | 4 | 1 | 525.2.j.b | 24 | ||
105.w | odd | 12 | 2 | 735.2.y.j | 48 | ||
105.x | even | 12 | 2 | 735.2.y.g | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.j.a | ✓ | 24 | 7.b | odd | 2 | 1 | |
105.2.j.a | ✓ | 24 | 21.c | even | 2 | 1 | |
105.2.j.a | ✓ | 24 | 35.f | even | 4 | 1 | |
105.2.j.a | ✓ | 24 | 105.k | odd | 4 | 1 | |
525.2.j.b | 24 | 35.c | odd | 2 | 1 | ||
525.2.j.b | 24 | 35.f | even | 4 | 1 | ||
525.2.j.b | 24 | 105.g | even | 2 | 1 | ||
525.2.j.b | 24 | 105.k | odd | 4 | 1 | ||
735.2.j.h | 24 | 1.a | even | 1 | 1 | trivial | |
735.2.j.h | 24 | 3.b | odd | 2 | 1 | inner | |
735.2.j.h | 24 | 5.c | odd | 4 | 1 | inner | |
735.2.j.h | 24 | 15.e | even | 4 | 1 | inner | |
735.2.y.g | 48 | 7.c | even | 3 | 2 | ||
735.2.y.g | 48 | 21.h | odd | 6 | 2 | ||
735.2.y.g | 48 | 35.l | odd | 12 | 2 | ||
735.2.y.g | 48 | 105.x | even | 12 | 2 | ||
735.2.y.j | 48 | 7.d | odd | 6 | 2 | ||
735.2.y.j | 48 | 21.g | even | 6 | 2 | ||
735.2.y.j | 48 | 35.k | even | 12 | 2 | ||
735.2.y.j | 48 | 105.w | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):
\( T_{2}^{24} + 76T_{2}^{20} + 1702T_{2}^{16} + 11860T_{2}^{12} + 15921T_{2}^{8} + 1160T_{2}^{4} + 16 \) |
\( T_{13}^{12} - 4 T_{13}^{11} + 8 T_{13}^{10} + 124 T_{13}^{9} + 625 T_{13}^{8} - 160 T_{13}^{7} + \cdots + 33856 \) |
\( T_{17}^{24} + 1218T_{17}^{20} + 405105T_{17}^{16} + 26412784T_{17}^{12} + 52126816T_{17}^{8} + 244992T_{17}^{4} + 256 \) |