Properties

Label 735.2.y.g.557.12
Level $735$
Weight $2$
Character 735.557
Analytic conductor $5.869$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [735,2,Mod(128,735)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(735, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 9, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("735.128");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.12
Character \(\chi\) \(=\) 735.557
Dual form 735.2.y.g.128.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.45834 + 0.658710i) q^{2} +(-1.25586 + 1.19281i) q^{3} +(3.87749 + 2.23867i) q^{4} +(1.98846 + 1.02275i) q^{5} +(-3.87306 + 2.10509i) q^{6} +(4.45829 + 4.45829i) q^{8} +(0.154393 - 2.99602i) q^{9} +(4.21463 + 3.82408i) q^{10} +(1.35854 + 0.784351i) q^{11} +(-7.53991 + 1.81365i) q^{12} +(-2.21881 + 2.21881i) q^{13} +(-3.71719 + 1.08744i) q^{15} +(3.54593 + 6.14174i) q^{16} +(-1.32034 - 4.92759i) q^{17} +(2.35306 - 7.26355i) q^{18} +(1.45527 - 0.840200i) q^{19} +(5.42066 + 8.41719i) q^{20} +(2.82308 + 2.82308i) q^{22} +(0.364506 - 1.36036i) q^{23} +(-10.9169 - 0.281103i) q^{24} +(2.90798 + 4.06739i) q^{25} +(-6.91613 + 3.99303i) q^{26} +(3.37980 + 3.94676i) q^{27} -8.91955 q^{29} +(-9.85442 + 0.224740i) q^{30} +(1.37417 - 2.38013i) q^{31} +(1.40779 + 5.25396i) q^{32} +(-2.64172 + 0.635440i) q^{33} -12.9834i q^{34} +(7.30576 - 11.2714i) q^{36} +(0.161183 - 0.601543i) q^{37} +(4.13100 - 1.10690i) q^{38} +(0.139900 - 5.43314i) q^{39} +(4.30546 + 13.4248i) q^{40} -6.44292i q^{41} +(-5.47734 + 5.47734i) q^{43} +(3.51180 + 6.08262i) q^{44} +(3.37118 - 5.79958i) q^{45} +(1.79216 - 3.10412i) q^{46} +(5.04552 + 1.35194i) q^{47} +(-11.7792 - 3.48356i) q^{48} +(4.46958 + 11.9145i) q^{50} +(7.53587 + 4.61346i) q^{51} +(-13.5706 + 3.63622i) q^{52} +(-3.87074 + 1.03716i) q^{53} +(5.70892 + 11.9288i) q^{54} +(1.89921 + 2.94909i) q^{55} +(-0.825420 + 2.79104i) q^{57} +(-21.9273 - 5.87540i) q^{58} +(2.77436 - 4.80533i) q^{59} +(-16.8478 - 4.10503i) q^{60} +(3.70333 + 6.41435i) q^{61} +(4.94599 - 4.94599i) q^{62} -0.340400i q^{64} +(-6.68129 + 2.14274i) q^{65} +(-6.91282 - 0.178000i) q^{66} +(5.12587 - 1.37347i) q^{67} +(5.91162 - 22.0625i) q^{68} +(1.16488 + 2.14321i) q^{69} -3.61943i q^{71} +(14.0455 - 12.6688i) q^{72} +(2.15859 + 8.05596i) q^{73} +(0.792485 - 1.37262i) q^{74} +(-8.50367 - 1.63941i) q^{75} +7.52372 q^{76} +(3.92279 - 13.2644i) q^{78} +(14.7720 - 8.52862i) q^{79} +(0.769530 + 15.8392i) q^{80} +(-8.95233 - 0.925133i) q^{81} +(4.24402 - 15.8389i) q^{82} +(-3.21312 - 3.21312i) q^{83} +(2.41421 - 11.1487i) q^{85} +(-17.0731 + 9.85718i) q^{86} +(11.2017 - 10.6394i) q^{87} +(2.55988 + 9.55360i) q^{88} +(-4.70137 - 8.14301i) q^{89} +(12.1077 - 12.0367i) q^{90} +(4.45876 - 4.45876i) q^{92} +(1.11328 + 4.62825i) q^{93} +(11.5131 + 6.64707i) q^{94} +(3.75306 - 0.182338i) q^{95} +(-8.03498 - 4.91902i) q^{96} +(-4.39640 - 4.39640i) q^{97} +(2.55968 - 3.94911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{3} - 16 q^{10} + 16 q^{12} + 16 q^{13} - 32 q^{15} + 16 q^{16} + 20 q^{18} + 16 q^{22} + 16 q^{25} + 32 q^{27} - 20 q^{30} + 28 q^{33} + 32 q^{36} + 16 q^{37} + 64 q^{40} - 80 q^{43} + 20 q^{45}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.45834 + 0.658710i 1.73831 + 0.465779i 0.982070 0.188517i \(-0.0603680\pi\)
0.756239 + 0.654295i \(0.227035\pi\)
\(3\) −1.25586 + 1.19281i −0.725074 + 0.688671i
\(4\) 3.87749 + 2.23867i 1.93874 + 1.11933i
\(5\) 1.98846 + 1.02275i 0.889268 + 0.457386i
\(6\) −3.87306 + 2.10509i −1.58117 + 0.859399i
\(7\) 0 0
\(8\) 4.45829 + 4.45829i 1.57624 + 1.57624i
\(9\) 0.154393 2.99602i 0.0514645 0.998675i
\(10\) 4.21463 + 3.82408i 1.33278 + 1.20928i
\(11\) 1.35854 + 0.784351i 0.409614 + 0.236491i 0.690624 0.723214i \(-0.257336\pi\)
−0.281010 + 0.959705i \(0.590669\pi\)
\(12\) −7.53991 + 1.81365i −2.17659 + 0.523556i
\(13\) −2.21881 + 2.21881i −0.615386 + 0.615386i −0.944345 0.328958i \(-0.893303\pi\)
0.328958 + 0.944345i \(0.393303\pi\)
\(14\) 0 0
\(15\) −3.71719 + 1.08744i −0.959774 + 0.280775i
\(16\) 3.54593 + 6.14174i 0.886484 + 1.53543i
\(17\) −1.32034 4.92759i −0.320230 1.19512i −0.919020 0.394210i \(-0.871018\pi\)
0.598790 0.800906i \(-0.295648\pi\)
\(18\) 2.35306 7.26355i 0.554622 1.71203i
\(19\) 1.45527 0.840200i 0.333862 0.192755i −0.323693 0.946162i \(-0.604924\pi\)
0.657554 + 0.753407i \(0.271591\pi\)
\(20\) 5.42066 + 8.41719i 1.21210 + 1.88214i
\(21\) 0 0
\(22\) 2.82308 + 2.82308i 0.601883 + 0.601883i
\(23\) 0.364506 1.36036i 0.0760049 0.283654i −0.917454 0.397841i \(-0.869760\pi\)
0.993459 + 0.114187i \(0.0364263\pi\)
\(24\) −10.9169 0.281103i −2.22841 0.0573799i
\(25\) 2.90798 + 4.06739i 0.581597 + 0.813477i
\(26\) −6.91613 + 3.99303i −1.35637 + 0.783098i
\(27\) 3.37980 + 3.94676i 0.650443 + 0.759555i
\(28\) 0 0
\(29\) −8.91955 −1.65632 −0.828159 0.560493i \(-0.810612\pi\)
−0.828159 + 0.560493i \(0.810612\pi\)
\(30\) −9.85442 + 0.224740i −1.79916 + 0.0410317i
\(31\) 1.37417 2.38013i 0.246808 0.427484i −0.715830 0.698274i \(-0.753952\pi\)
0.962638 + 0.270790i \(0.0872850\pi\)
\(32\) 1.40779 + 5.25396i 0.248865 + 0.928777i
\(33\) −2.64172 + 0.635440i −0.459865 + 0.110616i
\(34\) 12.9834i 2.22664i
\(35\) 0 0
\(36\) 7.30576 11.2714i 1.21763 1.87857i
\(37\) 0.161183 0.601543i 0.0264983 0.0988930i −0.951410 0.307926i \(-0.900365\pi\)
0.977909 + 0.209033i \(0.0670317\pi\)
\(38\) 4.13100 1.10690i 0.670136 0.179562i
\(39\) 0.139900 5.43314i 0.0224019 0.869999i
\(40\) 4.30546 + 13.4248i 0.680752 + 2.12265i
\(41\) 6.44292i 1.00622i −0.864224 0.503108i \(-0.832190\pi\)
0.864224 0.503108i \(-0.167810\pi\)
\(42\) 0 0
\(43\) −5.47734 + 5.47734i −0.835286 + 0.835286i −0.988234 0.152948i \(-0.951123\pi\)
0.152948 + 0.988234i \(0.451123\pi\)
\(44\) 3.51180 + 6.08262i 0.529424 + 0.916989i
\(45\) 3.37118 5.79958i 0.502545 0.864551i
\(46\) 1.79216 3.10412i 0.264240 0.457677i
\(47\) 5.04552 + 1.35194i 0.735965 + 0.197201i 0.607284 0.794485i \(-0.292259\pi\)
0.128681 + 0.991686i \(0.458926\pi\)
\(48\) −11.7792 3.48356i −1.70018 0.502808i
\(49\) 0 0
\(50\) 4.46958 + 11.9145i 0.632095 + 1.68497i
\(51\) 7.53587 + 4.61346i 1.05523 + 0.646014i
\(52\) −13.5706 + 3.63622i −1.88190 + 0.504253i
\(53\) −3.87074 + 1.03716i −0.531687 + 0.142465i −0.514667 0.857390i \(-0.672084\pi\)
−0.0170196 + 0.999855i \(0.505418\pi\)
\(54\) 5.70892 + 11.9288i 0.776886 + 1.62330i
\(55\) 1.89921 + 2.94909i 0.256089 + 0.397655i
\(56\) 0 0
\(57\) −0.825420 + 2.79104i −0.109330 + 0.369683i
\(58\) −21.9273 5.87540i −2.87919 0.771478i
\(59\) 2.77436 4.80533i 0.361191 0.625600i −0.626967 0.779046i \(-0.715704\pi\)
0.988157 + 0.153446i \(0.0490371\pi\)
\(60\) −16.8478 4.10503i −2.17504 0.529957i
\(61\) 3.70333 + 6.41435i 0.474162 + 0.821273i 0.999562 0.0295820i \(-0.00941760\pi\)
−0.525400 + 0.850855i \(0.676084\pi\)
\(62\) 4.94599 4.94599i 0.628141 0.628141i
\(63\) 0 0
\(64\) 0.340400i 0.0425500i
\(65\) −6.68129 + 2.14274i −0.828713 + 0.265775i
\(66\) −6.91282 0.178000i −0.850909 0.0219103i
\(67\) 5.12587 1.37347i 0.626225 0.167797i 0.0682690 0.997667i \(-0.478252\pi\)
0.557956 + 0.829870i \(0.311586\pi\)
\(68\) 5.91162 22.0625i 0.716890 2.67547i
\(69\) 1.16488 + 2.14321i 0.140235 + 0.258012i
\(70\) 0 0
\(71\) 3.61943i 0.429548i −0.976664 0.214774i \(-0.931099\pi\)
0.976664 0.214774i \(-0.0689015\pi\)
\(72\) 14.0455 12.6688i 1.65527 1.49303i
\(73\) 2.15859 + 8.05596i 0.252644 + 0.942878i 0.969386 + 0.245541i \(0.0789655\pi\)
−0.716743 + 0.697338i \(0.754368\pi\)
\(74\) 0.792485 1.37262i 0.0921245 0.159564i
\(75\) −8.50367 1.63941i −0.981919 0.189302i
\(76\) 7.52372 0.863030
\(77\) 0 0
\(78\) 3.92279 13.2644i 0.444168 1.50189i
\(79\) 14.7720 8.52862i 1.66198 0.959544i 0.690211 0.723608i \(-0.257518\pi\)
0.971769 0.235936i \(-0.0758156\pi\)
\(80\) 0.769530 + 15.8392i 0.0860361 + 1.77088i
\(81\) −8.95233 0.925133i −0.994703 0.102793i
\(82\) 4.24402 15.8389i 0.468674 1.74911i
\(83\) −3.21312 3.21312i −0.352686 0.352686i 0.508422 0.861108i \(-0.330229\pi\)
−0.861108 + 0.508422i \(0.830229\pi\)
\(84\) 0 0
\(85\) 2.41421 11.1487i 0.261858 1.20925i
\(86\) −17.0731 + 9.85718i −1.84104 + 1.06293i
\(87\) 11.2017 10.6394i 1.20095 1.14066i
\(88\) 2.55988 + 9.55360i 0.272884 + 1.01842i
\(89\) −4.70137 8.14301i −0.498344 0.863157i 0.501654 0.865068i \(-0.332725\pi\)
−0.999998 + 0.00191126i \(0.999392\pi\)
\(90\) 12.1077 12.0367i 1.27627 1.26878i
\(91\) 0 0
\(92\) 4.45876 4.45876i 0.464858 0.464858i
\(93\) 1.11328 + 4.62825i 0.115442 + 0.479927i
\(94\) 11.5131 + 6.64707i 1.18748 + 0.685593i
\(95\) 3.75306 0.182338i 0.385056 0.0187075i
\(96\) −8.03498 4.91902i −0.820067 0.502046i
\(97\) −4.39640 4.39640i −0.446386 0.446386i 0.447765 0.894151i \(-0.352220\pi\)
−0.894151 + 0.447765i \(0.852220\pi\)
\(98\) 0 0
\(99\) 2.55968 3.94911i 0.257258 0.396900i
\(100\) 2.17014 + 22.2812i 0.217014 + 2.22812i
\(101\) 0.875832 + 0.505662i 0.0871485 + 0.0503152i 0.542941 0.839771i \(-0.317311\pi\)
−0.455792 + 0.890086i \(0.650644\pi\)
\(102\) 15.4868 + 16.3054i 1.53342 + 1.61448i
\(103\) −5.50588 1.47530i −0.542511 0.145365i −0.0228513 0.999739i \(-0.507274\pi\)
−0.519659 + 0.854374i \(0.673941\pi\)
\(104\) −19.7842 −1.94000
\(105\) 0 0
\(106\) −10.1988 −0.990593
\(107\) −3.84892 1.03131i −0.372089 0.0997009i 0.0679285 0.997690i \(-0.478361\pi\)
−0.440017 + 0.897989i \(0.645028\pi\)
\(108\) 4.26963 + 22.8698i 0.410846 + 2.20065i
\(109\) 5.56202 + 3.21123i 0.532744 + 0.307580i 0.742133 0.670252i \(-0.233814\pi\)
−0.209389 + 0.977832i \(0.567147\pi\)
\(110\) 2.72630 + 8.50089i 0.259943 + 0.810528i
\(111\) 0.515104 + 0.947718i 0.0488915 + 0.0899534i
\(112\) 0 0
\(113\) 3.29246 + 3.29246i 0.309729 + 0.309729i 0.844804 0.535075i \(-0.179717\pi\)
−0.535075 + 0.844804i \(0.679717\pi\)
\(114\) −3.86765 + 6.31762i −0.362239 + 0.591699i
\(115\) 2.11611 2.33222i 0.197328 0.217481i
\(116\) −34.5854 19.9679i −3.21118 1.85397i
\(117\) 6.30503 + 6.99017i 0.582900 + 0.646241i
\(118\) 9.98563 9.98563i 0.919252 0.919252i
\(119\) 0 0
\(120\) −21.4204 11.7242i −1.95541 1.07027i
\(121\) −4.26959 7.39514i −0.388144 0.672286i
\(122\) 4.87884 + 18.2081i 0.441709 + 1.64848i
\(123\) 7.68520 + 8.09144i 0.692951 + 0.729581i
\(124\) 10.6566 6.15262i 0.956995 0.552521i
\(125\) 1.62252 + 11.0620i 0.145123 + 0.989414i
\(126\) 0 0
\(127\) 14.2818 + 14.2818i 1.26730 + 1.26730i 0.947476 + 0.319826i \(0.103624\pi\)
0.319826 + 0.947476i \(0.396376\pi\)
\(128\) 3.03981 11.3447i 0.268684 1.00274i
\(129\) 0.345356 13.4122i 0.0304069 1.18088i
\(130\) −17.8363 + 0.866558i −1.56435 + 0.0760022i
\(131\) 4.24118 2.44864i 0.370553 0.213939i −0.303147 0.952944i \(-0.598037\pi\)
0.673700 + 0.739005i \(0.264704\pi\)
\(132\) −11.6658 3.45002i −1.01538 0.300286i
\(133\) 0 0
\(134\) 13.5059 1.16673
\(135\) 2.68408 + 11.3047i 0.231009 + 0.972952i
\(136\) 16.0821 27.8551i 1.37903 2.38856i
\(137\) −1.66864 6.22744i −0.142561 0.532046i −0.999852 0.0172133i \(-0.994521\pi\)
0.857290 0.514833i \(-0.172146\pi\)
\(138\) 1.45192 + 6.03606i 0.123595 + 0.513824i
\(139\) 10.2045i 0.865536i 0.901505 + 0.432768i \(0.142463\pi\)
−0.901505 + 0.432768i \(0.857537\pi\)
\(140\) 0 0
\(141\) −7.94911 + 4.32050i −0.669435 + 0.363852i
\(142\) 2.38416 8.89780i 0.200074 0.746687i
\(143\) −4.75465 + 1.27400i −0.397604 + 0.106538i
\(144\) 18.9483 9.67546i 1.57902 0.806289i
\(145\) −17.7362 9.12243i −1.47291 0.757576i
\(146\) 21.2262i 1.75669i
\(147\) 0 0
\(148\) 1.97164 1.97164i 0.162068 0.162068i
\(149\) 0.461562 + 0.799449i 0.0378126 + 0.0654934i 0.884312 0.466896i \(-0.154628\pi\)
−0.846500 + 0.532389i \(0.821294\pi\)
\(150\) −19.8250 9.63167i −1.61871 0.786423i
\(151\) 6.86549 11.8914i 0.558705 0.967706i −0.438900 0.898536i \(-0.644632\pi\)
0.997605 0.0691699i \(-0.0220350\pi\)
\(152\) 10.2339 + 2.74216i 0.830077 + 0.222418i
\(153\) −14.9670 + 3.19499i −1.21001 + 0.258300i
\(154\) 0 0
\(155\) 5.16675 3.32738i 0.415004 0.267262i
\(156\) 12.7055 20.7538i 1.01725 1.66163i
\(157\) −18.7434 + 5.02228i −1.49589 + 0.400822i −0.911720 0.410812i \(-0.865245\pi\)
−0.584166 + 0.811634i \(0.698578\pi\)
\(158\) 41.9325 11.2358i 3.33597 0.893870i
\(159\) 3.62398 5.91960i 0.287401 0.469455i
\(160\) −2.57411 + 11.8871i −0.203501 + 0.939759i
\(161\) 0 0
\(162\) −21.3985 8.17128i −1.68122 0.641997i
\(163\) −9.02349 2.41784i −0.706775 0.189380i −0.112512 0.993650i \(-0.535890\pi\)
−0.594263 + 0.804271i \(0.702556\pi\)
\(164\) 14.4236 24.9823i 1.12629 1.95079i
\(165\) −5.90286 1.43826i −0.459537 0.111968i
\(166\) −5.78243 10.0155i −0.448804 0.777350i
\(167\) 3.11442 3.11442i 0.241001 0.241001i −0.576263 0.817264i \(-0.695490\pi\)
0.817264 + 0.576263i \(0.195490\pi\)
\(168\) 0 0
\(169\) 3.15379i 0.242599i
\(170\) 13.2787 25.8171i 1.01843 1.98008i
\(171\) −2.29258 4.48975i −0.175318 0.343339i
\(172\) −33.5002 + 8.97636i −2.55437 + 0.684441i
\(173\) −2.97531 + 11.1040i −0.226209 + 0.844222i 0.755708 + 0.654909i \(0.227293\pi\)
−0.981917 + 0.189313i \(0.939374\pi\)
\(174\) 34.5460 18.7764i 2.61892 1.42344i
\(175\) 0 0
\(176\) 11.1250i 0.838580i
\(177\) 2.24764 + 9.34413i 0.168943 + 0.702348i
\(178\) −6.19368 23.1151i −0.464236 1.73255i
\(179\) −8.29901 + 14.3743i −0.620297 + 1.07439i 0.369133 + 0.929377i \(0.379655\pi\)
−0.989430 + 0.145010i \(0.953679\pi\)
\(180\) 26.0550 14.9409i 1.94203 1.11363i
\(181\) −11.6532 −0.866174 −0.433087 0.901352i \(-0.642576\pi\)
−0.433087 + 0.901352i \(0.642576\pi\)
\(182\) 0 0
\(183\) −12.3020 3.63818i −0.909390 0.268942i
\(184\) 7.68994 4.43979i 0.566910 0.327306i
\(185\) 0.935732 1.03130i 0.0687964 0.0758225i
\(186\) −0.311853 + 12.1111i −0.0228662 + 0.888032i
\(187\) 2.07123 7.72992i 0.151463 0.565268i
\(188\) 16.5374 + 16.5374i 1.20611 + 1.20611i
\(189\) 0 0
\(190\) 9.34642 + 2.02393i 0.678060 + 0.146831i
\(191\) 11.1322 6.42717i 0.805497 0.465054i −0.0398927 0.999204i \(-0.512702\pi\)
0.845390 + 0.534150i \(0.179368\pi\)
\(192\) 0.406034 + 0.427497i 0.0293030 + 0.0308519i
\(193\) −2.95074 11.0123i −0.212399 0.792684i −0.987066 0.160315i \(-0.948749\pi\)
0.774667 0.632370i \(-0.217918\pi\)
\(194\) −7.91189 13.7038i −0.568040 0.983875i
\(195\) 5.83491 10.6605i 0.417847 0.763417i
\(196\) 0 0
\(197\) −18.7512 + 18.7512i −1.33597 + 1.33597i −0.436036 + 0.899929i \(0.643618\pi\)
−0.899929 + 0.436036i \(0.856382\pi\)
\(198\) 8.89389 8.02216i 0.632061 0.570110i
\(199\) −3.64362 2.10364i −0.258289 0.149123i 0.365265 0.930904i \(-0.380978\pi\)
−0.623554 + 0.781780i \(0.714312\pi\)
\(200\) −5.16895 + 31.0982i −0.365500 + 2.19898i
\(201\) −4.79911 + 7.83911i −0.338503 + 0.552928i
\(202\) 1.82001 + 1.82001i 0.128055 + 0.128055i
\(203\) 0 0
\(204\) 18.8922 + 34.7590i 1.32272 + 2.43361i
\(205\) 6.58947 12.8115i 0.460229 0.894796i
\(206\) −12.5635 7.25356i −0.875343 0.505380i
\(207\) −4.01938 1.30210i −0.279367 0.0905022i
\(208\) −21.4951 5.75959i −1.49042 0.399356i
\(209\) 2.63605 0.182339
\(210\) 0 0
\(211\) −21.5211 −1.48158 −0.740788 0.671739i \(-0.765548\pi\)
−0.740788 + 0.671739i \(0.765548\pi\)
\(212\) −17.3306 4.64372i −1.19027 0.318932i
\(213\) 4.31731 + 4.54552i 0.295817 + 0.311454i
\(214\) −8.78261 5.07064i −0.600367 0.346622i
\(215\) −16.4934 + 5.28957i −1.12484 + 0.360746i
\(216\) −2.52769 + 32.6639i −0.171988 + 2.22250i
\(217\) 0 0
\(218\) 11.5581 + 11.5581i 0.782810 + 0.782810i
\(219\) −12.3201 7.54240i −0.832518 0.509668i
\(220\) 0.762123 + 15.6868i 0.0513823 + 1.05760i
\(221\) 13.8630 + 8.00378i 0.932524 + 0.538393i
\(222\) 0.642030 + 2.66912i 0.0430902 + 0.179139i
\(223\) −12.4001 + 12.4001i −0.830375 + 0.830375i −0.987568 0.157193i \(-0.949756\pi\)
0.157193 + 0.987568i \(0.449756\pi\)
\(224\) 0 0
\(225\) 12.6350 8.08441i 0.842331 0.538961i
\(226\) 5.92522 + 10.2628i 0.394139 + 0.682670i
\(227\) 3.18646 + 11.8920i 0.211493 + 0.789301i 0.987372 + 0.158420i \(0.0506399\pi\)
−0.775879 + 0.630881i \(0.782693\pi\)
\(228\) −9.44878 + 8.97439i −0.625761 + 0.594344i
\(229\) 3.86544 2.23171i 0.255435 0.147476i −0.366815 0.930294i \(-0.619552\pi\)
0.622251 + 0.782818i \(0.286219\pi\)
\(230\) 6.73837 4.33950i 0.444315 0.286138i
\(231\) 0 0
\(232\) −39.7659 39.7659i −2.61076 2.61076i
\(233\) −2.06497 + 7.70659i −0.135281 + 0.504875i 0.864716 + 0.502262i \(0.167499\pi\)
−0.999997 + 0.00261362i \(0.999168\pi\)
\(234\) 10.8954 + 21.3374i 0.712256 + 1.39487i
\(235\) 8.65014 + 7.84857i 0.564273 + 0.511984i
\(236\) 21.5151 12.4217i 1.40051 0.808586i
\(237\) −8.37859 + 28.3310i −0.544248 + 1.84030i
\(238\) 0 0
\(239\) 11.8594 0.767124 0.383562 0.923515i \(-0.374697\pi\)
0.383562 + 0.923515i \(0.374697\pi\)
\(240\) −19.8597 18.9740i −1.28194 1.22477i
\(241\) −9.03617 + 15.6511i −0.582071 + 1.00818i 0.413163 + 0.910657i \(0.364424\pi\)
−0.995234 + 0.0975190i \(0.968909\pi\)
\(242\) −5.62484 20.9922i −0.361579 1.34943i
\(243\) 12.3464 9.51661i 0.792023 0.610491i
\(244\) 33.1621i 2.12298i
\(245\) 0 0
\(246\) 13.5629 + 24.9538i 0.864741 + 1.59100i
\(247\) −1.36472 + 5.09321i −0.0868351 + 0.324073i
\(248\) 16.7378 4.48487i 1.06285 0.284789i
\(249\) 7.86790 + 0.202593i 0.498608 + 0.0128388i
\(250\) −3.29793 + 28.2629i −0.208579 + 1.78750i
\(251\) 3.19253i 0.201511i 0.994911 + 0.100755i \(0.0321259\pi\)
−0.994911 + 0.100755i \(0.967874\pi\)
\(252\) 0 0
\(253\) 1.56219 1.56219i 0.0982141 0.0982141i
\(254\) 25.7019 + 44.5170i 1.61268 + 2.79324i
\(255\) 10.2664 + 16.8810i 0.642907 + 1.05713i
\(256\) 14.6054 25.2973i 0.912836 1.58108i
\(257\) 16.1352 + 4.32342i 1.00649 + 0.269687i 0.724161 0.689631i \(-0.242227\pi\)
0.282326 + 0.959319i \(0.408894\pi\)
\(258\) 9.68378 32.7443i 0.602886 2.03857i
\(259\) 0 0
\(260\) −30.7035 6.64874i −1.90415 0.412337i
\(261\) −1.37712 + 26.7232i −0.0852416 + 1.65412i
\(262\) 12.0392 3.22589i 0.743784 0.199296i
\(263\) −17.9635 + 4.81330i −1.10768 + 0.296801i −0.765886 0.642976i \(-0.777699\pi\)
−0.341789 + 0.939777i \(0.611033\pi\)
\(264\) −14.6105 8.94458i −0.899216 0.550501i
\(265\) −8.75757 1.89642i −0.537974 0.116496i
\(266\) 0 0
\(267\) 15.6174 + 4.61866i 0.955767 + 0.282658i
\(268\) 22.9503 + 6.14950i 1.40191 + 0.375641i
\(269\) −14.6703 + 25.4096i −0.894461 + 1.54925i −0.0599909 + 0.998199i \(0.519107\pi\)
−0.834470 + 0.551053i \(0.814226\pi\)
\(270\) −0.848131 + 29.5588i −0.0516156 + 1.79889i
\(271\) 1.59183 + 2.75713i 0.0966968 + 0.167484i 0.910316 0.413915i \(-0.135839\pi\)
−0.813619 + 0.581399i \(0.802506\pi\)
\(272\) 25.5821 25.5821i 1.55114 1.55114i
\(273\) 0 0
\(274\) 16.4083i 0.991263i
\(275\) 0.760341 + 7.80657i 0.0458503 + 0.470754i
\(276\) −0.281132 + 10.9181i −0.0169222 + 0.657190i
\(277\) −23.0361 + 6.17251i −1.38411 + 0.370870i −0.872611 0.488416i \(-0.837575\pi\)
−0.511495 + 0.859286i \(0.670908\pi\)
\(278\) −6.72182 + 25.0862i −0.403148 + 1.50457i
\(279\) −6.91877 4.48452i −0.414216 0.268481i
\(280\) 0 0
\(281\) 24.8052i 1.47975i −0.672742 0.739877i \(-0.734884\pi\)
0.672742 0.739877i \(-0.265116\pi\)
\(282\) −22.3876 + 5.38511i −1.33316 + 0.320679i
\(283\) −1.98356 7.40274i −0.117910 0.440047i 0.881578 0.472039i \(-0.156482\pi\)
−0.999488 + 0.0319914i \(0.989815\pi\)
\(284\) 8.10271 14.0343i 0.480807 0.832783i
\(285\) −4.49585 + 4.70570i −0.266311 + 0.278741i
\(286\) −12.5277 −0.740781
\(287\) 0 0
\(288\) 15.9583 3.40661i 0.940354 0.200736i
\(289\) −7.81541 + 4.51223i −0.459730 + 0.265425i
\(290\) −37.5926 34.1091i −2.20751 2.00295i
\(291\) 10.7654 + 0.277201i 0.631077 + 0.0162498i
\(292\) −9.66472 + 36.0692i −0.565585 + 2.11079i
\(293\) −8.60739 8.60739i −0.502849 0.502849i 0.409473 0.912322i \(-0.365712\pi\)
−0.912322 + 0.409473i \(0.865712\pi\)
\(294\) 0 0
\(295\) 10.4313 6.71776i 0.607336 0.391123i
\(296\) 3.40045 1.96325i 0.197647 0.114112i
\(297\) 1.49593 + 8.01277i 0.0868027 + 0.464948i
\(298\) 0.608072 + 2.26935i 0.0352246 + 0.131460i
\(299\) 2.20960 + 3.82714i 0.127784 + 0.221329i
\(300\) −29.3028 25.3937i −1.69180 1.46610i
\(301\) 0 0
\(302\) 24.7107 24.7107i 1.42194 1.42194i
\(303\) −1.70309 + 0.409661i −0.0978397 + 0.0235344i
\(304\) 10.3206 + 5.95859i 0.591926 + 0.341749i
\(305\) 0.803687 + 16.5423i 0.0460190 + 0.947208i
\(306\) −38.8986 2.00456i −2.22369 0.114593i
\(307\) 11.8525 + 11.8525i 0.676457 + 0.676457i 0.959197 0.282740i \(-0.0912434\pi\)
−0.282740 + 0.959197i \(0.591243\pi\)
\(308\) 0 0
\(309\) 8.67440 4.71471i 0.493469 0.268211i
\(310\) 14.8934 4.77644i 0.845889 0.271283i
\(311\) 25.3572 + 14.6400i 1.43788 + 0.830158i 0.997702 0.0677541i \(-0.0215833\pi\)
0.440174 + 0.897912i \(0.354917\pi\)
\(312\) 24.8462 23.5988i 1.40664 1.33602i
\(313\) 1.67444 + 0.448664i 0.0946448 + 0.0253600i 0.305831 0.952086i \(-0.401066\pi\)
−0.211186 + 0.977446i \(0.567733\pi\)
\(314\) −49.3859 −2.78701
\(315\) 0 0
\(316\) 76.3710 4.29620
\(317\) 5.87608 + 1.57449i 0.330034 + 0.0884322i 0.420031 0.907510i \(-0.362019\pi\)
−0.0899974 + 0.995942i \(0.528686\pi\)
\(318\) 12.8083 12.1652i 0.718253 0.682192i
\(319\) −12.1175 6.99605i −0.678451 0.391704i
\(320\) 0.348143 0.676874i 0.0194618 0.0378384i
\(321\) 6.06388 3.29585i 0.338453 0.183956i
\(322\) 0 0
\(323\) −6.06162 6.06162i −0.337278 0.337278i
\(324\) −32.6415 23.6285i −1.81341 1.31269i
\(325\) −15.4770 2.57249i −0.858510 0.142696i
\(326\) −20.5902 11.8877i −1.14038 0.658401i
\(327\) −10.8155 + 2.60157i −0.598101 + 0.143867i
\(328\) 28.7244 28.7244i 1.58604 1.58604i
\(329\) 0 0
\(330\) −13.5638 7.42400i −0.746665 0.408678i
\(331\) −16.6301 28.8042i −0.914074 1.58322i −0.808252 0.588837i \(-0.799586\pi\)
−0.105822 0.994385i \(-0.533747\pi\)
\(332\) −5.26572 19.6519i −0.288994 1.07854i
\(333\) −1.77735 0.575782i −0.0973983 0.0315527i
\(334\) 9.70781 5.60481i 0.531188 0.306681i
\(335\) 11.5973 + 2.51136i 0.633630 + 0.137210i
\(336\) 0 0
\(337\) 10.3056 + 10.3056i 0.561383 + 0.561383i 0.929700 0.368317i \(-0.120066\pi\)
−0.368317 + 0.929700i \(0.620066\pi\)
\(338\) −2.07743 + 7.75309i −0.112997 + 0.421712i
\(339\) −8.06218 0.207596i −0.437878 0.0112750i
\(340\) 34.3194 37.8244i 1.86123 2.05131i
\(341\) 3.73371 2.15566i 0.202192 0.116736i
\(342\) −2.67849 12.5475i −0.144836 0.678489i
\(343\) 0 0
\(344\) −48.8391 −2.63323
\(345\) 0.124363 + 5.45308i 0.00669548 + 0.293584i
\(346\) −14.6286 + 25.3376i −0.786441 + 1.36216i
\(347\) 7.03650 + 26.2606i 0.377739 + 1.40974i 0.849301 + 0.527909i \(0.177024\pi\)
−0.471562 + 0.881833i \(0.656309\pi\)
\(348\) 67.2526 16.1770i 3.60512 0.867176i
\(349\) 30.1301i 1.61283i −0.591353 0.806413i \(-0.701406\pi\)
0.591353 0.806413i \(-0.298594\pi\)
\(350\) 0 0
\(351\) −16.2562 1.25799i −0.867694 0.0671463i
\(352\) −2.20841 + 8.24189i −0.117708 + 0.439294i
\(353\) −23.2688 + 6.23486i −1.23847 + 0.331848i −0.817873 0.575398i \(-0.804847\pi\)
−0.420600 + 0.907246i \(0.638180\pi\)
\(354\) −0.629612 + 24.4516i −0.0334635 + 1.29959i
\(355\) 3.70176 7.19712i 0.196469 0.381983i
\(356\) 42.0992i 2.23125i
\(357\) 0 0
\(358\) −29.8703 + 29.8703i −1.57869 + 1.57869i
\(359\) −0.368991 0.639111i −0.0194746 0.0337310i 0.856124 0.516771i \(-0.172866\pi\)
−0.875598 + 0.483040i \(0.839533\pi\)
\(360\) 40.8859 10.8265i 2.15488 0.570609i
\(361\) −8.08813 + 14.0090i −0.425691 + 0.737318i
\(362\) −28.6475 7.67607i −1.50568 0.403445i
\(363\) 14.1831 + 4.19448i 0.744417 + 0.220153i
\(364\) 0 0
\(365\) −3.94692 + 18.2267i −0.206591 + 0.954028i
\(366\) −27.8460 17.0473i −1.45553 0.891079i
\(367\) 31.8179 8.52557i 1.66088 0.445031i 0.698250 0.715854i \(-0.253962\pi\)
0.962629 + 0.270822i \(0.0872956\pi\)
\(368\) 9.64747 2.58503i 0.502909 0.134754i
\(369\) −19.3032 0.994745i −1.00488 0.0517844i
\(370\) 2.97967 1.91890i 0.154906 0.0997591i
\(371\) 0 0
\(372\) −6.04438 + 20.4382i −0.313387 + 1.05967i
\(373\) 7.21411 + 1.93302i 0.373533 + 0.100088i 0.440701 0.897654i \(-0.354730\pi\)
−0.0671685 + 0.997742i \(0.521397\pi\)
\(374\) 10.1836 17.6384i 0.526579 0.912062i
\(375\) −15.2325 11.9570i −0.786605 0.617456i
\(376\) 16.4670 + 28.5217i 0.849222 + 1.47090i
\(377\) 19.7908 19.7908i 1.01928 1.01928i
\(378\) 0 0
\(379\) 3.38353i 0.173800i 0.996217 + 0.0869000i \(0.0276961\pi\)
−0.996217 + 0.0869000i \(0.972304\pi\)
\(380\) 14.9607 + 7.69485i 0.767465 + 0.394738i
\(381\) −34.9715 0.900491i −1.79164 0.0461335i
\(382\) 31.6004 8.46729i 1.61681 0.433224i
\(383\) −1.04955 + 3.91696i −0.0536293 + 0.200147i −0.987542 0.157353i \(-0.949704\pi\)
0.933913 + 0.357500i \(0.116371\pi\)
\(384\) 9.71455 + 17.8734i 0.495744 + 0.912097i
\(385\) 0 0
\(386\) 29.0157i 1.47686i
\(387\) 15.5646 + 17.2559i 0.791192 + 0.877167i
\(388\) −7.20490 26.8890i −0.365773 1.36508i
\(389\) 5.10508 8.84225i 0.258838 0.448320i −0.707093 0.707120i \(-0.749994\pi\)
0.965931 + 0.258800i \(0.0833272\pi\)
\(390\) 21.3664 22.3637i 1.08193 1.13243i
\(391\) −7.18455 −0.363339
\(392\) 0 0
\(393\) −2.40557 + 8.13410i −0.121345 + 0.410311i
\(394\) −58.4483 + 33.7452i −2.94458 + 1.70006i
\(395\) 38.0962 1.85086i 1.91683 0.0931269i
\(396\) 18.7659 9.58233i 0.943021 0.481530i
\(397\) 8.80417 32.8576i 0.441869 1.64908i −0.282205 0.959354i \(-0.591066\pi\)
0.724074 0.689723i \(-0.242268\pi\)
\(398\) −7.57156 7.57156i −0.379528 0.379528i
\(399\) 0 0
\(400\) −14.6693 + 32.2828i −0.733465 + 1.61414i
\(401\) 17.3995 10.0456i 0.868891 0.501654i 0.00191140 0.999998i \(-0.499392\pi\)
0.866980 + 0.498344i \(0.166058\pi\)
\(402\) −16.9615 + 16.1100i −0.845965 + 0.803492i
\(403\) 2.23203 + 8.33007i 0.111186 + 0.414950i
\(404\) 2.26402 + 3.92139i 0.112639 + 0.195097i
\(405\) −16.8552 10.9955i −0.837542 0.546373i
\(406\) 0 0
\(407\) 0.690793 0.690793i 0.0342413 0.0342413i
\(408\) 13.0289 + 54.1652i 0.645028 + 2.68158i
\(409\) −29.0207 16.7551i −1.43498 0.828487i −0.437487 0.899225i \(-0.644131\pi\)
−0.997495 + 0.0707377i \(0.977465\pi\)
\(410\) 24.6382 27.1545i 1.21680 1.34107i
\(411\) 9.52376 + 5.83045i 0.469772 + 0.287595i
\(412\) −18.0463 18.0463i −0.889077 0.889077i
\(413\) 0 0
\(414\) −9.02331 5.84862i −0.443471 0.287444i
\(415\) −3.10297 9.67538i −0.152319 0.474946i
\(416\) −14.7811 8.53389i −0.724705 0.418408i
\(417\) −12.1721 12.8155i −0.596070 0.627578i
\(418\) 6.48030 + 1.73639i 0.316962 + 0.0849297i
\(419\) −25.8773 −1.26419 −0.632093 0.774892i \(-0.717804\pi\)
−0.632093 + 0.774892i \(0.717804\pi\)
\(420\) 0 0
\(421\) 10.4030 0.507013 0.253507 0.967334i \(-0.418416\pi\)
0.253507 + 0.967334i \(0.418416\pi\)
\(422\) −52.9063 14.1762i −2.57544 0.690086i
\(423\) 4.82945 14.9078i 0.234816 0.724840i
\(424\) −21.8808 12.6329i −1.06263 0.613508i
\(425\) 16.2029 19.6997i 0.785955 0.955576i
\(426\) 7.61923 + 14.0183i 0.369153 + 0.679188i
\(427\) 0 0
\(428\) −12.6154 12.6154i −0.609786 0.609786i
\(429\) 4.45155 7.27139i 0.214923 0.351066i
\(430\) −44.0307 + 2.13918i −2.12335 + 0.103160i
\(431\) 0.388850 + 0.224503i 0.0187303 + 0.0108139i 0.509336 0.860568i \(-0.329891\pi\)
−0.490606 + 0.871382i \(0.663224\pi\)
\(432\) −12.2554 + 34.7528i −0.589641 + 1.67205i
\(433\) 17.7813 17.7813i 0.854517 0.854517i −0.136169 0.990686i \(-0.543479\pi\)
0.990686 + 0.136169i \(0.0434790\pi\)
\(434\) 0 0
\(435\) 33.1556 9.69944i 1.58969 0.465053i
\(436\) 14.3778 + 24.9030i 0.688570 + 1.19264i
\(437\) −0.612517 2.28594i −0.0293007 0.109352i
\(438\) −25.3189 26.6572i −1.20978 1.27373i
\(439\) −25.5732 + 14.7647i −1.22054 + 0.704679i −0.965033 0.262128i \(-0.915576\pi\)
−0.255507 + 0.966807i \(0.582243\pi\)
\(440\) −4.68067 + 21.6151i −0.223142 + 1.03046i
\(441\) 0 0
\(442\) 28.8077 + 28.8077i 1.37024 + 1.37024i
\(443\) −5.69694 + 21.2613i −0.270670 + 1.01015i 0.688018 + 0.725693i \(0.258481\pi\)
−0.958688 + 0.284460i \(0.908186\pi\)
\(444\) −0.124315 + 4.82791i −0.00589975 + 0.229123i
\(445\) −1.02028 21.0004i −0.0483659 0.995514i
\(446\) −38.6519 + 22.3157i −1.83022 + 1.05668i
\(447\) −1.53325 0.453443i −0.0725204 0.0214471i
\(448\) 0 0
\(449\) 16.3214 0.770252 0.385126 0.922864i \(-0.374158\pi\)
0.385126 + 0.922864i \(0.374158\pi\)
\(450\) 36.3863 11.5515i 1.71527 0.544541i
\(451\) 5.05351 8.75294i 0.237961 0.412160i
\(452\) 5.39575 + 20.1372i 0.253795 + 0.947175i
\(453\) 5.56206 + 23.1232i 0.261328 + 1.08642i
\(454\) 31.3336i 1.47056i
\(455\) 0 0
\(456\) −16.1232 + 8.76332i −0.755040 + 0.410380i
\(457\) −7.55108 + 28.1810i −0.353225 + 1.31825i 0.529479 + 0.848323i \(0.322387\pi\)
−0.882704 + 0.469929i \(0.844279\pi\)
\(458\) 10.9726 2.94010i 0.512717 0.137382i
\(459\) 14.9855 21.8654i 0.699465 1.02059i
\(460\) 13.4263 4.30591i 0.626002 0.200764i
\(461\) 15.2893i 0.712094i −0.934468 0.356047i \(-0.884124\pi\)
0.934468 0.356047i \(-0.115876\pi\)
\(462\) 0 0
\(463\) 0.492195 0.492195i 0.0228743 0.0228743i −0.695577 0.718451i \(-0.744851\pi\)
0.718451 + 0.695577i \(0.244851\pi\)
\(464\) −31.6281 54.7815i −1.46830 2.54317i
\(465\) −2.51980 + 10.3417i −0.116853 + 0.479585i
\(466\) −10.1528 + 17.5852i −0.470320 + 0.814619i
\(467\) −12.2948 3.29439i −0.568937 0.152446i −0.0371280 0.999311i \(-0.511821\pi\)
−0.531809 + 0.846864i \(0.678488\pi\)
\(468\) 8.79901 + 41.2192i 0.406734 + 1.90536i
\(469\) 0 0
\(470\) 16.0951 + 24.9924i 0.742410 + 1.15281i
\(471\) 17.5485 28.6647i 0.808594 1.32080i
\(472\) 33.7924 9.05465i 1.55542 0.416774i
\(473\) −11.7373 + 3.14500i −0.539682 + 0.144607i
\(474\) −39.2594 + 64.1282i −1.80324 + 2.94551i
\(475\) 7.64932 + 3.47586i 0.350975 + 0.159483i
\(476\) 0 0
\(477\) 2.50974 + 11.7570i 0.114913 + 0.538314i
\(478\) 29.1546 + 7.81194i 1.33350 + 0.357310i
\(479\) −11.3786 + 19.7083i −0.519901 + 0.900496i 0.479831 + 0.877361i \(0.340698\pi\)
−0.999732 + 0.0231347i \(0.992635\pi\)
\(480\) −10.9464 17.9990i −0.499631 0.821540i
\(481\) 0.977074 + 1.69234i 0.0445507 + 0.0771641i
\(482\) −32.5235 + 32.5235i −1.48141 + 1.48141i
\(483\) 0 0
\(484\) 38.2328i 1.73785i
\(485\) −4.24568 13.2385i −0.192787 0.601128i
\(486\) 36.6204 15.2623i 1.66113 0.692314i
\(487\) 15.6982 4.20631i 0.711352 0.190606i 0.115042 0.993361i \(-0.463300\pi\)
0.596310 + 0.802754i \(0.296633\pi\)
\(488\) −12.0865 + 45.1075i −0.547131 + 2.04192i
\(489\) 14.2163 7.72687i 0.642884 0.349421i
\(490\) 0 0
\(491\) 0.301729i 0.0136168i 0.999977 + 0.00680841i \(0.00216720\pi\)
−0.999977 + 0.00680841i \(0.997833\pi\)
\(492\) 11.6852 + 48.5791i 0.526811 + 2.19011i
\(493\) 11.7769 + 43.9519i 0.530404 + 1.97949i
\(494\) −6.70989 + 11.6219i −0.301892 + 0.522893i
\(495\) 9.12877 5.23475i 0.410308 0.235285i
\(496\) 19.4909 0.875165
\(497\) 0 0
\(498\) 19.2085 + 5.68071i 0.860754 + 0.254559i
\(499\) 17.5116 10.1103i 0.783928 0.452601i −0.0538926 0.998547i \(-0.517163\pi\)
0.837821 + 0.545946i \(0.183830\pi\)
\(500\) −18.4728 + 46.5250i −0.826129 + 2.08066i
\(501\) −0.196370 + 7.62622i −0.00877315 + 0.340714i
\(502\) −2.10295 + 7.84832i −0.0938593 + 0.350288i
\(503\) 23.8859 + 23.8859i 1.06502 + 1.06502i 0.997734 + 0.0672882i \(0.0214347\pi\)
0.0672882 + 0.997734i \(0.478565\pi\)
\(504\) 0 0
\(505\) 1.22440 + 1.90124i 0.0544850 + 0.0846042i
\(506\) 4.86943 2.81137i 0.216473 0.124980i
\(507\) −3.76188 3.96073i −0.167071 0.175902i
\(508\) 23.4052 + 87.3495i 1.03844 + 3.87551i
\(509\) −5.88603 10.1949i −0.260894 0.451881i 0.705586 0.708624i \(-0.250684\pi\)
−0.966480 + 0.256743i \(0.917351\pi\)
\(510\) 14.1186 + 48.2618i 0.625184 + 2.13707i
\(511\) 0 0
\(512\) 35.9587 35.9587i 1.58917 1.58917i
\(513\) 8.23459 + 2.90390i 0.363566 + 0.128210i
\(514\) 36.8179 + 21.2569i 1.62397 + 0.937600i
\(515\) −9.43940 8.56469i −0.415950 0.377405i
\(516\) 31.3647 51.2326i 1.38075 2.25539i
\(517\) 5.79412 + 5.79412i 0.254825 + 0.254825i
\(518\) 0 0
\(519\) −9.50842 17.4941i −0.417373 0.767907i
\(520\) −39.3401 20.2342i −1.72518 0.887327i
\(521\) −25.7965 14.8936i −1.13016 0.652500i −0.186187 0.982514i \(-0.559613\pi\)
−0.943976 + 0.330014i \(0.892947\pi\)
\(522\) −20.9883 + 64.7876i −0.918632 + 2.83567i
\(523\) 23.8608 + 6.39348i 1.04336 + 0.279567i 0.739505 0.673151i \(-0.235060\pi\)
0.303854 + 0.952719i \(0.401726\pi\)
\(524\) 21.9268 0.957877
\(525\) 0 0
\(526\) −47.3309 −2.06373
\(527\) −13.5427 3.62875i −0.589929 0.158071i
\(528\) −13.2701 13.9715i −0.577506 0.608033i
\(529\) 18.2009 + 10.5083i 0.791343 + 0.456882i
\(530\) −20.2799 10.4308i −0.880903 0.453083i
\(531\) −13.9685 9.05395i −0.606183 0.392908i
\(532\) 0 0
\(533\) 14.2956 + 14.2956i 0.619211 + 0.619211i
\(534\) 35.3504 + 21.6416i 1.52976 + 0.936522i
\(535\) −6.59866 5.98719i −0.285285 0.258849i
\(536\) 28.9760 + 16.7293i 1.25157 + 0.722595i
\(537\) −6.72343 27.9514i −0.290137 1.20619i
\(538\) −52.8021 + 52.8021i −2.27646 + 2.27646i
\(539\) 0 0
\(540\) −14.8999 + 49.8425i −0.641192 + 2.14488i
\(541\) 11.5559 + 20.0153i 0.496825 + 0.860526i 0.999993 0.00366246i \(-0.00116580\pi\)
−0.503168 + 0.864188i \(0.667832\pi\)
\(542\) 2.09711 + 7.82652i 0.0900786 + 0.336178i
\(543\) 14.6348 13.9001i 0.628040 0.596509i
\(544\) 24.0306 13.8741i 1.03030 0.594845i
\(545\) 7.77560 + 12.0739i 0.333070 + 0.517191i
\(546\) 0 0
\(547\) −25.6689 25.6689i −1.09752 1.09752i −0.994700 0.102823i \(-0.967213\pi\)
−0.102823 0.994700i \(-0.532787\pi\)
\(548\) 7.47105 27.8824i 0.319148 1.19108i
\(549\) 19.7893 10.1049i 0.844588 0.431268i
\(550\) −3.27309 + 19.6920i −0.139565 + 0.839671i
\(551\) −12.9804 + 7.49421i −0.552982 + 0.319264i
\(552\) −4.36169 + 14.7484i −0.185646 + 0.627735i
\(553\) 0 0
\(554\) −60.6965 −2.57875
\(555\) 0.0549927 + 2.41132i 0.00233431 + 0.102355i
\(556\) −22.8445 + 39.5679i −0.968824 + 1.67805i
\(557\) −3.87177 14.4497i −0.164052 0.612252i −0.998159 0.0606487i \(-0.980683\pi\)
0.834107 0.551603i \(-0.185984\pi\)
\(558\) −14.0547 15.5819i −0.594982 0.659636i
\(559\) 24.3063i 1.02805i
\(560\) 0 0
\(561\) 6.61917 + 12.1783i 0.279462 + 0.514169i
\(562\) 16.3394 60.9796i 0.689238 2.57227i
\(563\) −14.9192 + 3.99759i −0.628769 + 0.168478i −0.559111 0.829093i \(-0.688857\pi\)
−0.0696580 + 0.997571i \(0.522191\pi\)
\(564\) −40.4947 1.04271i −1.70514 0.0439061i
\(565\) 3.17959 + 9.91430i 0.133767 + 0.417098i
\(566\) 19.5050i 0.819858i
\(567\) 0 0
\(568\) 16.1365 16.1365i 0.677072 0.677072i
\(569\) −21.0355 36.4346i −0.881854 1.52742i −0.849277 0.527947i \(-0.822962\pi\)
−0.0325765 0.999469i \(-0.510371\pi\)
\(570\) −14.1520 + 8.60674i −0.592762 + 0.360497i
\(571\) −5.41712 + 9.38272i −0.226699 + 0.392655i −0.956828 0.290655i \(-0.906127\pi\)
0.730129 + 0.683310i \(0.239460\pi\)
\(572\) −21.2882 5.70415i −0.890103 0.238502i
\(573\) −6.31411 + 21.3503i −0.263776 + 0.891921i
\(574\) 0 0
\(575\) 6.59308 2.47331i 0.274950 0.103144i
\(576\) −1.01985 0.0525556i −0.0424936 0.00218982i
\(577\) 20.0772 5.37966i 0.835823 0.223958i 0.184571 0.982819i \(-0.440911\pi\)
0.651253 + 0.758861i \(0.274244\pi\)
\(578\) −22.1852 + 5.94450i −0.922782 + 0.247259i
\(579\) 16.8414 + 10.3103i 0.699904 + 0.428482i
\(580\) −48.3498 75.0776i −2.00762 3.11743i
\(581\) 0 0
\(582\) 26.2823 + 7.77271i 1.08944 + 0.322189i
\(583\) −6.07203 1.62700i −0.251478 0.0673833i
\(584\) −26.2922 + 45.5394i −1.08798 + 1.88443i
\(585\) 5.38817 + 20.3481i 0.222773 + 0.841292i
\(586\) −15.4901 26.8297i −0.639891 1.10832i
\(587\) −4.89737 + 4.89737i −0.202136 + 0.202136i −0.800915 0.598779i \(-0.795653\pi\)
0.598779 + 0.800915i \(0.295653\pi\)
\(588\) 0 0
\(589\) 4.61831i 0.190294i
\(590\) 30.0688 9.64332i 1.23791 0.397009i
\(591\) 1.18229 45.9156i 0.0486331 1.88871i
\(592\) 4.26606 1.14309i 0.175334 0.0469806i
\(593\) 8.25882 30.8223i 0.339149 1.26572i −0.560151 0.828390i \(-0.689257\pi\)
0.899300 0.437331i \(-0.144076\pi\)
\(594\) −1.60059 + 20.6835i −0.0656729 + 0.848654i
\(595\) 0 0
\(596\) 4.13314i 0.169300i
\(597\) 7.08514 1.70426i 0.289976 0.0697508i
\(598\) 2.91097 + 10.8639i 0.119039 + 0.444258i
\(599\) −3.40986 + 5.90604i −0.139323 + 0.241314i −0.927241 0.374466i \(-0.877826\pi\)
0.787918 + 0.615781i \(0.211159\pi\)
\(600\) −30.6029 45.2208i −1.24936 1.84613i
\(601\) 8.46733 0.345390 0.172695 0.984975i \(-0.444753\pi\)
0.172695 + 0.984975i \(0.444753\pi\)
\(602\) 0 0
\(603\) −3.32356 15.5693i −0.135346 0.634031i
\(604\) 53.2417 30.7391i 2.16637 1.25076i
\(605\) −0.926576 19.0717i −0.0376707 0.775374i
\(606\) −4.45661 0.114755i −0.181038 0.00466159i
\(607\) −2.30704 + 8.60998i −0.0936398 + 0.349468i −0.996810 0.0798148i \(-0.974567\pi\)
0.903170 + 0.429283i \(0.141234\pi\)
\(608\) 6.46309 + 6.46309i 0.262113 + 0.262113i
\(609\) 0 0
\(610\) −8.92083 + 41.1959i −0.361194 + 1.66797i
\(611\) −14.1947 + 8.19533i −0.574258 + 0.331548i
\(612\) −65.1870 21.1177i −2.63503 0.853631i
\(613\) −1.92064 7.16791i −0.0775738 0.289509i 0.916231 0.400651i \(-0.131216\pi\)
−0.993805 + 0.111142i \(0.964549\pi\)
\(614\) 21.3301 + 36.9448i 0.860812 + 1.49097i
\(615\) 7.00627 + 23.9496i 0.282520 + 0.965739i
\(616\) 0 0
\(617\) −2.10719 + 2.10719i −0.0848323 + 0.0848323i −0.748250 0.663417i \(-0.769105\pi\)
0.663417 + 0.748250i \(0.269105\pi\)
\(618\) 24.4302 5.87646i 0.982729 0.236386i
\(619\) 18.2501 + 10.5367i 0.733534 + 0.423506i 0.819714 0.572773i \(-0.194133\pi\)
−0.0861795 + 0.996280i \(0.527466\pi\)
\(620\) 27.4829 1.33523i 1.10374 0.0536240i
\(621\) 6.60097 3.15911i 0.264888 0.126771i
\(622\) 52.6932 + 52.6932i 2.11280 + 2.11280i
\(623\) 0 0
\(624\) 33.8650 18.4063i 1.35569 0.736844i
\(625\) −8.08726 + 23.6558i −0.323491 + 0.946231i
\(626\) 3.82080 + 2.20594i 0.152710 + 0.0881670i
\(627\) −3.31052 + 3.14431i −0.132209 + 0.125572i
\(628\) −83.9205 22.4864i −3.34879 0.897306i
\(629\) −3.17697 −0.126674
\(630\) 0 0
\(631\) −11.6376 −0.463287 −0.231643 0.972801i \(-0.574410\pi\)
−0.231643 + 0.972801i \(0.574410\pi\)
\(632\) 103.881 + 27.8348i 4.13216 + 1.10721i
\(633\) 27.0276 25.6707i 1.07425 1.02032i
\(634\) 13.4083 + 7.74127i 0.532511 + 0.307445i
\(635\) 13.7922 + 43.0054i 0.547326 + 1.70662i
\(636\) 27.3040 14.8403i 1.08267 0.588455i
\(637\) 0 0
\(638\) −25.1806 25.1806i −0.996910 0.996910i
\(639\) −10.8439 0.558817i −0.428979 0.0221065i
\(640\) 17.6473 19.4496i 0.697572 0.768815i
\(641\) 31.2666 + 18.0518i 1.23496 + 0.713003i 0.968059 0.250722i \(-0.0806680\pi\)
0.266898 + 0.963725i \(0.414001\pi\)
\(642\) 17.0781 4.10797i 0.674019 0.162129i
\(643\) 21.0115 21.0115i 0.828614 0.828614i −0.158711 0.987325i \(-0.550734\pi\)
0.987325 + 0.158711i \(0.0507337\pi\)
\(644\) 0 0
\(645\) 14.4040 26.3165i 0.567158 1.03621i
\(646\) −10.9087 18.8944i −0.429196 0.743389i
\(647\) −6.91879 25.8213i −0.272006 1.01514i −0.957821 0.287364i \(-0.907221\pi\)
0.685816 0.727775i \(-0.259446\pi\)
\(648\) −35.7875 44.0366i −1.40587 1.72992i
\(649\) 7.53812 4.35214i 0.295897 0.170836i
\(650\) −36.3532 16.5189i −1.42589 0.647925i
\(651\) 0 0
\(652\) −29.5757 29.5757i −1.15828 1.15828i
\(653\) 4.49712 16.7835i 0.175986 0.656788i −0.820396 0.571796i \(-0.806247\pi\)
0.996382 0.0849922i \(-0.0270865\pi\)
\(654\) −28.3020 0.728756i −1.10669 0.0284966i
\(655\) 10.9378 0.531399i 0.427374 0.0207635i
\(656\) 39.5707 22.8462i 1.54498 0.891994i
\(657\) 24.4691 5.22339i 0.954631 0.203784i
\(658\) 0 0
\(659\) 0.708622 0.0276040 0.0138020 0.999905i \(-0.495607\pi\)
0.0138020 + 0.999905i \(0.495607\pi\)
\(660\) −19.6685 18.7914i −0.765595 0.731453i
\(661\) 8.71029 15.0867i 0.338791 0.586803i −0.645414 0.763833i \(-0.723315\pi\)
0.984206 + 0.177029i \(0.0566487\pi\)
\(662\) −21.9089 81.7650i −0.851512 3.17789i
\(663\) −26.9570 + 6.48425i −1.04692 + 0.251827i
\(664\) 28.6500i 1.11184i
\(665\) 0 0
\(666\) −3.99006 2.58623i −0.154612 0.100214i
\(667\) −3.25123 + 12.1338i −0.125888 + 0.469821i
\(668\) 19.0483 5.10397i 0.737000 0.197479i
\(669\) 0.781851 30.3640i 0.0302281 1.17394i
\(670\) 26.8559 + 13.8131i 1.03754 + 0.533645i
\(671\) 11.6188i 0.448540i
\(672\) 0 0
\(673\) −8.20389 + 8.20389i −0.316237 + 0.316237i −0.847320 0.531083i \(-0.821785\pi\)
0.531083 + 0.847320i \(0.321785\pi\)
\(674\) 18.5463 + 32.1231i 0.714377 + 1.23734i
\(675\) −6.22461 + 25.2241i −0.239585 + 0.970875i
\(676\) −7.06029 + 12.2288i −0.271550 + 0.470338i
\(677\) 44.8882 + 12.0278i 1.72519 + 0.462264i 0.979067 0.203539i \(-0.0652442\pi\)
0.746128 + 0.665803i \(0.231911\pi\)
\(678\) −19.6828 5.82098i −0.755915 0.223554i
\(679\) 0 0
\(680\) 60.4675 38.9409i 2.31882 1.49332i
\(681\) −18.1867 11.1339i −0.696917 0.426653i
\(682\) 10.5987 2.83991i 0.405845 0.108746i
\(683\) 38.9287 10.4309i 1.48957 0.399128i 0.579975 0.814634i \(-0.303062\pi\)
0.909590 + 0.415506i \(0.136396\pi\)
\(684\) 1.16161 22.5413i 0.0444154 0.861886i
\(685\) 3.05106 14.0896i 0.116575 0.538338i
\(686\) 0 0
\(687\) −2.19245 + 7.41347i −0.0836473 + 0.282842i
\(688\) −53.0626 14.2181i −2.02299 0.542060i
\(689\) 6.28716 10.8897i 0.239522 0.414864i
\(690\) −3.28627 + 13.4874i −0.125106 + 0.513458i
\(691\) 2.89969 + 5.02242i 0.110310 + 0.191062i 0.915895 0.401418i \(-0.131482\pi\)
−0.805586 + 0.592480i \(0.798149\pi\)
\(692\) −36.3949 + 36.3949i −1.38353 + 1.38353i
\(693\) 0 0
\(694\) 69.1925i 2.62651i
\(695\) −10.4366 + 20.2913i −0.395884 + 0.769694i
\(696\) 97.3740 + 2.50731i 3.69095 + 0.0950394i
\(697\) −31.7481 + 8.50687i −1.20254 + 0.322221i
\(698\) 19.8470 74.0699i 0.751219 2.80359i
\(699\) −6.59919 12.1416i −0.249604 0.459236i
\(700\) 0 0
\(701\) 4.92775i 0.186118i 0.995661 + 0.0930592i \(0.0296646\pi\)
−0.995661 + 0.0930592i \(0.970335\pi\)
\(702\) −39.1347 13.8007i −1.47704 0.520874i
\(703\) −0.270852 1.01083i −0.0102154 0.0381243i
\(704\) 0.266993 0.462446i 0.0100627 0.0174291i
\(705\) −20.2253 + 0.461258i −0.761729 + 0.0173720i
\(706\) −61.3096 −2.30742
\(707\) 0 0
\(708\) −12.2032 + 41.2635i −0.458625 + 1.55078i
\(709\) −14.8889 + 8.59609i −0.559163 + 0.322833i −0.752809 0.658239i \(-0.771302\pi\)
0.193647 + 0.981071i \(0.437968\pi\)
\(710\) 13.8410 15.2546i 0.519443 0.572494i
\(711\) −23.2712 45.5740i −0.872740 1.70916i
\(712\) 15.3438 57.2639i 0.575034 2.14606i
\(713\) −2.73693 2.73693i −0.102499 0.102499i
\(714\) 0 0
\(715\) −10.7574 2.32948i −0.402305 0.0871177i
\(716\) −64.3586 + 37.1575i −2.40519 + 1.38864i
\(717\) −14.8939 + 14.1461i −0.556221 + 0.528296i
\(718\) −0.486116 1.81421i −0.0181417 0.0677057i
\(719\) 6.12782 + 10.6137i 0.228529 + 0.395824i 0.957372 0.288856i \(-0.0932750\pi\)
−0.728843 + 0.684681i \(0.759942\pi\)
\(720\) 47.5735 + 0.139941i 1.77296 + 0.00521528i
\(721\) 0 0
\(722\) −29.1113 + 29.1113i −1.08341 + 1.08341i
\(723\) −7.32063 30.4341i −0.272257 1.13186i
\(724\) −45.1850 26.0876i −1.67929 0.969538i
\(725\) −25.9379 36.2792i −0.963309 1.34738i
\(726\) 32.1038 + 19.6540i 1.19148 + 0.729428i
\(727\) −5.83842 5.83842i −0.216535 0.216535i 0.590501 0.807037i \(-0.298930\pi\)
−0.807037 + 0.590501i \(0.798930\pi\)
\(728\) 0 0
\(729\) −4.15390 + 26.6786i −0.153848 + 0.988094i
\(730\) −21.7090 + 42.2075i −0.803485 + 1.56217i
\(731\) 34.2220 + 19.7581i 1.26575 + 0.730780i
\(732\) −39.5562 41.6471i −1.46204 1.53932i
\(733\) 18.5697 + 4.97574i 0.685888 + 0.183783i 0.584901 0.811105i \(-0.301133\pi\)
0.100987 + 0.994888i \(0.467800\pi\)
\(734\) 83.8351 3.09441
\(735\) 0 0
\(736\) 7.66040 0.282366
\(737\) 8.04096 + 2.15457i 0.296193 + 0.0793646i
\(738\) −46.7985 15.1606i −1.72268 0.558070i
\(739\) 13.1464 + 7.59007i 0.483598 + 0.279205i 0.721915 0.691982i \(-0.243262\pi\)
−0.238317 + 0.971187i \(0.576596\pi\)
\(740\) 5.93702 1.90405i 0.218249 0.0699943i
\(741\) −4.36134 8.02424i −0.160218 0.294778i
\(742\) 0 0
\(743\) −34.4215 34.4215i −1.26280 1.26280i −0.949729 0.313073i \(-0.898642\pi\)
−0.313073 0.949729i \(-0.601358\pi\)
\(744\) −15.6707 + 25.5974i −0.574517 + 0.938446i
\(745\) 0.100167 + 2.06174i 0.00366984 + 0.0755362i
\(746\) 16.4614 + 9.50402i 0.602696 + 0.347967i
\(747\) −10.1227 + 9.13050i −0.370369 + 0.334068i
\(748\) 25.3359 25.3359i 0.926371 0.926371i
\(749\) 0 0
\(750\) −29.5706 39.4282i −1.07977 1.43971i
\(751\) 11.1258 + 19.2704i 0.405985 + 0.703186i 0.994436 0.105347i \(-0.0335952\pi\)
−0.588451 + 0.808533i \(0.700262\pi\)
\(752\) 9.58780 + 35.7822i 0.349631 + 1.30484i
\(753\) −3.80809 4.00939i −0.138775 0.146110i
\(754\) 61.6888 35.6160i 2.24657 1.29706i
\(755\) 25.8136 16.6239i 0.939454 0.605007i
\(756\) 0 0
\(757\) −1.88407 1.88407i −0.0684777 0.0684777i 0.672038 0.740516i \(-0.265419\pi\)
−0.740516 + 0.672038i \(0.765419\pi\)
\(758\) −2.22876 + 8.31786i −0.0809523 + 0.302118i
\(759\) −0.0984989 + 3.82530i −0.00357529 + 0.138850i
\(760\) 17.5452 + 15.9193i 0.636430 + 0.577455i
\(761\) −30.8889 + 17.8337i −1.11972 + 0.646472i −0.941330 0.337488i \(-0.890423\pi\)
−0.178392 + 0.983960i \(0.557089\pi\)
\(762\) −85.3786 25.2498i −3.09294 0.914703i
\(763\) 0 0
\(764\) 57.5532 2.08220
\(765\) −33.0291 8.95433i −1.19417 0.323745i
\(766\) −5.16028 + 8.93787i −0.186449 + 0.322938i
\(767\) 4.50633 + 16.8179i 0.162714 + 0.607258i
\(768\) 11.8325 + 49.1914i 0.426969 + 1.77504i
\(769\) 31.7331i 1.14432i 0.820141 + 0.572162i \(0.193895\pi\)
−0.820141 + 0.572162i \(0.806105\pi\)
\(770\) 0 0
\(771\) −25.4207 + 13.8167i −0.915503 + 0.497595i
\(772\) 13.2115 49.3059i 0.475491 1.77456i
\(773\) 6.80067 1.82223i 0.244603 0.0655412i −0.134434 0.990922i \(-0.542922\pi\)
0.379038 + 0.925381i \(0.376255\pi\)
\(774\) 26.8964 + 52.6734i 0.966770 + 1.89331i
\(775\) 13.6770 1.33210i 0.491291 0.0478506i
\(776\) 39.2008i 1.40723i
\(777\) 0 0
\(778\) 18.3745 18.3745i 0.658758 0.658758i
\(779\) −5.41335 9.37619i −0.193953 0.335937i
\(780\) 46.4902 28.2737i 1.66462 1.01236i
\(781\) 2.83891 4.91713i 0.101584 0.175949i
\(782\) −17.6621 4.73254i −0.631595 0.169235i
\(783\) −30.1463 35.2034i −1.07734 1.25807i
\(784\) 0 0
\(785\) −42.4071 9.18310i −1.51357 0.327759i
\(786\) −11.2717 + 18.4118i −0.402049 + 0.656727i
\(787\) 25.6203 6.86494i 0.913266 0.244709i 0.228561 0.973530i \(-0.426598\pi\)
0.684705 + 0.728821i \(0.259931\pi\)
\(788\) −114.685 + 30.7298i −4.08549 + 1.09470i
\(789\) 16.8183 27.4719i 0.598748 0.978026i
\(790\) 94.8726 + 20.5443i 3.37542 + 0.730934i
\(791\) 0 0
\(792\) 29.0181 6.19445i 1.03111 0.220110i
\(793\) −22.4492 6.01524i −0.797194 0.213607i
\(794\) 43.2873 74.9758i 1.53621 2.66079i
\(795\) 13.2604 8.06450i 0.470298 0.286018i
\(796\) −9.41871 16.3137i −0.333837 0.578223i
\(797\) 7.92792 7.92792i 0.280821 0.280821i −0.552615 0.833437i \(-0.686370\pi\)
0.833437 + 0.552615i \(0.186370\pi\)
\(798\) 0 0
\(799\) 26.6473i 0.942713i
\(800\) −17.2760 + 21.0045i −0.610800 + 0.742620i
\(801\) −25.1225 + 12.8282i −0.887660 + 0.453262i
\(802\) 49.3911 13.2343i 1.74406 0.467320i
\(803\) −3.38618 + 12.6374i −0.119496 + 0.445964i
\(804\) −36.1576 + 19.6524i −1.27518 + 0.693088i
\(805\) 0 0
\(806\) 21.9484i 0.773099i
\(807\) −11.8851 49.4099i −0.418375 1.73931i
\(808\) 1.65032 + 6.15910i 0.0580582 + 0.216676i
\(809\) −16.6141 + 28.7764i −0.584119 + 1.01172i 0.410865 + 0.911696i \(0.365227\pi\)
−0.994985 + 0.100028i \(0.968107\pi\)
\(810\) −34.1930 38.1335i −1.20142 1.33987i
\(811\) 49.8680 1.75110 0.875550 0.483127i \(-0.160499\pi\)
0.875550 + 0.483127i \(0.160499\pi\)
\(812\) 0 0
\(813\) −5.28787 1.56383i −0.185454 0.0548458i
\(814\) 2.15324 1.24317i 0.0754709 0.0435732i
\(815\) −15.4701 14.0365i −0.541893 0.491678i
\(816\) −1.61300 + 62.6424i −0.0564662 + 2.19292i
\(817\) −3.36894 + 12.5731i −0.117864 + 0.439876i
\(818\) −60.3060 60.3060i −2.10855 2.10855i
\(819\) 0 0
\(820\) 54.2313 34.9249i 1.89384 1.21963i
\(821\) 28.0956 16.2210i 0.980542 0.566116i 0.0781084 0.996945i \(-0.475112\pi\)
0.902434 + 0.430829i \(0.141779\pi\)
\(822\) 19.5721 + 20.6066i 0.682654 + 0.718739i
\(823\) −11.9776 44.7011i −0.417514 1.55818i −0.779747 0.626095i \(-0.784652\pi\)
0.362233 0.932088i \(-0.382015\pi\)
\(824\) −17.9695 31.1241i −0.625998 1.08426i
\(825\) −10.2667 8.89705i −0.357439 0.309755i
\(826\) 0 0
\(827\) −36.7198 + 36.7198i −1.27687 + 1.27687i −0.334465 + 0.942408i \(0.608556\pi\)
−0.942408 + 0.334465i \(0.891444\pi\)
\(828\) −12.6701 14.0469i −0.440318 0.488165i
\(829\) 12.3817 + 7.14860i 0.430036 + 0.248281i 0.699362 0.714768i \(-0.253468\pi\)
−0.269326 + 0.963049i \(0.586801\pi\)
\(830\) −1.25489 25.8293i −0.0435578 0.896550i
\(831\) 21.5676 35.2296i 0.748172 1.22210i
\(832\) 0.755282 + 0.755282i 0.0261847 + 0.0261847i
\(833\) 0 0
\(834\) −21.4814 39.5227i −0.743841 1.36856i
\(835\) 9.37818 3.00766i 0.324545 0.104084i
\(836\) 10.2212 + 5.90123i 0.353509 + 0.204098i
\(837\) 14.0382 2.62084i 0.485232 0.0905896i
\(838\) −63.6151 17.0456i −2.19755 0.588831i
\(839\) 33.6309 1.16107 0.580534 0.814236i \(-0.302844\pi\)
0.580534 + 0.814236i \(0.302844\pi\)
\(840\) 0 0
\(841\) 50.5583 1.74339
\(842\) 25.5742 + 6.85259i 0.881346 + 0.236156i
\(843\) 29.5880 + 31.1520i 1.01906 + 1.07293i
\(844\) −83.4479 48.1787i −2.87240 1.65838i
\(845\) −3.22552 + 6.27120i −0.110961 + 0.215736i
\(846\) 21.6923 33.4672i 0.745798 1.15062i
\(847\) 0 0
\(848\) −20.0953 20.0953i −0.690077 0.690077i
\(849\) 11.3212 + 6.93083i 0.388542 + 0.237865i
\(850\) 52.8086 37.7556i 1.81132 1.29501i
\(851\) −0.759561 0.438533i −0.0260374 0.0150327i
\(852\) 6.56440 + 27.2902i 0.224893 + 0.934947i
\(853\) −26.5544 + 26.5544i −0.909206 + 0.909206i −0.996208 0.0870025i \(-0.972271\pi\)
0.0870025 + 0.996208i \(0.472271\pi\)
\(854\) 0 0
\(855\) 0.0331586 11.2724i 0.00113400 0.385509i
\(856\) −12.5617 21.7575i −0.429350 0.743655i
\(857\) −8.44459 31.5157i −0.288462 1.07655i −0.946272 0.323371i \(-0.895184\pi\)
0.657810 0.753184i \(-0.271483\pi\)
\(858\) 15.7332 14.9433i 0.537121 0.510155i
\(859\) −15.0032 + 8.66212i −0.511903 + 0.295548i −0.733616 0.679565i \(-0.762169\pi\)
0.221712 + 0.975112i \(0.428835\pi\)
\(860\) −75.7946 16.4130i −2.58457 0.559680i
\(861\) 0 0
\(862\) 0.808044 + 0.808044i 0.0275221 + 0.0275221i
\(863\) −3.31336 + 12.3656i −0.112788 + 0.420931i −0.999112 0.0421348i \(-0.986584\pi\)
0.886324 + 0.463066i \(0.153251\pi\)
\(864\) −15.9781 + 23.3135i −0.543585 + 0.793143i
\(865\) −17.2729 + 19.0369i −0.587295 + 0.647275i
\(866\) 55.4253 31.9998i 1.88343 1.08740i
\(867\) 4.43285 14.9891i 0.150548 0.509056i
\(868\) 0 0
\(869\) 26.7577 0.907693
\(870\) 87.8970 2.00458i 2.97999 0.0679616i
\(871\) −8.32585 + 14.4208i −0.282111 + 0.488630i
\(872\) 10.4805 + 39.1137i 0.354914 + 1.32456i
\(873\) −13.8505 + 12.4929i −0.468768 + 0.422822i
\(874\) 6.02310i 0.203734i
\(875\) 0 0
\(876\) −30.8863 56.8263i −1.04355 1.91998i
\(877\) 5.65985 21.1228i 0.191119 0.713267i −0.802118 0.597166i \(-0.796293\pi\)
0.993237 0.116102i \(-0.0370399\pi\)
\(878\) −72.5932 + 19.4513i −2.44990 + 0.656449i
\(879\) 21.0767 + 0.542711i 0.710900 + 0.0183052i
\(880\) −11.3781 + 22.1217i −0.383555 + 0.745723i
\(881\) 3.93409i 0.132543i 0.997802 + 0.0662714i \(0.0211103\pi\)
−0.997802 + 0.0662714i \(0.978890\pi\)
\(882\) 0 0
\(883\) 13.5688 13.5688i 0.456625 0.456625i −0.440921 0.897546i \(-0.645348\pi\)
0.897546 + 0.440921i \(0.145348\pi\)
\(884\) 35.8356 + 62.0691i 1.20528 + 2.08761i
\(885\) −5.08732 + 20.8792i −0.171008 + 0.701848i
\(886\) −28.0100 + 48.5148i −0.941015 + 1.62989i
\(887\) 6.72756 + 1.80264i 0.225889 + 0.0605269i 0.369988 0.929036i \(-0.379362\pi\)
−0.144099 + 0.989563i \(0.546028\pi\)
\(888\) −1.92872 + 6.52168i −0.0647235 + 0.218853i
\(889\) 0 0
\(890\) 11.3250 52.2982i 0.379614 1.75304i
\(891\) −11.4364 8.27859i −0.383134 0.277343i
\(892\) −75.8412 + 20.3216i −2.53935 + 0.680417i
\(893\) 8.47850 2.27181i 0.283722 0.0760231i
\(894\) −3.47057 2.12469i −0.116073 0.0710601i
\(895\) −31.2035 + 20.0950i −1.04302 + 0.671703i
\(896\) 0 0
\(897\) −7.34002 2.17073i −0.245076 0.0724786i
\(898\) 40.1234 + 10.7510i 1.33894 + 0.358767i
\(899\) −12.2570 + 21.2297i −0.408793 + 0.708050i
\(900\) 67.0902 3.06171i 2.23634 0.102057i
\(901\) 10.2214 + 17.7040i 0.340524 + 0.589806i
\(902\) 18.1889 18.1889i 0.605624 0.605624i
\(903\) 0 0
\(904\) 29.3575i 0.976416i
\(905\) −23.1719 11.9182i −0.770261 0.396176i
\(906\) −1.55805 + 60.5085i −0.0517628 + 2.01026i
\(907\) 25.9978 6.96610i 0.863244 0.231305i 0.200080 0.979780i \(-0.435880\pi\)
0.663164 + 0.748474i \(0.269213\pi\)
\(908\) −14.2668 + 53.2446i −0.473462 + 1.76698i
\(909\) 1.65020 2.54594i 0.0547336 0.0844436i
\(910\) 0 0
\(911\) 17.7669i 0.588644i 0.955706 + 0.294322i \(0.0950938\pi\)
−0.955706 + 0.294322i \(0.904906\pi\)
\(912\) −20.0687 + 4.82734i −0.664543 + 0.159849i
\(913\) −1.84492 6.88535i −0.0610581 0.227872i
\(914\) −37.1263 + 64.3046i −1.22803 + 2.12701i
\(915\) −20.7412 19.8162i −0.685682 0.655104i
\(916\) 19.9842 0.660298
\(917\) 0 0
\(918\) 51.2425 43.8814i 1.69125 1.44830i
\(919\) 7.36529 4.25235i 0.242958 0.140272i −0.373577 0.927599i \(-0.621869\pi\)
0.616536 + 0.787327i \(0.288536\pi\)
\(920\) 19.8319 0.963512i 0.653840 0.0317661i
\(921\) −29.0229 0.747320i −0.956337 0.0246250i
\(922\) 10.0712 37.5863i 0.331678 1.23784i
\(923\) 8.03083 + 8.03083i 0.264338 + 0.264338i
\(924\) 0 0
\(925\) 2.91542 1.09368i 0.0958586 0.0359601i
\(926\) 1.53420 0.885769i 0.0504169 0.0291082i
\(927\) −5.27010 + 16.2680i −0.173093 + 0.534310i
\(928\) −12.5569 46.8629i −0.412200 1.53835i
\(929\) −7.07945 12.2620i −0.232269 0.402302i 0.726206 0.687477i \(-0.241282\pi\)
−0.958476 + 0.285175i \(0.907948\pi\)
\(930\) −13.0067 + 23.7636i −0.426507 + 0.779240i
\(931\) 0 0
\(932\) −25.2594 + 25.2594i −0.827399 + 0.827399i
\(933\) −49.3080 + 11.8606i −1.61427 + 0.388298i
\(934\) −28.0548 16.1975i −0.917982 0.529997i
\(935\) 12.0243 13.2523i 0.393237 0.433398i
\(936\) −3.05455 + 59.2739i −0.0998410 + 1.93743i
\(937\) −28.7165 28.7165i −0.938127 0.938127i 0.0600678 0.998194i \(-0.480868\pi\)
−0.998194 + 0.0600678i \(0.980868\pi\)
\(938\) 0 0
\(939\) −2.63804 + 1.43383i −0.0860891 + 0.0467912i
\(940\) 15.9705 + 49.7975i 0.520899 + 1.62422i
\(941\) −15.0690 8.70007i −0.491234 0.283614i 0.233852 0.972272i \(-0.424867\pi\)
−0.725086 + 0.688658i \(0.758200\pi\)
\(942\) 62.0220 58.9081i 2.02079 1.91933i
\(943\) −8.76467 2.34849i −0.285417 0.0764773i
\(944\) 39.3508 1.28076
\(945\) 0 0
\(946\) −30.9259 −1.00549
\(947\) 11.1426 + 2.98564i 0.362085 + 0.0970204i 0.435275 0.900298i \(-0.356651\pi\)
−0.0731898 + 0.997318i \(0.523318\pi\)
\(948\) −95.9116 + 91.0963i −3.11506 + 2.95867i
\(949\) −22.6641 13.0851i −0.735708 0.424761i
\(950\) 16.5151 + 13.5835i 0.535819 + 0.440708i
\(951\) −9.25764 + 5.03172i −0.300199 + 0.163165i
\(952\) 0 0
\(953\) 38.6159 + 38.6159i 1.25089 + 1.25089i 0.955321 + 0.295569i \(0.0955091\pi\)
0.295569 + 0.955321i \(0.404491\pi\)
\(954\) −1.57462 + 30.5558i −0.0509804 + 0.989280i
\(955\) 28.7093 1.39481i 0.929012 0.0451350i
\(956\) 45.9848 + 26.5494i 1.48726 + 0.858668i
\(957\) 23.5630 5.66784i 0.761682 0.183215i
\(958\) −40.9545 + 40.9545i −1.32318 + 1.32318i
\(959\) 0 0
\(960\) 0.370164 + 1.26533i 0.0119470 + 0.0408384i
\(961\) 11.7233 + 20.3054i 0.378172 + 0.655012i
\(962\) 1.28722 + 4.80396i 0.0415015 + 0.154886i
\(963\) −3.68409 + 11.3722i −0.118718 + 0.366465i
\(964\) −70.0753 + 40.4580i −2.25697 + 1.30306i
\(965\) 5.39535 24.9155i 0.173683 0.802058i
\(966\) 0 0
\(967\) −18.6836 18.6836i −0.600824 0.600824i 0.339707 0.940531i \(-0.389672\pi\)
−0.940531 + 0.339707i \(0.889672\pi\)
\(968\) 13.9346 52.0047i 0.447876 1.67150i
\(969\) 14.8430 + 0.382196i 0.476825 + 0.0122779i
\(970\) −1.71702 35.3414i −0.0551302 1.13474i
\(971\) 49.7947 28.7490i 1.59799 0.922599i 0.606114 0.795378i \(-0.292728\pi\)
0.991874 0.127221i \(-0.0406057\pi\)
\(972\) 69.1776 9.26098i 2.21887 0.297046i
\(973\) 0 0
\(974\) 41.3622 1.32533
\(975\) 22.5055 15.2305i 0.720754 0.487765i
\(976\) −26.2635 + 45.4897i −0.840674 + 1.45609i
\(977\) −0.763219 2.84837i −0.0244175 0.0911275i 0.952642 0.304095i \(-0.0983539\pi\)
−0.977059 + 0.212967i \(0.931687\pi\)
\(978\) 40.0383 9.63083i 1.28028 0.307960i
\(979\) 14.7501i 0.471415i
\(980\) 0 0
\(981\) 10.4797 16.1681i 0.334590 0.516209i
\(982\) −0.198752 + 0.741751i −0.00634242 + 0.0236702i
\(983\) 15.8515 4.24741i 0.505585 0.135471i 0.00299438 0.999996i \(-0.499047\pi\)
0.502591 + 0.864524i \(0.332380\pi\)
\(984\) −1.81113 + 70.3368i −0.0577366 + 2.24226i
\(985\) −56.4637 + 18.1084i −1.79908 + 0.576980i
\(986\) 115.806i 3.68802i
\(987\) 0 0
\(988\) −16.6937 + 16.6937i −0.531097 + 0.531097i
\(989\) 5.45461 + 9.44766i 0.173446 + 0.300418i
\(990\) 25.8898 6.85559i 0.822832 0.217885i
\(991\) 3.17062 5.49168i 0.100718 0.174449i −0.811263 0.584682i \(-0.801219\pi\)
0.911981 + 0.410233i \(0.134553\pi\)
\(992\) 14.4396 + 3.86909i 0.458459 + 0.122844i
\(993\) 55.2432 + 16.3376i 1.75309 + 0.518457i
\(994\) 0 0
\(995\) −5.09371 7.90951i −0.161481 0.250748i
\(996\) 30.0541 + 18.3992i 0.952302 + 0.583000i
\(997\) 2.59062 0.694156i 0.0820459 0.0219841i −0.217563 0.976046i \(-0.569811\pi\)
0.299608 + 0.954062i \(0.403144\pi\)
\(998\) 49.7093 13.3196i 1.57352 0.421624i
\(999\) 2.91891 1.39694i 0.0923504 0.0441973i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.y.g.557.12 48
3.2 odd 2 inner 735.2.y.g.557.1 48
5.3 odd 4 inner 735.2.y.g.263.12 48
7.2 even 3 inner 735.2.y.g.422.1 48
7.3 odd 6 105.2.j.a.92.1 yes 24
7.4 even 3 735.2.j.h.197.1 24
7.5 odd 6 735.2.y.j.422.1 48
7.6 odd 2 735.2.y.j.557.12 48
15.8 even 4 inner 735.2.y.g.263.1 48
21.2 odd 6 inner 735.2.y.g.422.12 48
21.5 even 6 735.2.y.j.422.12 48
21.11 odd 6 735.2.j.h.197.12 24
21.17 even 6 105.2.j.a.92.12 yes 24
21.20 even 2 735.2.y.j.557.1 48
35.3 even 12 105.2.j.a.8.12 yes 24
35.13 even 4 735.2.y.j.263.12 48
35.17 even 12 525.2.j.b.218.1 24
35.18 odd 12 735.2.j.h.638.12 24
35.23 odd 12 inner 735.2.y.g.128.1 48
35.24 odd 6 525.2.j.b.407.12 24
35.33 even 12 735.2.y.j.128.1 48
105.17 odd 12 525.2.j.b.218.12 24
105.23 even 12 inner 735.2.y.g.128.12 48
105.38 odd 12 105.2.j.a.8.1 24
105.53 even 12 735.2.j.h.638.1 24
105.59 even 6 525.2.j.b.407.1 24
105.68 odd 12 735.2.y.j.128.12 48
105.83 odd 4 735.2.y.j.263.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.j.a.8.1 24 105.38 odd 12
105.2.j.a.8.12 yes 24 35.3 even 12
105.2.j.a.92.1 yes 24 7.3 odd 6
105.2.j.a.92.12 yes 24 21.17 even 6
525.2.j.b.218.1 24 35.17 even 12
525.2.j.b.218.12 24 105.17 odd 12
525.2.j.b.407.1 24 105.59 even 6
525.2.j.b.407.12 24 35.24 odd 6
735.2.j.h.197.1 24 7.4 even 3
735.2.j.h.197.12 24 21.11 odd 6
735.2.j.h.638.1 24 105.53 even 12
735.2.j.h.638.12 24 35.18 odd 12
735.2.y.g.128.1 48 35.23 odd 12 inner
735.2.y.g.128.12 48 105.23 even 12 inner
735.2.y.g.263.1 48 15.8 even 4 inner
735.2.y.g.263.12 48 5.3 odd 4 inner
735.2.y.g.422.1 48 7.2 even 3 inner
735.2.y.g.422.12 48 21.2 odd 6 inner
735.2.y.g.557.1 48 3.2 odd 2 inner
735.2.y.g.557.12 48 1.1 even 1 trivial
735.2.y.j.128.1 48 35.33 even 12
735.2.y.j.128.12 48 105.68 odd 12
735.2.y.j.263.1 48 105.83 odd 4
735.2.y.j.263.12 48 35.13 even 4
735.2.y.j.422.1 48 7.5 odd 6
735.2.y.j.422.12 48 21.5 even 6
735.2.y.j.557.1 48 21.20 even 2
735.2.y.j.557.12 48 7.6 odd 2